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The notion of measurement is of both foundational and instrumental significance in quantum mechanics, and
coherence destroyed by measurements (decoherence) lies at the very heart of quantum to classical transition.
Qualitative aspects of this spirit have been widely recognized and analyzed ever since the inception of quantum
theory. However, axiomatic and quantitative investigations of coherence are attracting great interest only recently
with several figures of merit for coherence introduced [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113,
140401 (2014)]. While these resource theoretic approaches have many appealing and intuitive features, they rely
crucially on various notions of incoherent operations which are sophisticated, subtle, and not uniquely defined,
as have been critically assessed [Chitambar and Gour, Phys. Rev. Lett. 117, 030401 (2016)]. In this paper, we
elaborate on the idea that coherence and quantum uncertainty are dual viewpoints of the same quantum substrate,
and address coherence quantification by identifying coherence of a state (with respect to a measurement) with
quantum uncertainty of a measurement (with respect to a state). Consequently, coherence measures may be
set into correspondence with measures of quantum uncertainty. In particular, we take average quantum Fisher
information as a measure of quantum uncertainty, and introduce the corresponding measure of coherence, which is
demonstrated to exhibit desirable properties. Implications for interpreting quantum purity as maximal coherence,
and quantum discord as minimal coherence, are illustrated.
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I. INTRODUCTION

Both foundations of quantum mechanics and practices of
quantum technologies are based on measurements, which have
evolved from the original notion of observables [1], to von
Neumann measurements [2], to Lüders measurements [3], and
to quantum operations [channels, or positive-operator-valued
measures (POVMs)] [4–7]. Intimately related to measurements
are uncertainties of measuring results and coherence of
quantum states [8–10], which play basic roles in applications
of quantum theory and gain even more significance with the
emergence of quantum information theory [7]. The Heisenberg
uncertainty relations, which synthesize trade-off between mea-
surement uncertainties, are a hallmark of quantum mechanics,
while coherence is among the most prominent features of
quantumness. In this context, a basic and natural question
arises: What are the interrelations between uncertainty and
coherence? The aim of this paper is to establish an intrinsic and
quantitative link between quantum uncertainty and coherence.
More precisely, we make the following identification (see
Fig. 1): Coherence = Quantum Uncertainty, and reveal basic
features of the corresponding coherence measures. Further-
more, the results are applied to illustrate that quantum purity
is actually maximal coherence, while quantum discord arises
from minimal coherence.

II. COHERENCE

In recent years, inspired by the work of Åberg [11],
Levi and Mintert [12], and more influentially, Baumgratz
et al. [13], there is a flurry of interest in the quantification
issues of coherence and, consequently, several important
quantifiers of coherence, including the relative entropy of
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coherence (coherence cost), coherence formation, robustness
of coherence, lp-norm coherence, distance-based coherence,
etc., have been introduced and assessed [14–22]. In particular,
the resource theoretic perspective of coherence, in analogy to
that of entanglement, has been established [23–30].

All these approaches are based on the notions of incoherent
operations, which have many species such as maximally
incoherent operations, incoherent operations, physically in-
coherent operations, strictly incoherent operations, genuinely
incoherent operations, dephase covariant operations, transla-
tion invariant operations, and energy preserving operations
[29]. These diversities complicate the issue, and most of them
are actually not free of coherence when implemented via
ancillaries [31,32].

Another severe, neither necessary nor desirable, restriction
of existent coherence measures lies in the reference bases,
which are always taken as orthonormal bases, or equivalently,
von Neumann measurements. In both theoretical and practical
investigations involving correlations and decoherence-free

Coherence
of
State

Quantum
Uncertainty

of
Measurement

State
Measurement

FIG. 1. From the state-measurement duality, the coherence of
the state ρ (with respect to the measurement M) is identified with
the quantum uncertainty of the measurement M (with respect to the
state ρ).
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subspaces, it is necessary to consider coherence with respect
to general POVMs. In this general context, there are no
simple notions of incoherent states and incoherent operations.
Nevertheless, there are certainly still intrinsically coherent
issues.

In this paper, we will take a direct approach to coherence
quantification via quantum uncertainty, which in turn is
quantified via average quantum Fisher information [33–35].
We will elucidate that this viewpoint captures the essence of,
leads to interesting implications for, and sheds considerable
lights on, coherence.

III. QUANTUM UNCERTAINTY

Given an observable A and a quantum state ρ, the vari-
ance V (ρ,A) := trρA2 − (trρA)2 is a fundamental quantity
representing the total uncertainty of A in ρ, which may be
formally decomposed into a classical part and a quantum
part as: V (ρ,A) = C(ρ,A) + Q(ρ,A). These two kinds of
uncertainties are postulated to satisfy the following intuitive
requirements [34]:

(1) The quantum uncertainty Q(ρ,A) is convex in ρ. In
contrast, the classical uncertainty C(ρ,A) is concave in ρ.

(2) When ρ is pure, V (ρ,A) = Q(ρ,A) and C(ρ,A) = 0.

There is no classical mixing and all uncertainties are quantum
for any pure state.

(3) When ρ commutes with A, Q(ρ,A) = 0 and C(ρ,A) =
V (ρ,A) because, in this situation, ρ and A can be diagonal-
ized simultaneously and thus behave like classical variables.
Consequently there is no quantum uncertainty of A in ρ.

There is no unique choice of Q(ρ,A), and depending on the
context and problems, one may make different choices. Based
on the quantum estimation theory, it is natural to take quantum
Fisher information as a measure of quantum uncertainty [34].

Now, for any measurement mathematically represented by
a POVM M = {Mi : i = 1,2, · · · ,m} with Mi � 0,

∑
i Mi =

1, its action on a quantum state results in a postmeasure-
ment state M(ρ) = ∑

i

√
Miρ

√
Mi in the nonselective case,

and a postmeasurement ensemble {ρi = 1
pi

√
Miρ

√
Mi,pi =

trρMi} in the selective case. We define the total uncertainty
of the measurement M in ρ as V (ρ,M) := ∑

i V (ρ,Mi). To
extract the quantum part, we define the quantum uncertainty
of the measurement M in ρ as Q(ρ,M) := ∑

i F (ρ,Mi),
which indeed meets the above requirements. Here F (ρ,Mi)
is a version of quantum Fisher information of ρ with
respect to Mi . There are infinite versions of quantum Fisher
information [36–43], among which, two prominent ones are
defined via symmetric logarithmic derivative and commutator,
respectively. The latter corresponds to the Wigner-Yanase
skew information [36,42,43]

I (ρ,A) := − 1
2 tr[

√
ρ,A]2,

which has already been regarded as quantum uncertainty
of the observable A in the state ρ [34]. There are several
interpretations of the skew information:

(1) Information content of ρ skew to A [36].
(2) Noncommutativity between A and ρ [44].
(3) Quantum Fisher information of ρ with respect to a

parameter conjugate to A [42].
(4) Quantum uncertainty of A in ρ [34,43].

(5) Coherence of ρ with respect to A [14].
(6) Asymmetry of ρ with respect to A [45,46].
All these consistent and different manifestations of the same

quantum subject indicate that skew information is a significant
and versatile quantity.

IV. COHERENCE AS QUANTUM UNCERTAINTY

Now we have a measure of quantum uncertainty of M =
{Mi} in ρ as

Q(ρ,M) :=
m∑

i=1

I (ρ,Mi),

in which the measurement M plays an active role, while the
state ρ plays a passive role (i.e., serves as a background
reference). Taking a dual point of view, we regard the state
ρ as active, and the measurement M as passive, and interpret
this quantity as coherence of ρ with respect to M . It turns out
that Q(ρ,M) is indeed a bona fide measure for coherence, as
consolidated by the following properties.

(1) The coherence is nonnegative, and vanishes if and only
if ρ commutes with every Mi , i.e., Q(ρ,M) � 0, and the
minimal value 0 is achieved if and only if [ρ,Mi] = 0.

(2) The coherence Q(ρ,M) is convex in ρ, that is,

Q

( ∑
j

cjρj ,M

)
�

∑
j

cjQ(ρj ,M),

where cj � 0,
∑

j cj = 1, and ρj are quantum states.
(3) The coherence Q(ρ,M) is unitarily covariant in the

sense that Q(UρU †,UMU †) = Q(ρ,M) for any unitary oper-
ator U . Here UMU † = {UMiU

†}.
(4) The coherence Q(ρ,M) is decreasing under partial trace

in the sense that

Q(ρab,Ma ⊗ 1b) � Q(ρa,Ma).

Here, ρab is a bipartite state shared between parties a and
b, Ma ⊗ 1b = {Ma

i ⊗ 1b} is a measurement on the composite
system, while Ma = {Ma

i } is a measurement on party a, 1b

is the identity operator on party b, ρa = trbρab is the reduced
state on party a.

(5) The coherence Q(ρ,M) is decreasing, i.e., Q(ρ,M) �
Q(�(ρ),M) under any quantum operation � which does
not disturb the measurement M (in the technical sense that
�†(

√
Mi) = √

Mi, �†(Mi) = Mi for all i). Noting that the
adjoint operation �† is defined as �†(A) = ∑

j E
†
jAEj if

�(ρ) = ∑
j EjρE

†
j in the Kraus representation.

We now sketch the reasons of the above properties.
Item (1) is clear since I (ρ,Mi) � 0 for any i. The vanishing

condition is equivalent to I (ρ,Mi) = 0 for all i, i.e., ρ

commutes with every Mi .
Item (2) follows readily from the well-known convex

property of the skew information [36,37].
Item (3) follows from simple manipulation of the expression

of the skew information.
Item (4) follows from the decreasing property of the skew

information under partial trace, as established by Lieb [37]:
I (ρab,Ma

i ⊗ 1b) � I (ρa,Ma
i ).
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Item (5) is subtle. First, under the nondisturbance condi-
tions, it follows that I (�(ρ),Mk) � I (ρ,Mk). To establish this,
define the affinity [47]: A(ρ,τ ) := tr

√
ρ
√

τ . Consider the von
Neumann-Landau equation

i
∂

∂t
ρt = [Mk,ρt ], ρ0 = ρ,

then A(ρt ,ρ) = 1 − I (ρ,Mk)t2 + o(t2) for sufficiently small t .
Similarly, due to the nondisturbance condition, �(ρt ) satisfies
the von Neumann-Landau equation with generator Mk and
initial condition �(ρt )|t=0 = �(ρ), and thus

A(�(ρt ),�(ρ)) = 1 − I (�(ρ),Mk)t2 + o(t2)

for sufficiently small t . Now, by the monotonicity of
affinity, we have A(�(ρt ),�(ρ)) � A(ρt ,ρ) which implies
I (�(ρ),Mk) � I (ρ,Mk). Summing these inequalities with
respect to k yields the desired result.

We remark that Item (5) actually implies Item (4), and in
the present context, there are no natural notions for incoherent
states or incoherent operations.

To illustrate quantum coherence with respect to a general
measurement, consider a qubit system with standard base
{|0〉,|1〉}. Let ρ = |ψ〉〈ψ | with |ψ〉 = 1√

2
(|0〉 + |1〉), which

is maximally coherent with respect to the standard base in
an intuitive sense. Now consider the measurement M = {Mi :
i = 1,2} with

M1 = γ |0〉〈0|+(1 − γ )|1〉〈1|,
M2 = (1−γ )|0〉〈0|+γ |1〉〈1|,

where γ ∈ [0,1] is a parameter. Then direct evaluation shows
that

Q(ρ,M) = 2
(
γ − 1

2

)2
,

which vanishes when γ = 1
2 , and achieves the maximum 1

2
when γ = 0 or 1. Hence, by adjusting γ , quantum coherence
can take any value between 0 and 1

2 . In many situations
of probing (measuring) a quantum state, it is crucial to
take a judicious trade-off between extracting information
(which causes decoherence) and maintaining coherence, and
general measurements beyond von Neumann measurements
are necessary.

We recall that the most general state changes can be
described by quantum operations with Kraus representations:

� : ρ → {(pi,ρi) : i ∈ I },
which send an initial state to a quantum ensemble with
ρi = 1

pi

∑
k AikρA

†
ik, pi = tr

∑
k AikρA

†
ik,

∑
ik A

†
ikAik = 1,

i.e., the measurement yields the outcome labeled by i with
probability pi , with the resulting postmeasurement state ρi . In
this situation, how do we define quantum uncertainty of this
state change? Equivalently, how do we define coherence of a
state with respect to the most general measurement �? This is
an important and subtle issue. First, there is a corresponding
POVM M = {Mi : i ∈ I } with Mi = ∑

k A
†
ikAik, and if we

employ this measurement M to define the quantum uncertainty
of �, we are reduced to the POVM case. However, it seems that
such an approach misses intrinsic characteristics of � since the
Kraus operators Aik may not be Hermitian. It is desirable to

extend the previous formalism and results to this general case,
which is left as an open issue for further investigation.

V. SPECIFYING TO LÜDERS MEASUREMENTS

For concreteness, and for the purpose of gaining further
intuitive understanding of the coherence Q(ρ,M), we now
specify the measurement M to Lüder measurements (including
von Neumann measurements as special cases). Consider a
quantum system described by a Hilbert space H . Let � =
{�i : i = 1,2, · · · ,m} be a Lüders measurement, that is, �i

are mutually orthogonal projections constituting a resolution
of the identity operator:

∑
i �i = 1. This is equivalent to a

direct sum decomposition of the system Hilbert space H =⊕
i Hi , with �i corresponding to the orthogonal projection

onto the subspace Hi = �iH . In particular, when all �i

are one-dimensional, we have a von Neumann measurement,
which is equivalent to an orthonormal base for H . While,
in most previous studies, coherence measures are usually
taken with respect to a fixed orthonormal base (von Neumann
measurement), Marvian and Spekkens explicitly suggested to
quantify and characterize coherence not only with respect to
one-dimensional subspaces, but also with respect to subspaces
of arbitrary dimension, i.e., coherence with respect to Lüders
measurements (which are phrased in terms of measuring a
degenerate observable) [23]. The restriction to von Neumann
measurements is unnecessary, and in many situations, unac-
ceptable.

For the Lüders measurement � = {�i}, the coherence has
the following further nice properties.

(a) Q(ρ,�) can be alternatively expressed as Q(ρ,�) =∑
i �=j tr

√
ρ�i

√
ρ�j which is reminiscent of off-diagonal

elements and interference, the characteristic features of co-
herence.

(b) Q(ρ,�) has the direct sum property in the sense that

Q

(⊕
i

λiσi,�

)
=

∑
i

λiQ(σi,�).

where λi � 0,
∑

i λi = 1, and σi are quantum states on Hi

(thus a priori are quantum states on H ).
(c) Q(ρ,�) has the following tensor product property:

1 − Q(ρa ⊗ ρb,�ab) = [1 − Q(ρa,�a)][1 − Q(ρb,�b)],

where ρab is a bipartite state shared by parties a and b, �a =
{�a

i } and �b = {�b
j } are Lüders measurements on parties a

and b, respectively, and �ab = {�a
i ⊗ �b

j }.
To establish (a), noting

∑
i �i = 1, we have

0 = trρ

( ∑
i

�i

)2

− tr
√

ρ

(∑
i

�i

)√
ρ

( ∑
j

�j

)

=
∑

i

trρ�2
i −

∑
i,j

tr
√

ρ�i

√
ρ�j

=
∑

i

I (ρ,�i) −
∑
i �=j

tr
√

ρ�i

√
ρ�j

from which the desired result follows.
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Item (b) follows readily from I (
⊕

i λiσi,�j ) =
λj I (σj ,�j ).

Item (c) can be established as follows:

Q(ρa ⊗ ρb,�ab)

=
∑
ij

I
(
ρa ⊗ ρb,�a

i ⊗ �b
j

)

=
∑
ij

(
trρa�a

i · trρb�b
j − tr

(√
ρa�a

i

)2 · tr
(√

ρb�b
j

)2)

= 1 − [1 − Q(ρa,�a)][1 − Q(ρb,�b)].

VI. MAXIMAL, MINIMAL, AND AVERAGE COHERENCE

In general, Q(ρ,�) should be regarded as a functional of
both the state ρ and the measurement �. In this context, it is
interesting to consider the maximal coherence of ρ, when �

varies over all von Neumann measurements. Consequently, we
introduce Qmax(ρ) := max� Q(ρ,�), which is the maximally
possible value of coherence of ρ with respect to von Neumann
measurements. Clearly, Qmax(ρ) = maxU Q(ρ,U�U †) where
U is unitary. It is natural to expect this should be a measure
of quantum information content, or quantum purity [30], of ρ.
Indeed, we have

Qmax(ρ) = 1

n

n2∑
j=1

I (ρ,Xj ) = 1 − 1

n
(tr

√
ρ)2,

with the last equality follows from Refs. [33–35]. Here
{Xi} is an orthonormal base for the Hilbert space L(H )
of operators on H with the scalar product 〈A|B〉 =
trA†B, and n = dimH. This leads to the observation
that quantum purity may be interpreted as maximal
coherence.

When the worst cases are relevant, one may be interested
in the minimal coherence Qmin(ρ) := min� Q(ρ,�). In par-
ticular, quantum discord may be interpreted as the minimal
coherence [19], with minimization over all local von Neumann
measurements. To illustrate this, consider a bipartite state
ρab shared by two parties a and b, and let �a = {�a

i } be
a von Neumann measurement on party a, then �a ⊗ 1b =
{�a

i ⊗ 1b} is a Lüders measurement on the combined sys-
tem ab. The geometric discord DH(ρab) := min�a tr[

√
ρab −

(�a ⊗ 1b)(
√

ρab)]2 quantifies quantum correlations (with re-
spect to party a) in ρab [48], where (�a ⊗ 1b)(

√
ρab) =∑

i(�
a
i ⊗ 1b)

√
ρab(�a

i ⊗ 1b). On the other hand, in view of
the coherence measure, we have the coherence of ρab with
respect to the Lüders measurement �a ⊗ 1b as Q(ρab,�a ⊗
1b). This quantity of course depends on the local von
Neumann measurement �a . If we optimize over �a , then
min�a Q(ρab,�a ⊗ 1b) = DH(ρab). Consequently, the geo-
metric discord is precisely the minimal coherence in this
context.

Intermediate between maximal and minimal coherence is
the average coherence Qave(ρ) := ∫

U Q(UρU †,�)dU, which
can also be regarded as the average coherence of a fixed state
ρ with respect to the unitary orbit of the measurement � in the
sense that Qave(ρ) = ∫

U Q(ρ,U †�U )dU. Here the integration

is with respect to the Haar measure on the group of unitary
operators. The explicit evaluation of the integral remains to be
investigated.

VII. COMPARISONS

The coherence measure Q(ρ,�) should be compared with
the K-coherence I (ρ,K) introduced in Ref. [14], which vio-
lates the important axiom for monotonicity [49]. The measure
Q(ρ,�) satisfies the monotonicity. When the measurement
� is a von Neumann measurement � = {|i〉〈i|} with {|i〉} an
orthonormal base for the system Hilbert space, the measure
reduces to the one studied in Ref. [50].

We emphasize that the present coherence measure is
fundamentally different from existent measures of coherence
in several aspects: First, while previous coherence measures
are with respect to a fixed orthonormal base (equivalently,
von Neumann measurement), here the coherence measure
is more general, since it is constructed with respect to
any quantum measurement. This generalization has wide
and important implications because it is necessary to go
beyond von Nuemann measurements in many situations,
such as in the considerations of decoherence-free subspaces
and error correcting codes [51–54]. Second, we do not
rely on the notions of the so-called incoherent operations,
which are very subtle and complicated [31,32]. Third, unlike
many other measures of coherence, here optimization is not
involved.

VIII. DISCUSSIONS

In contrast to the resource theoretic approach to coherence,
we have introduced a direct and intuitive approach to coher-
ence by identifying quantum uncertainty and coherence, and
have defined the corresponding coherence measure via quan-
tum Fisher information. The coherence measure is defined,
without reference to incoherent operations, in a more broad
framework involving general POVMs rather than orthonor-
mal bases corresponding to von Neumann measurements,
and it enjoys several desirable and intuitive properties. In
particular, we are led to corroborate the following formal
identifications:

(1) Quantum Uncertainty ∼ Coherence
(2) Quantum purity ∼ Maximal Coherence
(3) Quantum Discord ∼ Minimal Coherence
A lot of important questions call for further investigation,

including the foundational implications, operational signifi-
cance, resource theoretic connection, and experimental usage
of the ideas and results illustrated here.
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