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Experimental demonstration of adaptive quantum state estimation for single photonic qubits
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We herein report the experimental demonstration of adaptive quantum state estimation for totally unknown
photonic qubits. Similar to our previous study [R. Okamoto et al., Phys. Rev. Lett. 109, 130404 (2012)], the
measurement configuration is updated using the results of each photon detection event so that our method does not
require prior knowledge of the total number of samples. The experimental results obtained herein demonstrate
both strong consistency and asymptotic efficiency through several rigorous statistical tests. Furthermore, we
demonstrate that the experimentally obtained distribution of the states estimated using an adaptive quantum state
estimation is significantly different from that obtained by conventional state tomography and agrees well with
theoretical predictions.
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I. INTRODUCTION

Estimating an unknown quantum state is one of the most
fundamental and important tasks in the fields of quantum
information [1–3], communication [4], and measurement
[5–7]. The ultimate goal is to estimate the true value of the
parameter that specifies the unknown state with the smallest
uncertainty, such as the quantum Cramér-Rao bound [8,9],
for a given limited number of samples. However, in general,
it is impossible to achieve such a theoretical limit when the
measurement configuration is fixed. As a solution to this prob-
lem, Nagaoka [10,11] advocated an adaptive quantum state
estimation (AQSE) procedure. Later, the strong consistency
and the asymptotic efficiency of AQSE were mathematically
proven by Fujiwara [12,13] and were also experimentally
verified by the present authors for one-dimensional parameter
problems using photons [14].

Recently, a few experimental demonstrations of adaptive
measurement for photonic qubits were reported [15,16].
However, these experiments used the two-step adaptive strat-
egy in which the preliminary measurement of part of the
whole ensemble was used to determine the measurement
configuration for the remainder of the ensemble. Such a
method may have two problems. First, this method cannot, in
principle, achieve the theoretical limit exactly. Second, prior
knowledge of the total number of samples is required to design
the overall estimation procedure.

Adaptive schemes using the Bayesian estimation algorithm
were also reported [17,18]. However, their strategy did not
have an objective figure of merit to be minimized; instead,
it involved the minimization of the Shannon entropy of the
posterior distribution calculated from the arbitrarily fixed
initial prior distribution and the history of the measurement.
Such a method may have two problems. First, there is no
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guarantee that an objective figure of merit, such as the mean
infidelity, will converge to its theoretical limit predicted by the
standard quantum point estimation theory [9,19]. In fact, the
performance reported in [18] remained below the theoretical
limit. Second, the time-consuming minimization procedure
of the Shannon entropy is inevitable at every step of the
measurement, which may cause difficulties in realizing the
estimation scheme by experiment.

In the present paper, we report an experimental demonstra-
tion of a multiparameter AQSE for totally unknown photonic
qubits. Similar to the one-parameter AQSE presented in [14],
the measurement configuration is updated using the results
of each photon detection event so that our method does
not require prior knowledge of the total number of samples
(Fig. 1). The experimental results obtained herein demonstrate
both strong consistency and asymptotic efficiency through
several rigorous statistical tests. Furthermore, we show that
the experimentally obtained distribution of the states estimated
using AQSE is significantly different from that obtained
by conventional state tomography [20,21] and agrees well
with theoretical predictions. These results are important for
understanding the fundamental characteristics of quantum
estimation procedures.

II. QUANTUM ESTIMATION THEORY

A d-dimensional quantum statistical model is a family
S = {ρθ }θ of density operators on a Hilbert space H that
is smoothly parametrized by a d-dimensional real parameter
θ (∈ Rd ). Suppose that the state of the physical system at hand
belongs to model S, but we do not know which is the true
state. A quantum parameter estimation problem [8,9] involves
seeking the best strategy for estimating the true value of θ that
specifies the true state. An estimator for the parameter θ is
given by pair (M,θ̌), where M is a positive-operator valued
measure (POVM) for which the outcomes take values on some
set X , and θ̌ : X → Rd : x �→ θ̌ (x) is a map that gives an
estimated value θ̌ (x) from the observed data x.
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FIG. 1. Schematic diagram of adaptive quantum state estimation
for single photonic qubits. Single photons with a fixed unknown
polarization are emitted from a photon generator. The polarization
is analyzed by QWP1, HWP1, and a polarizing beam splitter (PBS).
The controller sets QWP1 and HWP1 to an angle calculated based
on the photon measurement results.

It is known that the quantum Cramér-Rao bound, which
gives the ultimate limit of the estimation precision when
d = 1, is not always achievable when d � 2. Therefore, it
is customary to seek the (locally unbiased) estimator (M,θ̌ )
that minimizes the weighted trace Tr {WθVθ [M,θ̌ ]} of the
covariance matrix Vθ [M,θ̌ ] for the estimator, given a weight
(positive-definite symmetric) matrix Wθ , which may depend
on θ .

In the present paper, we restrict our attention to estimating
the three-dimensional parameter θ = (x,y,z) of a qubit state

ρ(x,y,z) = 1
2 (I + xσx + yσy + zσz)

on H = C2 having the domain

B = {(x,y,z) ∈ R3 | x2 + y2 + z2 � 1}
called the Bloch ball. Although far from optimal [19],
conventional state tomography is an example of an estimator
for the parameter θ , where the number of photons is counted
in each direction of the fixed coordinate axes [20,21]. In fact,
the ultimate limit of the estimation precision is given by

min
(M,θ̌ )

Tr {WθVθ [M,θ̌ ]} = (
Tr

√√
J−1

θ Wθ

√
J−1

θ

)2
, (1)

where Jθ is the symmetric logarithmic derivative (SLD) Fisher
information matrix. The bound (1) is sometimes referred to as
the Hayashi-Gill-Massar bound [19,22,23].

An estimator that attains the bound (1) is given in [19]; in
particular, it depends on the weight Wθ . It is then natural to ask
what weight we should adopt. Recall that, due to the quantum
Cramér-Rao inequality, the SLD Fisher information matrix Jθ

is regarded as a measure of the statistical inhomogeneity of
the quantum state space. Taking this into account, we adopt Jθ

itself as the weight Wθ in the present study to compensate for
the statistical inhomogeneity [24]. Consequently, the bound
(1) with this weight becomes independent of θ , taking the
following constant value:

min
(M,θ̌ )

Tr {JθVθ [M,θ̌ ]} = 9. (2)

In comparison, the weighted trace of the covariance matrix
for simple tomography (see the Appendix for the definition) is
given by

Tr {JθVθ [Mtomo,θ̌tomo]} = 9 + 6(x2y2 + y2z2 + z2x2)

1 − (x2 + y2 + z2)
. (3)

FIG. 2. Weighted traces of covariance matrices when θ =
r√
3
(1,1,1) with 0 � r < 1. The dashed purple line, the blue curve,

and the dot-dashed black curve indicate the results obtained by the
optimal estimator (2), simple tomography (3), and totally randomized
tomography (4), respectively.

Clearly, (3) is greater than (2) unless θ lies on an x,y,

or z axis. Note that, due to the law of large numbers, the
weighted trace of the covariance matrix for the standard
maximum likelihood (ML) tomography (see the Appendix)
is asymptotically identical to (3).

For further comparison, we consider a totally randomized
tomography in which the measurement axes are chosen at
random according to the Haar measure of the rotation group
SO(3). The weighted trace of the covariance matrix for this
randomized tomography is given by

Tr {JθVθ [Mrand,θ̌rand]} = r3

(1 − r2)(arctanh r − r)

+ 4r3

r − (1 − r2)arctanh r
, (4)

FIG. 3. An optimal measurement that attains the bound (2) is a
uniform mixture of three projective measurements �ξ,�η, and �ζ

corresponding to a set of mutually orthogonal axes ξ,η, and ζ in R3

in which the ξ axis passes through the true state θ = (x,y,z).
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FIG. 4. Schematic diagram of the experimental setup.

where r =
√

x2 + y2 + z2. Note that (4) depends only on
the purity r: this is because the POVM Mrand is rotationally
covariant.

The differences among (2), (3), and (4) for θ = r√
3
(1,1,1)

with 0 � r < 1 are demonstrated in Fig. 2. The quantities (3)
and (4) exhibit similar behavior; they diverge as the purity r

approaches 1. This makes a striking contrast to the theoretical
bound (2), which is independent of r . In the present paper,
therefore, we adopt simple tomography and ML tomography
as references in comparing the performance of estimators.

An estimator that attains the bound (2) is explicitly given
by a uniform mixture (i.e., randomization)

M(θ ) := 1
3 (�ξ ⊕ �η ⊕ �ζ ) (5)

of projective measurements �ξ,�η, and �ζ corresponding to a
suitably chosen set of orthogonal axes ξ,η, and ζ , respectively,
inR3 so that the ξ axis passes through the true state θ = (x,y,z)
(see Fig. 3).

The reader may find that there is an obvious difficulty in
realizing the optimal measurement (5) because information
about the unknown value of the parameter θ is required to
specify the ξ axis. This is in striking contrast to simple and/or
ML tomography, which is represented by the uniform mixture

Mtomo = 1
3 (�x ⊕ �y ⊕ �z)

of projective measurements �x,�y, and �z corresponding to
the “fixed” orthogonal axes x,y, and z in R3.

This paradoxical difficulty can be avoided by employing
an adaptive quantum state estimation (AQSE) scheme [12–
14], in which successive measurements are performed to
update the temporary estimate θ̂n−1, as well as the temporary
experimental setup M(θ̂n−1), to a new estimate θ̂n based on
the nth measurement and the maximum likelihood method.
It has been proven [12,13] that the sequence θ̂n almost
certainly converges to the true value θ∗ of the parameter θ

(referred to as strong consistency) and that the distribution of√
n(θ̂n − θ∗) converges to the normal distribution N (0,Vθ∗ ),

where Vθ∗ := 3(I − |θ∗〉〈θ∗|) is the covariance matrix that
corresponds to the optimal measurement (5) at θ∗ (referred
to as asymptotic efficiency).

III. EXPERIMENT

Figure 4 shows the experimental setup. Single photons at
780 nm are generated from a heralded single-photon source,
consisting of a cw diode pump laser (wavelength: 402 nm)
and a 3-mm-long BBO crystal (Type I). A pair consisting
of a signal photon (780 nm) and a trigger photon (830 nm)
is created via spontaneous parametric down conversion. The
detector (DT, SPCM-AQR, PerkinElmer) after an interference
filter (IF1, center wavelength: 830 nm) outputs an electric
pulse (width: 30 ns) when it detects a trigger photon and the
electric pulse heralds the generation of a signal photon, which
is coupled to a polarization maintaining fiber (PMF) after an
interference filter (IF2, center wavelength: 780 nm, width:
4 nm). The HWP before the IF2 is used to change the purity
of the input state. The purity can be controlled by tilting the
angle of linear polarization to the slow or fast axis of the PMF
due to birefringence. The polarization direction of the photon
was set using HWP0 and QWP0.

The input photon state was analyzed by HWP1, QWP1,
and a polarizing beam splitter (PBS). After passing through
the PBS, photons are guided to single-photon detectors (D0
and D1, SPCM-AQR, PerkinElmer) at each PBS output port.
The outputs of single-photon detectors are gated by the rise

FIG. 5. Flowchart of AQSE used in the experiment.
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FIG. 6. Single measured trajectory for a true state of θ∗ =
(0.52,0.52,0.52). (a) Trajectory in the Bloch ball. The red dot
indicates the true state and the green dot indicates the estimated
state at n = 798. The first three estimated states are labeled A, B, and
C, respectively. (b)–(d) Estimated states projected to x, y, and z axes.
The red horizontal lines indicate the true state.

of the heralding signal and are connected to a first-come
discriminator, consisting of a custom electric circuit. When
the discriminator receives the first signal from one of the
detectors (D0 or D1) after the measurement for the (n − 1)th
photon starts, the discriminator indicates which detector has
been clicked. A minimum pulse interval of 2.5 ns can be
discriminated. Note that the discriminator ignores the case
in which it receives the pulses from both detectors within
2.5 ns.

The angle of HWP1 and QWP1 for measuring the nth
photon is determined by the log-likelihood function at stage
n chosen from among the 100 points that divide the domain
(−1,1) of each parameter x, y, and z into equal parts. When
the change of the HWP1 and QWP1 angles is completed, the
measurement for the next (nth) photon will be started.

The procedure of AQSE is summarized in Fig. 5. In the
present study, the procedure was carried out for up to 798
input photons (n = 798). We repeated the adaptive estimation
sequence 200 times.

Figure 6 shows a single measured trajectory for a true
state of θ∗ = (0.52,0.52,0.52) [red dot in Fig. 6(a) and red
horizontal lines in Figs. 6(b) through 6(d)]. Figure 6(a) is the
trajectory in the Bloch ball, and Figs. 6(b) through 6(d) are
the trajectories projected to x, y, and z axes, respectively. The
state for n = 0 was initially set to be (0,0,0) (not shown in
Fig. 6). The trajectory starts at state A for n = 1 in Fig. 6(a)
and then approaches the true state.

IV. RESULTS AND DISCUSSIONS

As mentioned in the previous section, the temporary
estimate θ̂n−1, which determines the measurement M(θ̂n−1)
at the next stage n, is taken at a lattice point of side 1/50. In
the following data analysis, however, we do not necessarily
use these rough estimates. Instead, we can recalculate the
true maximizer of the likelihood function that is reconstructed
from the history {M(θ̂n)}n of POVMs actually used. In what
follows, all estimates θ̂n for θ∗ = (0.52,0.52,0.52) refer to the
maximum likelihood estimators recalculated in this way (cf.,
Appendix).

Let us first verify the strong consistency for the sequence
θ̂n. Figure 7 shows the first 10 trajectories of θ̂n = (x̂n,ŷn,ẑn)
with respect to the number n of photons when the true state
is set to be θ∗ = (0.52,0.52,0.52). The curves correspond
to independent runs of adaptive estimation. Evidently, each
curve approaches the true value θ∗, which agrees with
the mathematical result that θ̂n → θ∗ almost certainly as
n → ∞.

We next carry out statistical tests for the null hypothesis
that the sequence θ̂n follows a normal distribution for large n.
More concretely, we investigate whether the random variable√

n(θ̂n − θ ) follows the normal distribution N (0,Vθ ), where θ

is the sample average of the estimated values θ̂n over 200 in-
dependent trials, and Vθ := 3(I − |θ〉〈θ |). Table I summarizes
the results of some typical goodness-of-fit tests implemented
on MATHEMATICA 10.3 for the data at n = 798 with θ =
(0.501928,0.499555,0.542737). Each P-value evaluates the
probability of obtaining the experimental data under the null
hypothesis H0 :

√
n(θ̂n − θ ) ∼ N (0,Vθ ). If the P-value turns

out to be less than a previously chosen significance level α,
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FIG. 7. Trajectories of estimated Stokes parameters θ̂n =
(x̂n,ŷn,ẑn) plotted with respect to the number n of photons for the
first 10 repetitions. The true value of the parameter is set to be
θ∗ = (0.52,0.52,0.52), as indicated by the red horizontal lines.

say 10%, we judge that the experimental data do not follow
the null hypothesis H0, and the hypothesis H0 is rejected
under significance level α. Now, Table I shows that the
experimental data follow the null hypothesis H0 surprisingly
well.

Next, let us compare AQSE with simple and/or ML
tomography. Figure 8(a) shows the 200 estimated states at
n = 798 with AQSE. The estimated states are distributed
around the true state with the typical pancake-like distri-
bution [15,19] of AQSE. Figure 8(b) shows the 200 states
estimated at n = 798 with simple tomography. The distribution
for simple tomography, which includes unphysical states

TABLE I. Goodness-of-fit tests.

Test P-value Result

Anderson-Darling 99.0079% accept
Cramér-von Mises 99.5538% accept
Kolmogorov-Smirnov 99.4815% accept
Pearson χ 2 83.9265% accept

falling outside the Bloch ball, is spherical. ML tomography
avoids those unphysical estimates as shown in Fig. 8(c).
Note that this refinement is equivalent to projecting the
unphysical estimates in Fig. 8(b) onto the Bloch ball with
respect to the Fisher metric [21]. Consequently, estimated
values obtained by ML tomography are hemispherically
distributed.

To demonstrate quantitatively the difference between
AQSE and simple and/or ML tomography, the weighted traces
of sample covariances obtained by 200 independent trials for

FIG. 8. Empirical distributions at n = 798 for (a) AQSE,
(b) simple tomography, and (c) ML tomography when θ∗ =
(0.52,0.52,0.52). The true θ∗ value is shown by the red points.
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FIG. 9. Weighted trace Tr Jθ̂n
Vθ̂n

of sample covariance Vθ̂n

obtained by 200 independent trials, multiplied by n, when θ∗ =
(0.52,0.52,0.52). The purple, blue, and green dots indicate the
data obtained by AQSE, simple tomography, and ML tomography,
respectively. The purple and blue dashed horizontal lines indicate the
theoretical values of (2) and (3) evaluated from the sample average θ

at n = 798.

θ∗ = (0.52,0.52,0.52) are plotted in Fig. 9. The purple, blue,
and green dots indicate the data for AQSE, simple tomography,
and ML tomography, respectively. Furthermore, the purple and
blue dashed horizontal lines indicate the theoretical limiting
values given by (2) and (3), these last being evaluated based
on the sample average θ = (0.515752,0.491917,0.509737)
at n = 798. In AQSE (purple), the figure of merit Tr Jθ̂n

Vθ̂n

quickly approaches and evolves around the theoretical value.
The evolution of simple tomography (blue) is similar. In
contrast, the figure of merit for ML tomography (green)
shows a slow uphill and eventually merges with the curve
obtained by simple tomography. This odd behavior is due to
the maximum likelihood data processing, which forces the
unphysical estimates to be projected onto the Bloch ball,
yielding a false shrinkage of variance. Put differently, the
seemingly small values of Tr Jθ̂n

Vθ̂n
for ML tomography at

an early stage of estimation are illusive. The figure of merit
eventually converges to the performance of simple tomography
because the values estimated by simple tomography for large
n are likely to fall inside the unit ball, as the law of large
numbers asserts.

The superiority of AQSE compared to tomography becomes
much clearer if the true state is taken in the vicinity of the
surface of the Bloch ball, that is, if the true state is (almost)
pure. Figure 10 shows the 200 estimated states at n = 798
when the true state is set to be θ∗ = (0.577,0.577,0.577).
For this true state, the estimated states of AQSE [Fig. 10(a)]
have a much thinner pancake-like distribution, as compared to
Fig. 8(a). Simple tomography [Fig. 10(b)] still has a spherical
distribution around θ∗ and since the center point is near the
surface now, approximately half of the estimated states are
unphysical and are to be projected onto the Bloch ball by ML
tomography [Fig. 10(c)]. In this way, the number of unphysical
estimates increases as the purity approaches 1, and thus the
effect of the maximum likelihood data processing is sensitive
to the purity.

FIG. 10. Empirical distributions at n = 798 for (a) AQSE,
(b) simple tomography, and (c) ML tomography when θ∗ =
(0.577,0.577,0.577). The true θ∗ value is shown by the red points.

Let us observe this tendency from a different viewpoint.
Figure 11 shows the evolution of the weighted trace of sample
covariance for θ∗ = (0.577,0.577,0.577). The purple, blue,
and green dots indicate the data obtained by AQSE, simple
tomography, and ML tomography, respectively. Furthermore,
the purple and blue dashed horizontal lines indicate the corre-
sponding theoretical values for AQSE and simple tomography,
respectively, the latter being evaluated based on the sample
average θ = (0.562556,0.535301,0.565639) at n = 798. The
figures of merit for AQSE and simple tomography quickly
approach the corresponding theoretical values, whereas the
figure of merit for ML tomography exhibits a very slow
uphill, which would eventually merge with the curve of simple
tomography. The convergence is very slow, as compared with
Fig. 9 because the true state is almost pure now. Stated another
way, the efficiency of AQSE compared to simple and/or ML
tomography becomes more evident as the true state approaches
the boundary of the Bloch ball. Thus, the performance
of AQSE is clearly superior to that of conventional state
tomography.
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FIG. 11. Weighted trace Tr Jθ̂n
Vθ̂n

of sample covariance Vθ̂n

obtained by 200 independent trials, multiplied by n, when θ∗ =
(0.577,0.577,0.577). The purple, blue, and green dots indicate the
data obtained by AQSE, simple tomography, and ML tomography,
respectively. The purple and blue dashed horizontal lines indicate the
theoretical values of (2) and (3) evaluated from the sample average θ

at n = 798.

V. CONCLUSION

In conclusion, we report the experimental demonstration of
AQSE for totally unknown photonic qubits. The experimental
results obtained herein reveal both strong consistency and
asymptotic efficiency through several rigorous statistical
tests. Furthermore, we show that the experimentally obtained
distribution of the states estimated using AQSE was
significantly different from that obtained by conventional
state tomography and agreed well with theoretical predictions.
These results are important for clarifying the fundamental
characteristics of quantum estimation procedures. AQSE will
find a wide range of applications from astronomy to molecular
biology, whenever precise measurements for quantum objects,
such as photons, spins, atoms, and superconducting artificial
atoms, are needed.
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APPENDIX: COMPARISON BETWEEN CONVENTIONAL
STATE TOMOGRAPHY AND AQSE

Suppose that, at the ith step of estimation, a POVM Mi =
{Mi[ · ]} was chosen and an outcome di was obtained. The

maximum likelihood estimate that takes values on a parameter
domain � at stage n is given by

θ̂n := argmax
θ∈�

�n(θ | M,d),

where

�n(θ | M,d) :=
n∑

i=1

log Tr {ρθMi[di]}

is the log-likelihood function determined from the history

(M,d) = {(M1,d1), (M2,d2), . . . ,(Mn,dn)}
of experiments.

In the conventional qubit state tomography for estimating
the Stokes parameter θ = (x,y,z), each POVM Mi is chosen
from among the projective measurements �x , �y , and �z

corresponding to the fixed orthogonal axes x, y, and z in R3.
When the domain � of the parameter is taken to be the cubic
region [−1,1]3, we call the corresponding estimation scheme
the simple tomography, and denote the estimate symbolically
as

θ̂ simple
n := argmax

θ∈[−1,1]3

�n(θ | Mfix,d).

Here Mfix indicates that the measurement axes are fixed. The
simple tomography, also called the linear tomography in [20],
amounts to computing the empirical distribution from the data
[21].

Note that the estimate θ̂
simple
n may fall outside the Bloch ball,

giving an unphysical estimate. This drawback is circumvented
by the standard maximum likelihood tomography, in which
the parameter domain � is taken to be the Bloch ball B =
{(x,y,z) ∈ R3 | x2 + y2 + z2 � 1}, so that

θ̂ML
n := argmax

θ∈B

�n(θ | Mfix,d). (A1)

The relationship between θ̂
simple
n and θ̂ML

n has been scrutinized
in [21].

In AQSE, on the other hand, the nth measurement Mn is
chosen to be the best one at the previous estimate θ̂n−1; thus
the nth estimate is symbolically written as

θ̂AQSE
n := argmax

θ∈B

�n(θ | Madapt,d). (A2)

Here Madapt indicates that the measurement axes are chosen
in an adaptive manner. It should be emphasized that the only
difference between ML tomography (A1) and AQSE (A2) is
whether each Mn is determined based on information of the
history {(Mi,di)}1�i�n−1 of experiments or not.
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