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We construct (d xd)-dimensional bound entangled states, which violate, for any d > 2, a bipartite Bell
inequality introduced in this paper. We conjecture that the proposed class of Bell inequalities acts as a dimension
witness for bound entangled states: For any d > 2 there exists a Bell inequality from this class that can be
violated with bound entangled states only if their Hilbert space dimension is at least d xd. Numerics supports

this conjecture up to d = 8.
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I. INTRODUCTION

Distant parties carrying out suitable local measurements on
a shared quantum state can establish nonlocal correlations,
which are signaled by the violation of Bell inequalities
[1-3]. A Bell violation implies that the underlying quantum
state is entangled. Such a violation of a Bell inequality has
been attained in recent experiments simultaneously closing
both main technical loopholes, the so-called locality, and the
detection loopholes [4-7].

However, from the theoretical point of view, it is still
unknown whether all entangled quantum states can lead to
violation of a Bell inequality [2,3,8]. For instance, there exist
mixed two-qubit entangled states, so-called Werner states [9],
which admit a local hidden-variable model for any general one-
shot measurement and hence cannot violate any Bell inequality
[10] (see also more recent related results in Refs. [11,12]).

However, in the case of more general scenarios, nonlocality
of certain mixed states can be activated. Such alternative
scenarios involve the multicopy case, i.e., when multiple
copies of a given quantum state can be measured jointly in
a Bell test [13—15], and the case where preprocessing using
local operations and classical communications (LOCC) can be
carried out on the state before performing the Bell test itself
[16,17].

In the most general case, both above actions are allowed
prior to a Bell text, that is, any number of copies of the state in
question can be preprocessed by means of LOCC operations.
In this way, the problem of nonlocality of quantum states
becomes closely related to the task of entanglement distillation
[18,19]. In such a protocol, one starts from an arbitrary
number of copies of a state and tries to extract a pure highly
entangled state by LOCC. Put together, it follows that any
entangled state that is distillable can give rise to Bell inequality
violation.

Indeed, it has been shown that there exist entangled states
in nature that are not distillable [18]. Such a prominent class
of entangled states is the so-called bound entangled states.
From this type of state, it is not possible to distill pure
maximally entangled states by LOCC. On the other hand,
entangled states are required to produce these states. This kind
of irreversible behavior of bound entangled states represents a
very weak form of entanglement, which led Peres to conjecture
that bound entanglement can never lead to Bell inequality
violation [20].
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Several results have been reported in favor of the Peres
conjecture [21-27]. However, it was refuted recently in
Ref. [28], where the presented nonlocal bound entangled state
is a member of the family of 3x3 bound entangled states
from Ref. [29]. The bound entangled states of this family are
positive with respect to the partial transpose [30] and a subset
of these states has been shown [28] to violate the Pironio-Bell
inequality [31]. It is noted that the multipartite version of the
Peres conjecture, which is a weaker version of his original
conjecture, has also been addressed [32-35].

In this paper we address the question of the existence
of nonlocal higher-dimensional bound entangled states. In
particular, we propose (dxd)-dimensional positive partial
transpose (PPT) bound entangled states for any d > 2 that
violate a class of bipartite Bell inequalities. The setup involves
d binary-outcome measurements on Alice’s side and one
d-outcome and one binary-outcome measurement on Bob’s
side. The constructed states are invariant with respect to
partial transposition, a property that ensures that they are
PPT states. The rank of these states is 2d — 2. Note that
Ref. [36] conjectures that this is the lowest possible rank
among (d x d)-dimensional extremal partial transpose invariant
states. On the other hand, we conjecture that our inequalities
act as dimension witnesses for bound entangled states: For any
d > 2 there exists a member from our class of Bell inequalities
that cannot be violated with [(d — 1)x(d — 1)]-dimensional
PPT entangled states. However, they can be violated with
our (d xd)-dimensional PPT entangled quantum systems. The
constructions presented in the paper can be considered as
a straightforward generalization of the PPT state (and the
Pironio-Bell inequality) in Ref. [28] for any d > 3. Provided
our conjecture is true, it can also be considered as a device-
independent dimension witness [37] for bound entangled states
of any dimension d > 2.

II. PREVIOUS WORK

In a recent paper Yu and Oh [38] have given a family of
nonlocal bipartite bound entangled states. Each member of the
family is defined by a density matrix in a (d xd)-dimensional
(d > 3) Hilbert space. The states are invariant under partial
transposition; consequently, they are PPT states [8,30]. The
rank of the state characterized by d is d(d — 1)/2 + 1. Yu and
Oh have proven the nonlocality of their states by showing that
each of them can violate a Bell inequality. In the Bell scenario
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they have given Alice has d two-outcome measurements, while
Bob has one d-outcome and one two-outcome measurement.
The Bell inequality may be written as

d—1 d—1
p(0001) — p(0000) —  ~ p(0ili0) = | p(10]i1) <O,
i=1 i=1

D

where p(ablxy) denotes the conditional probability of Alice
and Bob getting outcome a and b provided they have chosen
settings x and y, respectively. Both the settings and the
outcomes are labeled with non-negative integers starting from
zero. Note that the family of inequalities above is equivalent
to the one defined by Pironio in Ref. [31].

Yu and Oh [38] have shown that if the measurement settings
and the parameters of the states are chosen appropriately, the
inequality given in Eq. (1) is indeed violated. The violation
decreases with d and for d large it is proportional to d~*.
However, it is easy to show that for d > 3 the dth member
of the family of states is not the maximally violating PPT
states for the dth inequality. Let the last measurement of
Alice (the one labeled d — 1) be a degenerate one such
that its outcome is always zero. Then p(1,0|d —1,1) = 0.
Also, let the first measurement of Bob be such that its last
outcome never happens. Then p(0,d — 1|d — 1,0) = 0. With
these choices of measurements, Eq. (1) corresponding to d
will be reduced to the one corresponding to d — 1. Any
state defined in the [(d — 1)x(d — 1)]-dimensional subspace
that violates the inequality of d — 1 will equally violate the
inequality of d. Therefore, all inequalities will be violated
by at least as much as the d = 3 one by a PPT state. For this
family of inequalities the violation cannot give any information
about the dimensionality of the state. In the present paper we
introduce an alternative family of inequalities and a family of
Bell nonlocal PPT states.

III. TIGHT BELL INEQUALITIES FOR d =4

Using the polytope software PORTA [39], we have generated
all tight inequalities with Alice having d = 4 two-outcome
measurements and Bob having one (d = 4)-outcome and one
two-outcome measurement. We have 11 136 of them. Most of
these are equivalent to trivial inequalities [— p(00]00) < 0 and
—p(00]01) < 0] or to the Clauser-Horne-Shimony-Holt Bell
inequality [40]. Also, several of them are equivalent to the
d = 3 or the d = 4 inequalities given in Eq. (1). The rest is
equivalent to one of two inequalities. These inequalities are
not present in the database [41].

The first one of these two inequalities may be written as

p(00]01) — p(00[00) — p(02]10) — p(03]10)
— p(10[11) — p(01]20) — p(03]20) — p(10]21)
+ p(03|30) — p(00|31) < 0. 2)
We have used a seesaw-type algorithm [42—44] similar to
the one used in Ref. [28], which will be explained in the
next section, to find the PPT state and the measurement
settings violating the above inequality the most. The maximum

violation we have found this way was the same as the maximum
one can get for the inequality in Eq. (1) for d = 3. The situation
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is very similar to the cases of Eq. (1) for d > 3. If we take
the measurement settings such that neither outcome zero of
measurement three of Alice nor outcome three of measurement
zero of Bob ever happens, then p(03]10), p(03|20), p(03|30),
and p(00|31) are all zero and what remains is equivalent to
Eq. (1) for d = 3. Therefore, the same violation with the same
state can always be achieved.
The other inequality may be written as

2[p(00]01) — p(00]00)] — p(02]10) — p(03]10)
—p(0[11) = p(01]20) — p(03]20) — p(10[21)
—p(01]30) — p(02[30) — p(10[31) < 0. 3)

This inequality cannot be reduced to the d = 3 inequality by
choosing measurement settings such that the probabilities of
some of the outcomes are zero. There exist (4 x4)-dimensional
PPT states violating this inequality, but we could not find any
PPT state in a smaller space doing that.

IV. GENERALIZATION OF BELL INEQUALITIES
BEYONDd =4

A. The inequality

The last and most interesting inequality of Eq. (3) may be
generalized to any d > 3 as

Ig = (d —2)[p(00|01) — p(00[00)]
d—1 d—1

= > pOjli0)1 =) = Y p(10li1) 0. (@)

i,j=1 i=1

For d = 3 the inequality is the same as the one of Eq. (1),
only Alice’s measurements one and two are swapped. It
is not difficult to show that the classical bound appearing
on the right-hand side of the equation is indeed zero. This
number is the maximum value the left-hand side can take
if the conditional probabilities are given by deterministic
strategies. In a deterministic strategy the outcome of each
measurement is certain for both parties, independently of each
other. Therefore, p(ab|xy) = a4« Bp)y, Where oy, (Bpy), the
probability of Alice (Bob) getting outcome a (b) provided she
(he) performs measurement x (), is one for each x (y) for one
of the outcomes and zero for all other outcomes.

The classical bound zero can be achieved with many
deterministic strategies; for example, with the choice of
a1 = Pojp = Pip =1 each term on the right-hand side of
Eq. (4) is zero. Now we will show that we cannot get a
positive classical value. The only term in the equation that
can give a positive contribution is the first one. For that
the choice of ogp =1 and By;; =1 has to be made. Then
this term will have the value of d — 2. For Bob’s d-outcome
measurement zero Bo;o = 1 wouldlead to p(00|00) = 1, which
would give a contribution of —(d — 2), negating the positive
term. Therefore, let us choose By,0 =1 (0 < by < d). Then,
no matter how we choose oy); for i # 0, either p(0by|i0) =
a0)i Bro = 1, or p(10]i1) = oy); Boji = 1. This way, for each
i we get a contribution of —1 except for i = by provided
agp, = 1, as p(0by|by0) has a zero factor. Therefore, we get at
least d — 2 terms of value —1, so we cannot get a sum larger
than zero indeed.
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B. Optimization of the PPT quantum value

The quantum value of a conditional probability appearing
in a Bell inequality may be written as

plab|xy) = Tr[p(Agx & By, 5)

where Au\x and Ebb, are the operators corresponding to
outcomes a and b of Alice’s and Bob’s measurement setting
x and y, respectively. We allow positive-operator-valued-
measure measurements. Therefore, the quantum value of the
Bell expression can be written as

0(d) = Tr(pBa), (©6)

where the Bell operator B is the linear combination of the
operators A,y ® By, according to the Bell coefficients. For
inequality 7; in Eq. (4) it takes the form

By = (d —2)A¢0 ® (Boji — Bop)

U

d—1
— Ao ® Bjo(1 _8ij)_ZA1|i ® Bop. (7

i,j=1 i=1

When the quantum value is larger than the classical bound, the
inequality is violated.

From Eq. (6) it follows that given B (that is, given the
measurement settings), finding the optimal density matrix is a
problem of semidefinite programming (SDP) [45]. Confining
ourselves to PPT states is just a matter of another standard
constraint in the SDP method. It is also true that given a
state and the measurement settings of one of the parties,
finding the optimum settings for the other party is also an
SDP problem. This is because for each measurement setting
the operators corresponding to the outcomes are positive-
semidefinite operators whose sum is the identity operator and
the quantum value to be maximized is a linear combination of
the matrix elements of these operators. The seesaw algorithm
[42—-44] we use to determine the violation of the inequalities
consists of repeating these steps iteratively starting from some
initial values until convergence is achieved. This algorithm has
been used as well in Ref. [28] to get the nonlocal 3x3 bound
entangled state.

For each inequality corresponding to d < 8 we have found
(d xd)-dimensional PPT states violating it using the seesaw
algorithm. We have not found any such Bell violating PPT
state defined in component spaces of less than d dimensions.
The maximum violation we have obtained with PPT states
is shown in Table I. In all cases we have arrived at density
matrices invariant to the partial transposition; this is what
ensures the PPT property. Their rank is 2d — 2. For d > 3

TABLEI. Maximum quantum violation for different local dimen-
sions d of the PPT states using seesaw search.

Quantum violation

0.000265264
0.000210913
0.000162725
0.000128375
0.000103852
0.000085873

[e <IN I SRV, [N SN OS] QU
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there are two nondegenerate and two (d — 2)-time-degenerate
eigenvalues. From the above observations, we conjecture that
the class of Bell inequalities /;, whose dth member is defined
by the inequality (4), gives rise to a dimension witness for
bound entangled states: Violation of I; for d > 3 using bound
entangled states implies that the dimension of the state has
to be at least d xd. Note that several recent works presented
dimension witnesses of states based on Bell violations placing
no additional restrictions on the state (see, e.g., Refs. [46-51]),
using as well certain restrictions such as the amount of
randomness [52] or teh number of singlet pairs [53] shared
between the parties.

C. Measurement operators

The eigenvectors of the density matrix belonging to either of
the two nondegenerate eigenvalues are such that d — 2 of their
Schmidt coefficients are equal. Moreover, the equal Schmidt
coefficients for both eigenstates define the same subspaces of
both Alice’s and Bob’s component spaces. If we choose the
basis vectors labeled with k = 2, ... ,d — 1 such that they span
these subspaces, the operators for the optimal measurement
settings we have for each d can be written as

Aoy = 1A0g) (Ao,
A1|q =1Is— Ao\q,
Byjo = 1B40) Byl @®)
Boji = |Boj){Bojul,
By = Iy — Bop,
where ¢ =0,...,d —1 and fA and fB are the identity
operators in Alice’s and Bob’s component space, respectively.

The vectors appearing on the right-hand side of Egs. (8) may
be given with three independent parameters:

[Agjo) = 10)a,
[Ag|p) = x0l0)a + x1[1) 4 + x2|60,) 4,
| Bojo) = —y110)8 + yol1) 5, )

1
| Bpjo) = ﬁ()’MO)B +yill)p +~d —2|6,)8),

[Bon) = 10) 5,

wherep=1,....d — L, x3 +x} +x3 =1,y +y} = 1,and
the vectors |0,,) are unit vectors in the (d — 2)-dimensional
subspace spanned by |2),...,|d — 1) pointing towards the
vertices of a regular d — 2 simplex. They obey the following
equations:

d—1
> 16,) =0, (10)
p=1
—14+d—-1)8
(0pl0g) = ————", (1)
d—1 d—1 d—1
216901 = —— > 1K), (12)
p=1 k=2
d—1 d—1
d—1
10p,0p) = —— D kKD, (13)
p=1 k=2
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where | j,k) denotes | j)4 ® |k) g. It is important to note that all
measurements defined above are of the von Neumann type: The
operators giving their components are orthogonal projectors.
For the two-outcome measurements given in Eq. (8) this is
trivial and it is easy to check that it is true for Bob’s d-outcome
measurement zero too: Using Egs. (9) and (11), one can see
thatthe | By0) (9 =0, ... ,d — 1) vectors are orthonormal. The
measurement operators above are similar to the ones given
by Yu and Oh [38]. However, they use only one parameter
and their 6 vectors are defined in a (d — 1)-dimensional
space, one dimension larger than ours. Formulas analogous to
Egs. (10)—(13) appear in their paper too. In their case
the angles between all pairs of vectors corresponding to
outcome zero of Alice’s measurements are the same, that
is, (Aojq|Aojq’) is the same for any ¢ # ¢’, including g = 0.
One of our extra parameters breaks this symmetry for Alice’s
measurement zero. Another symmetry apparent in their case
is that (Byo| Boj1) is the same for any g. Our other parameter
breaks this symmetry: The value for ¢ = 0 is not exactly the
same as the value for g # 0. However, for the optimal settings
the symmetries are not broken very much. For d up to 8 the
difference between the violation that we can get using the
one-parameter formula and the maximum we could achieve is
less than 0.5% .

D. Family of d xd PPT entangled states

The density operator we have obtained can be

parametrized as

ﬁ=§o+§1+ﬁo+ﬁl, (14)
where
Si = 18:)(Si1, (15)
d—1
Di =) " |Di)(Diel, (16)
k=2
with

1S0) = ao0l0,0) + a01|0,1) + a10[1,0) +an|1,1) + A[X),
A7)

IS1) = bo0l0,0) + bo1|0,1) + bi1o[1,0) 4 b11|1,1) + B|X),
(18)

|Dox) = uol0,k) + uglk,0) + ui|1,k) + )|k, 1) + Ulgx),
19)

|D1k) = v9l0,k) + vylk,0) + vi|Lk) + vilk,1) + Ve,

(20)
where
1 d—1
|X) = |k, k), 21
Jd—2 ,;
d-27 &
lor) = ————= 10,,0,)(0,1k). (22)
(d—l)«/d—3; prmprep
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All parameters in the equations above are real numbers, as we
never have any larger violation when we allowed complex
numbers in the numerical optimization. The |gy)-vectors
appear in the construction of the density matrix of Yu and Oh
too, but in their case they are defined in a (d — 1)-dimensional
space [38]. The vectors are orthonormal, as it can be checked
using Eqs. (10)—(12). Using the same relations, one can also
show that |¢;) and the unit vector | X) are orthogonal. From
these it follows that (D;|S;) = Oand (D | D) = 0ifk # k'.
The vectors in Egs. (17)—(20) are not normalized and the square
of their norm is the probability associated with them. One
constraint the parameters must obey is that the sum of all
probabilities is one, that is,

po = ad, +al, +aj, +af, + A%,

pi = bk, + bi, + bl + bl + B,

pe = ug+uf +ui +ul + U (23)
pl = v +of +vf + P+ V2
ps+pi+d—2)(pd + pP) = 1.

A freedom we have in choosing the parameters is that the trans-
formations |S}) = Y"i_, 051S;)and | D)) = Y"_ O | D),
where Ol.sj and Oilj) are 2x2 orthogonal matrices, leave both
the density matrix of Eq. (14) and the form of Eqgs. (17)—(20)
unchanged. Using this freedom, we can ensure that all vectors
are pairwise orthogonal. These vectors will be eigenvectors of
the density matrix and the squares of their norms, that is, the
probabilities in Eq. (23) will be its eigenvalues. There will be
two nondegenerate eigenvalues corresponding to the S-vectors
and two (d — 2)-time-degenerate ones corresponding to the
D-vectors, as we have already stated. Later it will be more
convenient for us to use our freedom not to make all vectors
orthogonal, but to eliminate parameters B and V.

Besides Eq. (23) the parameters obey further constraints
to ensure invariance to partial transposition. These are the
following:

d—2
A’ + B = —Z(U*+ VP, (24)
d—3
agoair + boobi1 = agiaio + boibio, (25)
Aag + Bboy = v'd — 2(uougy + vovy), (26)
Aagy + Bbor = ~d — 2(upu} + vov)), 27)
Aaig + Bbyg = Vd — 2(uiuy + vivp), (28)
Aay; + Bbyy = /d — 2(u1u/1 + vlvi). 29)

The proof is given in Appendix A.

E. Analytic expressions for the violation

The quantum value in Eqs. (6) and (7) with the density
operator of Egs. (14)—(22) and measurement setting according
to Egs. (8) and (9) may be calculated analytically. The details
of the calculation are given in Appendix B. The result can be
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FIG. 1. Violation Q of the family of Bell inequalities of Eq. (4).
The solid line shows the full set of parameters, the dashed line the
result of a suboptimal solution with a reduced number of parameters,
as given by the values (C1), and the dash-dotted line the suboptimal
solution with asymptotic parameter values, as given in Eq. (C27).

written as

0@d) = Qs,(d) + Qs,(d) + Op(d) + Op,(d),  (30)

where Qg,(d) and Qp,(d) are given in Eqs. (B11) and (B19),
respectively, while Qg, (d) and Qp,(d) have the same form as
QOs,(d) and Q p,(d) but with other parameters, as explained in
Appendix B.

There are altogether 20 parameters in Egs. (17)—(20)
defining the density matrix. Due to the normalization condition
given in Eq. (23) and our freedom of choice we noted under
Eq. (23) that the number of free parameters is reduced by
3. We use our freedom to take B = V = 0. Taking into
account the six constraints given in Eqs. (24)—-(29), 11 free
parameters remain to determine the density matrix. Three more
independent parameters are necessary for the measurement
settings [see Eq. (9)]. We have used an uphill simplex method
[54] with 14 parameters to find the optimum violation. In
Fig. 1 (solid line) we show the result of this calculation up to
d = 1000.

The function reaches its asymptotic behavior very slowly;
the log-log plot is not quite straight even around d = 1000.
There its slope is compatible with a function proportional
to d~'9. Unfortunately, the number of parameters is too
large to allow us to give an explicit analytical solution, even
asymptotically. We can get a suboptimal solution by choosing
five parameters (besides B and V) to be zero, while still
getting a violation of the Bell inequality (a sixth parameter
also becomes zero due to a constraint). The parameters of
value zero are given in Eq. (C1) in Appendix C. We have also
chosen Bob’s measurement settings to be parameter-free as
in [38]. We have kept the extra parameter we have introduced
for Alice’s settings. The violation coming from this suboptimal
solution is shown in Fig. 1 by a dashed line. For small d it gives
a much smaller violation than the optimum one with the full
set of parameters, but for d = 1000 the difference becomes
much smaller, about 23%. Unfortunately, this suboptimal
solution will almost certainly not converge to the optimal
one at the d = oo limit. However, its asymptotic behavior

PHYSICAL REVIEW A 96, 022123 (2017)

can be determined analytically. The details are given in the
Appendix C. The violation with the asymptotic parameter
values is given explicitly in Eq. (C27) and it is shown in Fig. 1
by a dash-dotted line. The leading-order term behaves as d 2,
which is to be compared to the d~* scaling of the family of Yu
and Oh [38]. Furthermore, there is also a term proportional to
d /%, with a factor more than 6 times larger than that of the
leading-order term, which explains why convergence to the
asymptotic behavior is so slow.

V. SUMMARY

We have studied the violation of a family of Bell inequal-
ities by bound entangled states. We have shown that these
inequalities may be violated by such states. Each inequality
can be characterized by an integer d > 3 and it corresponds
to a bipartite Bell scenario with d two-outcome measurement
settings for one party and one d-outcome and one two-outcome
measurement setting for the other one. The family is the
generalization of one of the inequalities we obtained when
we constructed all tight inequalities with d = 4.

To find PPT states and measurement operators violating
the inequalities we have used a numerical method, a see-saw
algorithm for d values up to 8. Such an algorithm does not
guarantee the optimum solution even when repeated several
times starting from different initial values. Nevertheless, when
it has found a solution, for each d most of the time it
has found the same one up to transformations of the local
coordinate systems. The corresponding state may be given in
a (d xd)-dimensional Hilbert space. Our experience with the
seesaw method is that if solutions of different dimensionalities
violating the inequality exist, the algorithm will find the
lowest-dimensional one with highest probability. None of our
attempts has led to a solution of less than d xd dimensions.
Moreover, we have tried to find a solution while we explicitly
restricted the search to lower-dimensional spaces and we failed
to find any. We are quite confident that at least for d = 4 and
for d = 5 we would have found such a solution if it existed.
Based on these numerical experiences we conjecture that the
Bell inequality characterized by d belonging to this family
may only be violated by bound entangled states of dimensions
of at least dxd, that is, it acts as a dimension witness
for bound entangled states. This is an important difference
between our family and the one proposed by Yu and Oh [38],
whose members may all equally be violated by the d =3
solution.

All the optimal solutions we have found numerically for
up to d = 8 have a certain well-defined mathematical form
when the appropriate local bases are chosen in the component
Hilbert spaces. We have used this form as an ansatz to find
solutions violating the inequalities up to d = 1000. We have
also given a simplified suboptimal solution in a fully analytic
form still violating the inequalities.

The Bell violation of the inequalities with the constructed
PPT states tends to zero as d goes to infinity. From the
analytic suboptimal solution we can conclude that the violation
decreases no faster than d~2. It remains to be seen if other
types of bipartite Bell inequalities using the same family of
states may lead to increased Bell violation with increasing d.
Higher violation implies in general higher noise resistance,
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hence this property would be useful in certain quantum in-
formation tasks based on nonlocality, such as communication
complexity problems [55,56]. Positive partial transpose states
are known to be useful in quantum key distribution [57,58]
and it is an interesting question if they exhibit a private
key in the device-independent scenario as well [59]. Since
entanglement and steerability are necessary ingredients to
Bell nonlocality, it will also be interesting to look at suitable
entanglement witnesses [60-62] or steerability witnesses
[63,64] associated with our states similarly to the states in
Ref. [38].
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APPENDIX A: PARTIAL TRANSPOSITION INVARIANCE

Here we show that the constraints given in Eqs. (24)—(29)
ensure that the density matrix of Eq. (14) is invariant to partial
transposition. From Egs. (15) and (17) we get

SO Slnv+§gS+§SD’ (Al)

where

S5 = a310,0)(0,0] + ag; 0,1)(0, 1] 4 a3|1,0)(1,0]
+a211,1)(1,1] + aooaoi (10,0)(0, 1] + 10,1)(0,0))
+ aooai0(10,0)(1,0] + |1,0)(0,0]) + agrar(10,1)(1,1|
+11,1)(0,1)+apan (11,0} (1, 1]+[1,1)(1,0)),  (A2)

S35 = apoar1(10,0)(1,1] + [1,1)(0,0]) + ap1aio(]0,1){1,0]
+11,0)¢0,1]), (A3)

d—

as

.k)(0,00)
k:

+a01(|07 )(kvk| + |kvk><071|) +a10(|1,0)(k,k|
+ [k,k)(1,0]) + an (|1, 1) (k,k| + |k, k)(1,1])]

+ A% X)(X|. (A4)
For Eq. (A4) we have also used Eq. (21). From Egs. (15) and
(18) we can get the analogous expressions for S, with A and
a;j replaced by B and b; ;, respectively. It is easy to see that S(i)“"
and S’i‘“ are invariant to partial transposition for any values of
the parameters. The operators (]0,0)(1,1] 4 [1,1)(0,0]) and
(10,1)(1,0] 4+ |1,0)(0,1|) appearing in Sgs and SSS are the
partial transpose of each other. Their factors have to be equal
for the invariance, which is just the constraint of Eq. (25) (D;
contains no such terms).
From Eqgs. (16) and (19) we get

Do = D™ + DS, (AS)
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where

T
L

D™ [510.k)(0.k| + u1k,0) (k0] + uf|1,k) (1,k|

2
+ulf |k, 1) (e, 1| 4 wouy (10,k) (1,k| 4+ [1,k)(0,k|)
+ uguy (15, 0) (k, 1] + [k, 1){k,00) + uoU (10,k) (x|
+ @) (0,k1) + uoU (1k,0) (@x| + i) (k.0
+ur ULk el + loi) (LD + u) Uk, 1) g
+ low) (k, 1D)],

d—1
by = Z[uou()(IO,k) (k.01 + 1k,0)(0,&) + uou', (10,k) (k, 1]
k=2

+uruy (|1, k) (e, 141k, D (LED+U? o) (i1

~
1

(A6)

(A7)

To get D; and its parts one should only replace u;, u;, and U
for v;, v}, and V, respectively. Parts DI™ and D™ are invariant
to partial transposition. For terms containing no |¢y) or (gy|
this is obvious. As far as the rest of the terms are concerned,
let us take

d—1

D 0.k (@il + loe) (0.k1)

k=2
(10,6) (K16, (6.6,

+ |9p19p)(0p|k>< kD)

(d i §(|09 (0p,0p1 +16,65)(0,6, ),
= b + b
(d—Dvd—3 = ! !

(A8)

which is also invariant. Here we have used Eq. (22) and the fact
that each |6,,) is in the subspace spanned by |k) (2 < k < d —
1). The invariance of the other terms can be shown similarly.
The operators (i, j)(k, k| + |k,k)(i,j) (i,j = 0,1 and 2 <
k < d —1) appearing in S 5D and SSD and (|i,k)(k,j|+
|k, j)(i,k|) appearing in DD S and DD $ are the partial transpose
of each other. The equality of their factors can be ensured by
the constraints (26)—(29).
The operator in the last term remaining in ﬁ(’)j 5 and ﬁf) 5
may be rewritten as

d—1 d—1
_ @=2p
£ o) (@ | = m Z: 10p,6,)(6,,6,]
= p=l1
- u|X)< X1, (A9)
d—

which can be proven by using Egs. (22), (11)—(13), and (21).
The sum on the right-hand side is invariant to partial transpo-
sition, but | X)(X| is not. However, such a term also appears
in S‘gb and S‘ISD . If Eq. (24) holds, this noninvariant term is
eliminated.
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APPENDIX B: DETAILS OF THE CALCULATION
OF THE BELL VALUE

The measurement operators we are going to consider here
are the ones given in Egs. (8) and (9). We may rewrite the Bell
operator in Eq. (7) as

d-1
By = (d — 2)Ag0 ® (Boji — Bojo) — Z Aoi ® Bjjo(1 —8;)
ij=1
-1
- Z(IA — Agi) ® B (B1)
i—1

We have used Al\i =T 4 — Aou to ensure that all measure-
ment operators appearing in the expression above are one-
dimensional projectors.

Our density operator of Egs. (14)—(16) is written as a sum
of terms of the form 7' = |T)(T'|, where T is either S; or Dy.
The contribution of each term to a conditional probability in
Eq. (5) may be written as

Tr[T(Auye ® Bopy)] = (T1Aux ® By, IT).  (B2)

If the measurement operators are one-dimensional projectors,
then Eq. (B2) may further be simplified as

Tr[T (Aupe ® Bopy)] = |(Aapes Bopy | T)1. (B3)

Now let us calculate the contribution of the first term 3‘0 of the
density matrix to the quantum value. Using Eqgs. (17), (21),
and (13) we can get

' Jd=2
1S0) = > duplee. ) + A

o, f=0

d—1
> 10,.6,).  (B4)
p=1

Then, using Egs. (9) and the identity

(0:,6;150) = [(d — 1Dd;; — 1], (BS)

A
(d —2)3?
which one can get by using Eqs. (B4) and (11), we arrive at

{Aojo. Bo1150)I* = agy. (B6)
[{A0j0 Bojo| So) I* = (—=y1a00 + Yoao1)?, (B7)
[(Aoji, Bjol So) I Z XoYpap
o, =0
2
.sz
o [1 —(d—-2);1|, (B8
[(Aoji» Boj1|So) 1> = (xoaoo + X1a10)%, (B9)

where i,j > 1, and also we get

(Solla ® BojilSo) = ady + aiy. (B10)

We note that the right-hand side of Eq. (B8) is independent of
indices i and j if i # j and the right-hand side of Eq. (B9) is
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independent of i. Then the contribution to the quantum value
from Sy is

Qs,(d) = (d — 2)[agy — (yoao1 — y1ao0)’]
I 2
)CZA
—(d -2 o B —

+(d = D[(xoa00 + x1a10)* — agy — afy]-  (B11)

The form of the contribution Qg, (d) from 8, is the same, only
aep and A should be replaced by b,g and B, respectively.
Now let us calculate the contribution from ﬁo. From
Egs. (19) and (9) it is easy to see that (Ago,Boji|Dok) =
<A0|0, BO‘Q|D0]() = 0. To calculate (Ao‘,‘ s Bj‘() | D0k> we alsoneed
the identity
U

Vd—=2)d -3)
—(d — 1)8;j (0i k)], (B12)

which may be derived from Eqgs. (19), (22), (11), and (10).
Then, ifi,j > 1 andi # j we get

(0;.6;1 Dox) = — [(0: k) + (6i|k)

(Ao Bjiol Dor) I* = ——=1Fol01k) + Go(Gi 1K), (B13)
where
Fo = 4 = 20eguo + 1) — —2Y (B14)
0= ouo 141 mv
Go = 200l + yiu|) — —20 (B15)
o = x2(Yolty 114 -

As vectors |6;) are in the subspace spanned by vectors
12),...,ld — 1),
d—1

2 1 22
[{Ag)i» Bjjol Dox)|” = F} + Gy — ——=FyGy ),
P d 1 d—2

(B16)

which is independent of i and j. Similarly, for the last terms
needed one can get

U

-1

d—
|{Aoji» Bojt | Doe) Z xXup(0: k)| = xjug  (B17)
k k=2

Il
S}

and

d—1
> (Dol fs ® Boji| Dot} = (d — 2)ug.
k=2

(B18)

Putting the terms above together, one gets the contribution
from Dy:

0p,(d) = 2FyGo — (d—2)(Fg+G§) — (d—Dug (d—2—x3).

(B19)

The contribution from Dl has the same form, only Fy, G, and
uE) should be replaced by Fy, G|, and v{), respectively, where
F\ and G are defined like Fj and G in Eqs (B14) and (B15),
only u, and u are replaced by v, and v] o respectively. We
note that these contrlbutlons cannot be positive if d > 3.
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APPENDIX C: A REDUCED NUMBER OF PARAMETERS

We may take all the following parameters to be zero and
still get a violation of the Bell inequality:

Cl()]=b01=b10=B=M0=M6=U;=VZO. (Cl)

Although with this choice the violation is 88% smaller for
d = 3 and 77% smaller for d = 4 than before, for d = 1000
the violation is only reduced by about 15% if the remaining
parameters are optimally chosen. To keep partial transposition
invariance according to Egs. (24)—(29), the following relations
must hold:

A= 122y (C2)
" Va-3"
agodii + boob11 =0, (C3)
Aaoo =+d - ZU()U(,), (C4)
Aa10 = \/d — 2v1v6, (CS)
Aa” =\/d—21411/l/1. (C6)

Equation (27) is automatically satisfied with both of its sides
zero. The relations above set the values of A, ag, aj9, a11, and
boob11 in terms of the other parameters.

Another simplification we have made is that for Bob we
used the measurement settings of Yu and Oh [38] by choosing
the following values in Eq. (9):

d—1 1 ©
d ) yl_ «/3‘

It is easy to check that (Bg|B?) = 1/+/d hold for all g;
therefore, the symmetry for Bob mentioned earlier is valid.
This choice decreases the violation somewhat further, for
d = 1000 it is about 77% of the original one. For Alice we
keep both of our independent parameters and will take xo > O.
All x; (i =0,1,2) converge to numbers different from zero in
the infinite-d limit’ therefore, unlike in the case discussed by
Yu and Oh, Alice’s measurements remain distinguishable.

Numerical results show that for Qp,(d) [see Eq. (B19)],
the contribution from Dy is always orders of magnitude
smaller than the contribution from other terms. The violation
changes very marginally if we take this contribution to be
zero by demanding Fy = Gy =0 (u; =0 anyway). These
requirements will set two more parameters according to
Egs. (B14), (B15), and (C1) as

Yo =

"y = xU o =—u -1 (s
x1/(d —2)(d —3) d—-3

Here we used the values of yy and y; from Eq. (C7). The value
of F; can also be taken to be exactly zero with hardly any
change of the violation. Then, from the equation analogous to
Eq. (B14) [see the remark below Eq. (B19)] and taking into
account that V = 0, we get the following relation between vy
and v;:

xovo + xqv; = 0. (&)
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Using the equations analogous to Egs. (B19) and (B15), we
get, for the contribution from D,

D= —d—Dd-2(1- -2 Y2 (o
Op )= —( )( )( m)vo- (C10)

We have taken into account that u} = Oand yo = +/(d — 1)/d.
From Egs. (C6), (C8), (C2), and (C7) it follows that

x4 (C11)
X1y1di; — =
1yidil 4_2
From Egs. (C4), (C5), and (C9) it also follows that
Xodoo + x1a190 = 0. (C12)

Usipg Egs. (C11), (C12), (C7), (C2), and (C4) the contribution
of Sy given by Eq. (B11) may be written as
2 2) vivp

X

dy=—d-1d-3)2%+=)22. C13
0s,(d) = —(d — 1)( )<x12+d s (C13)
The contribution of 8, given by Eq. (B11) with aqp and A
replaced by b,g and B, respectively, with by; = bjg = B =0

and yo and y; taken from Eq. (C7) is simplified as

d—1 d—2

Qs,(d) = —27(1 — x3)bgo — Tx%b%l

d-2
+2T\/d — 1xox1bgob11.

(C14)
As the first two terms are negative, the absolute value of their
contribution must be as small as possible to get the maximum
violation. This is achieved if the ratio of byy and by is such
that these negative terms are equal, since their product is fixed.
This is because the product of byy and by, is fixed by the other
parameters according to Egs. (C2)-(C6). Then we get, for the
ratio of bgg and by,

b()o o d—2 X1
by V2d-1) [i_

The sign of the expression is such that the third term of
Eq. (C14) is positive. It must be so to get a violation, as all
other nonzero terms of all contributions are negative. Using
this formula, we can rewrite Eq. (C14) as

(C15)

d-2 2(1—x3) 1

dy=2—=Vd—1|1- —
Qs (d) d d—2 xo

XoX1boob11.

(C16)

From Egs. (C2)—(C6) and (C8) it follows that x1byb; =
x24/d [(d — 2)vpvy); therefore,

05.(d) =2 (d—1)d—-2) . 2(1—x3) 1

/
—— — | XpX2VpV,.
d d—2 xo 0

(C17)

The quantum value Q(d) is the sum of the contributions
given by Egs. (C10), (C13), and (C17), while Qp,(d) =0.
This is the value to be maximized. Let us choose the value
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of v}, such that the partial derivative of Q(d) in terms of v is
zero. With this choice we get the relationship

20p,(d)+20s,(d) + Os,(d) =0, (C138)
from which it follows that
0(d) = 5 Qs,(d). (C19)

We note that this choice for vy is not exactly the optimal one,
as the value of v affects the other parameters through the
normalization condition given by Eq. (23). Nevertheless, for
large enough d this influence becomes negligible, because v},
itself becomes negligible compared to the terms dominating
the normalization condition. This follows from |Qg, (d)| >
| O p,(d)|, which must hold to get a positive violation. At the
same time vov;, should converge to zero as slowly as possible at
the infinite-d limit. This is achieved if v(/vy o< d =3/ for large
d and vy is one of the dominant parameters. Then it follows
from | Qs, (d)| > | Qs,(d)| that U must be of the same order as
vo. There are just two more parameters that cannot be neglected
when writing the normalization condition at the infinite-d
limit, namely, u} [see Eq. (C8)] and v; [see Eq. (C9)]. For large
d these considerations and Eq. (23) lead approximately to

x2 4 x?
2 U2 + 0 K 1

d(u/12+U2+v(2)+v%)%1, U(%%l/d.

1
(C20)

From now on let us concentrate on the limit of large d. From
Egs. (C18), (C10), (C13), and (C17) v, can approximately be
written as

1 2(1 — xg) 1 )coxlzxzvoU2

/ ~
d3? d x| xqv}+x3U?

Vo

(C21)

Here we have neglected terms of order d ! times leading order
and higher. Then one can write the approximate value for the
violation given in Egs. (C19) and (C17) as

o) ~ 1 { 8(1 —xg) 1 xéxfx%véUz
d d x| x3vd+xiU%

(C22)
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If one expresses v(% from Eq. (C20) and substitutes it into the
equation above one gets

1 8(1—x3) 1\ x2x3(1 —20%d)U%d
Q(d) ~ _2 1- - 2_ 2 .
d d X0 1+ X zxo U2d

X0

(C23)

From the condition that the partial derivative of the expression
above in terms of z = U?d is zero it follows that

2 2 2
X X{+x
ZEU2d=202 120—1.
X1 = %o X0
When calculating the optimum values for x1, x,, and x3 let us
neglect the term proportional to d~>/2. If we write x; in terms
of polar coordinates and demand that the partial derivatives

of Eq. (C22) without the neglected term in terms of the polar
angles are zero, we get, for the optimal values of xiz,

(C24)

2= Jz(1—2)—z
0 21-2z2)
2 1—z—Vz(l —2) (€25
! 21-27)
1
)C% = 5

Substituting x( and x; from the equation above into Eq. (C24),
after straightforward steps we can get that the optimal z = U?d
for large d satisfies the third-order equation 47> — 8z + 6z —
1 = 0. This equation has a single real root, which is

z=U%= g<4+i/3¢33_ 17 — 3/3«/§+ 17) ~ 0.2282.

(C206)
Then, from Egs. (C23), (C25), and (C26) we can get
0d) ~ 0.016 86 ! 6.118 27)
d? NZA

We note that the parameters determined here are only optimal
for really large d. For d < 37 the equation above does not even
give a violation.
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