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Salecker-Wigner-Peres clock, Feynman paths, and a tunneling time that should not exist
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The Salecker-Wigner-Peres (SWP) clock is often used to determine the duration a quantum particle is supposed
to spend in a specified region of space �. By construction, the result is a real positive number, and the method
seems to avoid the difficulty of introducing complex time parameters, which arises in the Feynman paths approach.
However, it tells little about the particle’s motion. We investigate this matter further, and show that the SWP clock,
like any other Larmor clock, correlates the rotation of its angular momentum with the durations τ , which the
Feynman paths spend in �, thereby destroying interference between different durations. An inaccurate weakly
coupled clock leaves the interference almost intact, and the need to resolve the resulting “which way?” problem
is one of the main difficulties at the center of the “tunnelling time” controversy. In the absence of a probability
distribution for the values of τ , the SWP results are expressed in terms of moduli of the “complex times,” given
by the weighted sums of the corresponding probability amplitudes. It is shown that overinterpretation of these
results, by treating the SWP times as physical time intervals, leads to paradoxes and should be avoided. We also
analyze various settings of the SWP clock, different calibration procedures, and the relation between the SWP
results and the quantum dwell time. The cases of stationary tunneling and tunnel ionization are considered in
some detail. Although our detailed analysis addresses only one particular definition of the duration of a tunneling
process, it also points towards the impossibility of uniting various time parameters, which may occur in quantum
theory, within the concept of a single tunnelling time.
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I. INTRODUCTION

Recent progress in attosecond science [1] has returned to
prominence the nearly hundred years old [2] question “how
long does it take for a particle to tunnel?” There are serious
disagreements, e.g., between the authors of [3], who claimed
that “optical tunneling is instantaneous,” and the conclusions
of [4] suggesting that “the electron spends a non-vanishing
time under the potential barrier.” An overview of the tunnelling
time problem, in its relation to attosecond physics, can be
found, for example, in [5].

The tunneling time problem was extensively investigated
in the last decade of the previous century, mostly in the con-
text of tunneling across stationary potential barriers, closely
related to the then-fashionable subject of carrier transport in
heterostructures (for review see [6–10]). The problem also has
a more fundamental aspect. An often cited difficulty in defining
a tunneling time is the absence of the corresponding Hermitian
operator, and the impossibility of performing a standard von
Neumann measurement [11] in order to determine it. However,
this is not a major obstacle, since the von Neumann procedure
can be extended to measuring quantities represented by certain
types of functionals on the Feynman paths of the measured
system [12–15], by making the meter monitor the system over
an extended period of time.

One time parameter, represented by such a functional, is
the net time a quantum particle spends in the specified region
of space. It is intimately related to Larmor precession, and
following Buettiker [16] we will refer to it as the traversal
time. With the functional specified, the problem becomes one
in quantum measurement theory. It was studied in some depth
in [17–25]. The main conclusion of these studies, which we
maintain to date, is as follows. Traversal time can be measured
by an extended von Neumann procedure, and the relevant

meter is a variant of a Larmor clock, a spin whose angle
of rotation correlates with the duration spent in the magnetic
field [20]. However, a quantum measurement is significantly
more complicated than its classical counterpart, largely due
to the tradeoff between its accuracy, and the perturbation the
measurement produces. Larmor clocks with spins of different
sizes, observed in different states, and subjected to different
magnetic fields, will all produce different results. These
results, although perfectly tractable, lack the universality of
the classical traversal time. To put it differently, analysis of
the quantum traversal time problem is worthy from the general
point of view, but its result is bound to disappoint a practitioner
wishing to know only “how many seconds does it take to
tunnel, after all?”

Among many possible versions of the Larmor clock [16,26–
32], one stands out, and has been the subject of many recent
and not so recent studies [33–44]. The Salecker-Wigner-Peres
(SWP) clock was first considered as a quantum tool for
measuring space-time distances in the general relativity [33],
and was later adopted by Peres [34] for timing events in
nonrelativistic quantum mechanics. Specifications of the SWP
clock include the choice of its initial and final states, the size
of the spin, the strength of the field, and the particular way
in which the result of the measurement is calculated. The
resulting time can represented as the average value of the
“clock time” operator and is, by construction, a real positive
number. The SWP result is often taken to be the definition of
the time a particle spends in the magnetic field contained in the
region of interest. One reason why the analysis must not stop
there is because such a result tells little about the particle’s
motion. Timing a classical particle by means of a classical
stopwatch, and getting a result of one second, implies that the
particle has actually spent one second in the region �, plus all
practical consequences one can draw from this information.
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The implications of measuring one second with a quantum
clock remain unclear, until one considers its precise relation
to the particle’s Feynman paths.

Like every Larmor clock, the SWP clock modifies the
contributions the Feynman paths make to a transition am-
plitude, depending on the final state in which the clock is
found. As one would expect, a nearly classical clock, equipped
with a very large spin or angular momentum, destroys the
interference between the paths spending different durations
in � almost completely. In this case, having found the initial
state of the clock rotated by an angle φ, one can be certain
that the particle did spend in � φ/ωL seconds, where ωL

stands for the Larmor frequency. [20]. Choosing a weaker
field, or a smaller angular momentum, would leave a certain
amount of the interference intact, and reduce the accuracy of
the measurement. Even so, by varying the accuracy, one can
probe certain aspects of the particle’s motion. For example,
in the case of resonance tunneling across a double barrier, a
measurement of a medium accuracy allows one to identify
the long delays associated with the exponential decay of the
barrier’s metastable state (see Fig. 8 of [21]). Improving the
accuracy, one finds the evidence of the particle “bouncing”
between the potential walls (see Fig. 9 of [21]). Both the
decay and the “bounces” are often associated with the particle
being trapped in a metastable well. Both can be observed, but
not at the same time [21]. One problem with quantum time
measurements is that the restrictions on the Feynman paths,
imposed by the clock, tend to perturb the transition the particle
is supposed to make. Thus, if an accurate clock is employed,
the particle may either not reach its final state at all, or be seen
to spend no time in � [21]. Similarly, resonance tunneling,
even in the presence of a relatively inaccurate Larmor clock,
will not be the same as without it. Yet when one asks “how long
it takes to tunnel?” he and/or she usually means “unperturbed.”
This is a well-known difficulty in quantum mechanics, where
“to know” often implies” “to disturb.”

A natural way to avoid the unwelcome perturbation is to
reduce the coupling between the clock and the system, and try
to interpret whatever information can be gained in this manner.
The purpose of this paper is to analyze the results obtained by
an SWP clock in the limit ωL → 0, and relate them to the
time parameters describing the motion of a quantum particle,
involved in a transition between known initial and final states.
This brings the discussion into the realm of the inaccurate,
“indirect” [20], or “weak” [45] measurements of the traversal
time. In the weak regime, we can expect a weak SWP clock
to make a rather poor job of destroying interference between
different values of the traversal time. We will also need to
heed Bohm’s warning [46] that “if the interference were not
destroyed,” “the quantum theory could be shown to lead to
absurd results,” and see what it means for the quest to find the
tunneling time.

The rest of the paper is organized as follows. In Sec. II
we discuss various time parameters describing the motion of
a classical particle. Section III lists some of the quantum
time parameters which are not discussed in this paper. In
Sec. IV we define the quantum traversal time, and its amplitude
distribution, for a particle pre- and postselected in the known
initial and final states. In Sec. V we introduce the “complex
times,” which are likely to arise in any weakly perturbing

measurement scheme. In Sec. VI we cast the complex times
into a more familiar operator form. In Sec. VII we describe the
family of Larmor clocks, and their relation to the amplitude
distribution of the quantum traversal time. In Sec. VIII
we introduce the SWP clock as a particular member of the
family. In Sec. IX we reduce the coupling, and show that the
time measured by a weakly coupled SWP clock is naturally
expressed in terms the moduli of the complex time of Sec. V. In
Sec. X we study the calibration procedure proposed in [37], and
demonstrate that it can lead to “absurd results” predicted by
Bohm. In Sec. XI we try to make sense of these absurd results,
and establish a connection between the complex times and the
weak values of quantum measurement theory. In Sec. XII we
revisit the dwell time and show it to be a particular case of the
complex times of Sec. V. In Sec. XIII we ask whether the Peres’
clock would measure the dwell time, and find that it would not.
In Sec. XIV we apply our general analysis to tunneling across
a stationary potential barrier. In Sec. XV we apply the analysis
to a simple model of tunnel ionization. Section XVI contains
our conclusions.

II. WHICH CLASSICAL TIME?

We start by reiterating the three questions which, in our
opinion, one might want to answer before performing a
quantum measurement. These are as follows:

(i) What is being measured?
(ii) By what means is it being measured?
(iii) To what accuracy is it being measured?
The first question arises already in classical mechanics,

when we discuss the time parameters describing the presence
of a particle, moving along a trajectory xcl(t), in a specified
region of space �. One obvious choice is the net duration the
particle spends in �. It is given by the integral [17]

τ�[xcl(t)] =
∫ t2

t1

��(xcl(t)) dt, (1)

where ��(z) has the value of 1 for a z inside �, and 0
otherwise. Another choice would be, for example, the time
interval between the moments tin, when the particle enters �

for the first time, and tout, when it leaves it for the last time,

τin/out[xcl(t)] = tout[xcl(t)] − tin[xcl(t)]. (2)

The choice depends on the question we want to ask. If the
particle has a tendency to change color from white to black
proportionally to the net duration spent in �, to predict the
shade of grey acquired we need τ�[xcl(t)]. If, on the other hand,
the temperature in � changes with a frequency ω, and we need
the particle to experience no change, the required condition
would be ωτin/out[xcl(t)] � 1, and not ωτ�[xcl(t)] � 1. In
general, these two parameters are different,

τ�[xcl(t)] �= τin/out[xcl(t)]. (3)

Even classically, different time parameters require different
measurement procedures. To measure τ�[xcl(t)], we can equip
the particle with a magnetic moment which precesses in the
magnetic field introduced in �. Dividing the final angle of
precession by the Larmor frequency ωL, we obtain the value
of τ�[xcl(t)]. It appears that no similar procedure exists for
τin/out[xcl(t)], or even for tin[x(t)] in Eq. (2) [14]. The difficulty
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is in stopping the clock after the first entry in �, and preventing
it from running again should the path leave the region and
then re-enter. In classical mechanics we can simply plot the
particle’s trajectory, and determine tin[xcl(t)] from the graph.
In the quantum case, there is no trajectory to draw, and the
absence of a meter is a serious problem [14].

The accuracy of a measurement is of no great importance
in the classical case, where a meter (a clock) can monitor a
particle with any precision, without altering its trajectory xcl(t).
It plays a much more important role in the quantum case, where
there is a tradeoff between the accuracy of the measurement
and the perturbation the meter exerts on the particle’s motion.

Throughout the rest of the paper we will try to answer
the following question: What is the total amount of time a
quantum particle starting in a known state |ψI 〉 at t = t1, and
then observed on a state |ψF 〉 at t = t2, had spent in a specified
region � between t1and t2? To measure it we will employ a
highly inaccurate Salecker-Wigner-Peres clock, specifically
designed to perturb the studied quantum transition as little
as possible. The experiment we have in mind is like this. A
particle is prepared in |ψI 〉, coupled to an SWP clock, and then
detected in |ψF 〉. If the detection is successful, we “read” the
clock in some manner, record the result, and draw conclusions
about the duration spent in �. Although we consider one-
dimensional scattering, most of our results can be extended to
two or three dimensions.

III. OTHER QUANTUM TIMES BEYOND
THE SCOPE OF THIS PAPER

In quantum mechanics there are many different ways
to introduce quantities measured in units of time. Before
proceeding with our main task, we briefly discuss some of
the time parameters, which describe a scattering (tunnelling)
process and are not a subject of this paper.

The simplest way to probe the tunneling delay is to prepare a
particle in a wave-packet state on one side of the barrier, choose
a location x on its other side, and evaluate the probability
P (x,t) = |ψ(x,t)|2. Using P (x,t) as a probability distribution,
one can construct the real non-negative mean time [47], also
known as the “time of presence” [48],

〈t(x)〉 =
∫

tP (x,t)dt

/ ∫
P (x,t)dt. (4)

This mean time can be measured by performing N � 1 trials,
each time checking whether the particle is between x and
x + dx at a time t . If in N1 cases the particle is found there,
the ratio N1/Ndx would yield an approximate value of P (x,t).
Repeating the checks at various times allows one to reconstruct
P (x,t) and, with it, 〈t(x)〉. This is, however, different from
what we intend to do here, as explained in Sec. 18 of [49].

A slightly different method was recently proposed by
Pollack in Refs. [50,51]. There the particle is prepared in a
thermal mixed state

ρ̂I = exp(−βĤ/2)|x0〉〈x0| exp(−βĤ/2), (5)

where x0 is some initial location, Ĥ is the Hamiltonian, and
β is the inverse temperature. The state is evolved until some
t , ρ̂(t) = exp(iĤ t)ρ̂I exp(−iĤ t), and the probability to find
the particle at a location x on the other side of the barrier,

P (x,t) = tr{|x〉〈x|ρ̂(t)}, is inserted into Eq. (4) for the mean
transit time. The mean time can then be measured as discussed
above. This is also not what we wish to discuss below, if
only because here we are not interested in systems in thermal
equilibrium.

Finally, the authors of [4] proposed using the probability
current evaluated at two locations on the opposite sides of
the barrier, x1 and x2, and define the mean transit time
as the difference between the moments the out- and in-
going probability currents at x2 and x1 reach their maxima.
Measuring, albeit indirectly, this time would require a different
experiment, e.g., the one in which the presence of the particle
is checked at all times to the right of x1, and then at x2, the
evaluated probabilities are differentiated with respect to time
to yield the currents, and the maxima of the two curves are
identified. This procedure is not our subject either.

The list of possible quantum time parameters can be
extended, and new times will, undoubtedly, be proposed in
future studies. It is not our intention to compare relative merits
or defects of the approaches discussed in this section (except,
perhaps, citing some of well known problems with defining
quantum arrival times [48], or relying on the probability
current in order to determine times, or time intervals [52]).
Rather, we note that measurements of different quantum times
require different experimental procedures, and should not be
expected to give the same result. To some extent this is
true already in classical mechanics, as was pointed out in
the previous section. Thus, A may propose, and perform,
an experiment in which a time parameter associated with
a tunneling transition vanishes, and claim tunneling to be
an “infinitely fast” process. B can do something different,
obtain a nonzero answer, and state “that tunneling does take
time after all.” The argument between A and B will never
have a meaningful resolution, since both claims rely on the
assumption that there is a single time tunneling “takes,” and
there is overwhelming evidence that this assumption is false.
In this paper, to add to this evidence, we consider a particular
classical time (1), and see what will happen if it is generalized
to the full quantum case.

IV. TRAVERSAL TIME FOR QUANTUM MOTION

A classical particle of a mass μ in a potential V (x,t) goes
from some initial position xI at t = t1 to a final position xF at
t = t2 along a smooth continuous trajectory xcl(t). There is a
single value of the duration spent in �, and it is given by the
functional τ�[x(t)] in Eq. (1).

The quantum case is more complex. A quantum particle
can make a transition from an initial state |ψI 〉 at t = t1 to
a final state |ψF 〉 at t = t2. To proceed, we need to choose a
representation. Since we are interested in a spacial region �,
the coordinate representation is the appropriate one. Now a
point particle can be thought of as being at some location x(t)
at any time t1 � t � t2, and a possible scenario for reaching
ψF from ψI is by following a Feynman path x(t), which is
continuous, but not smooth [53]. The path is virtual, and is
equipped only with a probability amplitude (we use h̄ = 1)

A([x(t)],ψI ,ψF ) = 〈ψF |xF 〉 exp{iS[x(t)]}〈xI |ψI 〉, (6)
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where S[x(t)] = ∫ t2
t1

[ẋ2/2μ − V (x,t)]dt is the classical ac-
tion. The full transition amplitude to reach |ψF 〉 from |ψI 〉
is given by the Feynman path integral [53], which we
symbolically write as

A(ψF ,ψI ,t2,t1) =
∑
paths

A([x(t)],ψI ,ψF ). (7)

Note that the set of Feynman paths in Eq. (7) is always the
same. What changes, with the change of the potential in which
a particle moves, are the path amplitudes A([x(t)],ψI ,ψF ). The
classical dynamics emerges from Eq. (7) when the contribution
to the path integral comes from the vicinity of the path xcl(t)
on which S[x(t)] is stationary [53].

What can be said about the duration a particle spends in
� is dictated by the basic rules of quantum mechanics. The
functional τ�[x(t)] can be evaluated for each of the Feynman
paths. The paths can be combined and recombined into new
pathways, just as the superposition principle allows us to
recombine vectors in Hilbert space into a new vector [15].
Combining together all the paths which share the same value
τ of τ�[x(t)], we create a new virtual pathway, for reaching
|ψF 〉 from |ψI 〉, and spending τ seconds in � along the way,
and sacrifice to interference all other information contained
in the individual Feynman paths. The amplitude for the new
pathway is

A(ψF ,ψI ,t2,t1|τ ) =
∑
paths

A([x(t)],ψI ,ψF )δ[τ�[x(t)] − τ ],

(8)

where δ(z) is the Dirac δ. Integrating Eq. (8) over all possible
τ ’s restores the full transition amplitude A(ψF ,ψI ,t2,t1) in
Eq. (7). In addition, we have

A(ψF ,ψI ,t2,t1|τ ) ≡ 0, for τ < 0 and τ > t2 − t1,

(9)

since nonrelativistic Feynman paths may not spend in � a
duration which is either negative, or exceeds the total duration
of motion.

The situation is a standard one in quantum mechanics. For
given initial and final states of the particle, we have not one,
but infinitely many values of the traversal time τ . To each value
we can ascribe a probability amplitude, but not the probability
itself. This is not different from what happens in Young’s two-
slit experiment [20]. The expectation that there must, after all,
be a single traversal time associated with a quantum transition
is as good, or as bad, as the assumption that each electron must
have actually gone through one slit or another. According to
Feynman [54], the latter assumption should be abandoned, and
the rule for adding amplitudes must be accepted as the basic
axiom of quantum theory instead. Throughout the rest of the
paper, we will maintain this point of view, despite possible
objections from the proponents of the Bohmian version of
quantum theory [39,55,56].

Thus, our virtual pathways, labeled by the value of τ ,
interfere just like individual Feynman paths they comprise,
and should together be considered a single indivisible pathway
connecting |ψI 〉 and |ψF 〉 [15]. Interference between them
can be destroyed by an accurate meter [20], registering the
actual value of τ each time the transition is observed, but the

probability Pacc(ψF ,ψI ,t2,t1) to reach the final state, while
being observed, will change,

Pacc(ψF ,ψI ,t2,t1) ≡
∫ t2−t1

0
dτ |A(ψF ,ψI ,t2,t1|τ )|2

�=
∣∣∣∣
∫ t2−t1

0
dτA(ψF ,ψI ,t2,t1|τ )

∣∣∣∣
2

=
∣∣∣∣∣∣
∑
paths

A([x(t)],ψI ,ψF )

∣∣∣∣∣∣
2

. (10)

This simple discussion should help to establish the status of
the time parameter represented by the functional (1) within the
standard quantum theory. We note the similarity between the
quantum traversal time problem and the Young’s double-slit
experiment. If we were able to construct a unique traversal
time, or even a probability distribution for such times, we
could, in principle, also determine the slit through which
the electron has passed, with the interference pattern on the
screen intact. According to Feynman [54], the latter is an
impossible task.

V. COMPLEX TIMES

Even before going into the details of a particular mea-
surement, we can guess what would happen if the meter’s
interaction with the particle has been deliberately made small
(weak), in order to preserve the interference, and minimize
the perturbation produced on the particle’s motion. There is a
fashionable view that the result would be a “weak value,” a new
type of quantum variable, capable of providing a new insight
into physical reality. (For a recent review see [57]; the term
“weak measurement elements of reality” was coined in [58]).

Recently we argued against overinterpretation of the weak
values, and offered a more prosaic explanation [15,59]. In
the absence of probabilities, any weakly perturbing scheme is
bound to give a result, expressed in terms of the probability
amplitudes. A scheme set up to weakly measure a quantity
would typically yield a real result expressed, in one way or
another, in terms of the complex valued sums of the corre-
sponding amplitudes, weighed by the values of the measured
quantity and, occasionally, the amplitudes themselves [15,59].
Far from representing a new type of “reality,” these results
only give us this limited information about the particular set of
virtual pathways connecting the initial and final states. They
would, for example, shed no new light on the mechanism of
the two-slit experiment, mentioned in the previous section,
beyond what is known from the textbooks.

In the case of the traversal time (1) one such weighted sum
is the complex time introduced in [17],

τ�(ψI ,ψF ) =
∑
paths

τ�[x(t)]A([x(t)],ψI ,ψF )

/ ∑
paths

A([x(t)],ψI ,ψF )

=
∫ t2−t1

0
dττA(ψF ,ψI ,t2,t1|τ )/A(ψF ,ψI ,t2,t1).

(11)
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The quantities of this type, introduced by Feynman [53] as
“transition elements of functionals,” reduce to the weak values
of [57], if the functional in question is the instantaneous value
of a variable A(t0) at a time t1 < t0 < t2.

The quantity in Eq. (11) was often dismissed as a candidate
for the duration quantum particle performing a transition (e.g.,
tunneling transmission across a potential barrier) spends in
a specified region of space, on account of it being complex
valued. For example, in Ref. [6] we read “...common sense
dictates that to the question of the duration of a tunneling
process, the answer, if it exists at all, must be a real time.” The
key words here are “if it exists,” and in the previous section
we explained in what sense the answer should not exist. As a
consequence, only complex valued combinations of transition
amplitudes similar to (11) will be found in the analysis of
a nonperturbing weakly coupled meter. It is true that the
result of a physical measurement must be real, but there is no
contradiction. Different setups, employed to weakly measure
the quantum traversal time (1), may yield Reτ� , Imτ� , or |τ� |,
as demonstrated in the table in [18].

Finally, we can define expressions similar to (11) for higher
powers of the functional τ [x(t)],

τn
�(ψI ,ψF ,t2,t1) ≡

∫ t2−t1
0 dττnA(ψF ,ψI ,t2,t1|τ )

A(ψF ,ψI ,t2,t1)
, (12)

where n = 2,3 . . .. We will require some of these quantities in
what follows. In the following sections we illustrate what has
been said so far, using the example of a weakly coupled SWP
clock.

VI. COMPLEX TIMES IN OPERATOR NOTATIONS

It may be convenient to formulate the problem in terms
of partial evolution operators acting in the particle’s Hilbert
space. Let Ûpart[x(t)] = |xF 〉 exp{iS[x(t)]}〈xI | be an operator
which evolves the (part)icle along a single Feynman path x(t),
which starts in xI at t1, and ends in xF at t2. Summing over all
paths which spend exactly τ seconds in � (summation over xI

and xF included), we obtain an evolution operator conditioned
by the requirement that the particle spend exactly τ seconds in
the region of interest,

Ûpart(t2,t1|τ ) =
∑
paths

Ûpart[x(t)]δ[τ [x(t)] − τ ]. (13)

Summing Eq. (13) over all τ ’s restores the full evolution
operator, Ûpart(t2,t1),

∫ t2−t1

0
Ûpart(t2,t1|τ )dτ =

∑
paths

Ûpart[x(t)] = Ûpart(t2,t1). (14)

Next we introduce an operator Ûpart(t2,t1|λ) as a Fourier
transform of Ûpart(t2,t1|τ ),

Ûpart(t2,t1|τ ) = (2π )−1/2
∫

exp(iλτ )Ûpart(t2,t1|λ)dλ, (15)

and, with it, an operator family,

Û
(n)
part(t2,t1) =

∫ t2−t1

0
τnÛpart(t2,t1|τ )dτ

= (i)n∂n
λ Ûpart(t2,t1|λ)|λ=0, n = 0,1,2 . . . ,

(16)

where Û
(0)
part(t2,t1) = Ûpart(t2,t1). Now the complex “averages”

in Eqs. (11) and (12) can also be written as

τn
�(ψF ,ψI ,t2,t1) = 〈ψF |ψ (n)〉

〈ψF |ψ (0)〉 , (17)

where

|ψ (n)(t2,t1,ψI )〉 ≡ Û
(n)
part(t2,t1)|ψI 〉, (18)

and τ�(ψI ,ψF ) = τ
(1)
� (ψI ,ψF ).

The usefulness of this approach becomes more evident
as we realize that Ûpart(t2,t1|λ) coincides with the evolution
operator for a particle moving in the original potential V (x,t)
plus an additional potential which equals λ inside �, and
vanishes outside it, Ûpart(t2,t1|λ) = exp[−i

∫ t2
t1

Ĥpart(t,λ)dt],

where the particle’s Hamiltonian, Ĥpart(t,λ), is given by

Ĥpart(t,λ) ≡ −∂2
x /2μ + V (x,t) + λ��(x). (19)

This result follows by noting that if one writes δ{τ [x(t)] − τ }
as (2π )−1

∫
exp{iλ(τ − τ [x(t)])}dλ and inserts it in (8),

the action S[x(t)] in Eq. (6) is modified by the term
−λ

∫ t2
t1

��(x(t))dt , which corresponds to adding an extra

potential λ��(x). The operators Û
(n)
part(t2,t1) can now be

evaluated by expanding Ûpart(t2,t1|λ) in powers of λ with
the help of the perturbation theory [53]. For example, for
Û

(1)
part(t2,t1) we have

Û
(1)
part(t2,t1) =

∫ t2

t1

dt ′
∫

�

dx ′Ûpart(t2,t
′)|x ′〉〈x ′|Ûpart(t

′,t1),

(20)

so that

τ�(ψI ,ψF ) =
∫ t2
t1

dt ′
∫
�

dx ′ψ∗
F (t ′,x ′)ψI (t ′,x ′)

〈ψF |Ûpart(t2,t1)|ψI 〉
, (21)

where ψI (t ′,x ′) ≡ 〈x ′|Ûpart(t ′,t1)|ψI 〉 and ψF (t ′,x ′) ≡
〈x ′|Û †

part(t2,t
′)|ψF 〉. With the help of Eq. (17) it is easy to

prove an identity

〈ψ (m)|ψ (n)〉 = τn
�(ψ (m),ψI )τm

�

∗
(ψ (0),ψI ), (22)

which we will use in what follows.
Finally, the Fourier transform (15), relating Ûpart(t2,t1|τ ) to

Ûpart(t2,t1|λ), suggests that τ and λ are, in some sense, “conju-
gate variables.” They must satisfy an uncertainty relation [21],
so that a narrow amplitude distribution of τ would imply a
broad range of λ’s, and vice versa. Thus, in order to know
the duration τ spent in �, one must make the potential in
� uncertain. Conversely, if the potential is sharply defined,
τ cannot, in general, be known exactly. For example, the
choice Ûpart(t2,t1|τ ) = Ûpart(t2,t1)δ(τ − τ0) makes in Eq. (15)
the effective range of integration over λ infinite. Therefore an
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evolution for which τ is known exactly must be represented
as a sum of evolutions for all possible potentials λ��(x)
added to V (x,t). It also means that in order to measure τ ,
a meter would need to introduce at least some uncertainty in
the potential in the region of interest. This can be done by
equipping the particle with a magnetic moment, proportional
to its spin, or angular momentum, so that each component of
the spin would experience a different potential inside �, where
a constant magnetic field is introduced. There are various ways
for preparing the spin degree of freedom, and we will discuss
them next.

VII. FAMILY OF LARMOR CLOCKS

Any spin-rotating (Larmor) quantum clock relies on the
fact that a magnetic moment, proportional to a spin of a size
j , undergoes in a magnetic field Larmor precession with an
angular frequency ωL. Let the field be directed along the z axis,
and |m〉 denote the state in which the projection of the spin on
the axis is m, so that the spin’s Hamiltonian is given by Ĥspin =
ωLĵz, with ĵz|m〉 = m|m〉. Then, after a time t , an arbitrary
(2j + 1)-component initial spin state |γ I 〉 = ∑j

m=−j γ I
m|m〉

will end up rotated around the z axis by an angle ωLt , |γ I 〉 →
|γ (t)〉 = ∑j

m=−j γ I
m exp(−imωLt)|m〉.

If the magnetic field is introduced only in the region �,
and the spin is traveling with a classical particle which follows
a trajectory xcl(t) for t1 � t � t2, the state rotates only while
the particle remains inside �. The final angle of rotation is
ωLτ�[xcl(t)], and we have

|γ (t2)〉 = exp{−iωLτ�[xcl(t)]ĵz}|γ I 〉. (23)

Generalization to the case where the particle is quantum, rather
than classical, is now straightforward. A transition between
|ψI 〉 and |ψF 〉 involves a range of durations, each occurring
with the probability amplitude (8). Hence, the final state of the
spin is a superposition of all possible rotations weighted by
the corresponding amplitudes,

|γ (t2)〉 =
∫ t2−t1

0
A(ψF ,ψI ,t2,t1|τ ) exp{−iωLτ ĵz}|γ I 〉dτ.

(24)

The amplitude to find the spin in some state |β〉 =∑j

m=−j βm|m〉 takes a particularly simple form [20],

〈β|γ (t2)〉 =
∫ t2−t1

0
G(ωLτ |j,β,γ I )A(ψF ,ψI ,t2,t1|τ )dτ, (25)

where

G(ωLτ |j,β,γ I ) ≡ 〈β| exp(−iωLτ ĵz|γ I 〉

=
j∑

m=−j

β∗
mγ I

m exp(−imωLτ ). (26)

Choosing orthonormal bases |βk〉, k = 0,1, . . . 2j , and |N〉 to
describe the spin and the particle [60], respectively, we easily
reconstruct the state into which the system, initially described

by the product |ψI 〉|γ I 〉, evolves by t = t2,

|�(t2)〉 =
∑
N

∑
k

∫ t−t1

0
G(ωLτ |j,βk,γ I )

×A(N,ψI ,t2,t1|τ )dτ |βk〉|N〉. (27)

Expanding G in a Taylor series around ωL = 0, and using the
operators of the previous section, we can rewrite this as

〈βk|�(t2)〉 =
∞∑

n=0

(−iωL)n

n!
〈βk|ĵ n

z |γ I 〉Û (n)
part(t2,t1)|ψI 〉. (28)

We note that in the classical limit, where there is a single
classical trajectory xcl(t), and a single classical duration
τcl = τ�[xcl], a Larmor clock ceases to affect the particle’s
motion, and is driven by it. Indeed, with A(N,ψI ,t2,t1|τ ) =
A(N,ψI ,t2,t1)δ(τ − τcl), from Eq. (27) we have

|�(t2)〉 = exp(−iωLτcl ĵz)|γ I 〉Ûpart(t2,t1)|ψI 〉. (29)

Transition to the classical limit is discussed, for example, in
[21]. In this limit A(N,ψI ,t2,t1|τ ) becomes highly oscillatory
everywhere except in a small vicinity of τ = τ�[xcl(t)] ≡ τcl ,
making A(N,ψI ,t,t1|τ ) tend to A(N,ψI ,t2,t1)δ(τ − τcl). This
is the only case in which a uniquely defined traversal time can
be ascribed to a quantum transition.

Thus,we have a family of Larmor clocks, each defined by
a particular choice of ωL, j , |βk〉, and |γ I 〉.

VIII. SALECKER-WIGNER-PERES CLOCK

A particular choice due to Salecker and Wigner [33], and
also to Peres [34], defines the Salecker-Wigner-Peres clock.
After the measurement, the spin is to be observed in one of the
orthogonal states, obtained from its initial state,

|γ I 〉 = |β0〉 = (2j + 1)−1/2
j∑

m=−j

|m〉, (30)

by rotation through one of the angles φk = 2πk/(2j + 1),
k = 0,1, . . . ,2j ,

|βk〉 = exp(−iĵzφk)|β0〉 =
j∑

m=−j

exp(−imφk)

(2j + 1)−1/2
|m〉. (31)

The function G in Eq. (26) is, therefore, given by [20,21]

GSWP (ωLτ |j,βk,β0)

= (2j + 1)−1 sin[(2j + 1)(φk − ωLτ )/2]

sin[(φk − ωLτ )/2]
. (32)

A particle may be observed (postselected) in a particular
subspace N of its Hilbert space, specified by a projector

�̂(N) =
∑
N∈N

|N〉〈N |. (33)

The options range from detecting the particle in a single final
state |N0〉 of the chosen basis, �̂(N) = |N0〉〈N0|, to being
completely ignorant of its final state, thus choosing �̂(N) = 1.
In all cases, the measured time is defined as the average of the
times corresponding to rotations by the angles φk , τk = φk/ωL,
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weighed by the probabilities, P (k,N), for finding the spin in
the rotated state,

T�(N,ψI )≡
2j∑

k=0

τkP (k,N)=
2j∑

k=1

2πk

(2j+1)ωL

P (k,N), (34)

where

P (k,N) = 〈�(t2)|βk〉〈βk|�̂(N)|�(t2)〉
〈�(t2)|�̂(N)|�(t2)〉 , (35)

with |�(t2)〉 given by Eq. (27).
The rationale behind Eqs. (34) and (35) is simple. After

a time t , the hand of a classical clock rotates by a well
defined angle, and points at the hour. The final position of a
quantum state, which replaces the classical hand, appears to be
distributed, pointing at different “hours” with different prob-
abilities. Equation (34) represents the “mean time” measured
in this way, and is associated with the passage of the particle
from the state |ψI 〉 to anywhere in the part of its Hilbert space
denoted as N.

There are at least three remarks to be made. First, finding the
clock in a state |βk〉, rotated by φk , by no means guarantees that
the particle has indeed spent a duration φk/ωL in �. Unless G

in Eq. (32) is proportional to δ(τ − φl/ωL), various durations
τ continue to interfere, and the precise time the particle spends
in � remains, in general, indeterminate.

Second, if we are not interested in the final state of
the particle, �̂(N) = 1, T�(all,ψI ) can be written as an
expectation value of an operator T̂� = ∑2j

k=0 |βk〉τk〈βk|,
T�(all,ψI ) = 〈�(t2)|T̂�|�(t2)〉. (36)

It is tempting to conclude that T̂� represents the “traversal time
operator,” and that with it the “time problem” has been brought
into the framework of standard quantum mechanics. This is
not quite so, since in quantum measurements the measured
operator acts on the variables of the studied system, whereas
T̂� acts on the variable of the clock.

Finally, being coupled to the clock perturbs the particle’s
motion, and whatever information is obtained, no longer refers
to the particle “on its own.” The obvious way out of this last
difficulty is to try to reduce the coupling as much as possible.
In the next section we will show that this would inevitably
lead to complex times, whose appearance we have already
anticipated in Sec. V.

IX. NONPERTURBING (WEAK) SWP CLOCK

We still need to specify the values of ωL and j , which
determine the accuracy of the measurement. In [20] it was
shown that if j → ∞ while ωL is kept finite, the function
G(ωLτ |j,βk,β0) in Eq. (26) becomes proportional to δ(τ −
τk), so that the spin can be found in |βk〉 if, and only if, the
particle has actually spent in � a duration τ . This is a very
accurate measurement, and P (k,N) in Eq. (34) becomes also
the probability with which a duration τ would occur. But, as
Eq. (10) demonstrates, by gaining in accuracy we destroyed
the original transition, and will have learned very little about
the duration spent in � with the interference intact.

To pin down this elusive duration we may try to keep j finite,
while making the magnetic field, and with it ωL, very small.

This will reduce the perturbation which affects the particle’s
motion. Indeed, and as ωL → 0, from Eq. (28) we have

〈βk|�(t2)〉 ≈ 〈βk|β0〉Ûpart(t2,t1)|ψI 〉 = δk0Ûpart(t2,t1)|ψI 〉.
(37)

The particle moves unimpeded, the spin does not rotate, and
the clock provides no information at all.

We need to find the first correction to this result. Truncating
the expansion (28) after the terms linear in ωL and inserting
the result into Eq. (34) yields

T�(N,ψI ) = ωLQ(j )T 2
SWP (N,�,ψI ) + O

(
ω2

L

)
, (38)

with

Q(j ) ≡
2j∑

k=0

φk|〈βk|ĵz|β0〉|2. (39)

In Eq. (38), the new time parameter TSWP (N,�,ψI ), called
the SWP time until a better name is found, is given by [61]

T 2
SWP (N,�,ψI ) = W (N,ψI )−1

∑
N∈N

W (N,ψI )|τ�(N,ψI )|2,

(40)

where

W (N,ψI ) ≡ |〈N |Ûpart(t2,t1)|ψI 〉|2 (41)

is the probability for the particle to be found in |N〉 in the
absence of the clock, and

W (N,ψI ) ≡
∑
N∈N

W (N,ψI ) (42)

is this probability for the whole of the chosen subspace N.
Equation (40) is the central result of our discussion so far.

In its left-hand side, we have an average, obtained for an
ensemble weakly coupled SWP clocks, which is the observed
result of the measurement. In the right-hand side, the only
quantity describing the particle is TSWP (N,ψI ). It is given by
the weighted sum of the squared moduli of the complex times
defined in (11), evaluated for the transitions into all orthogonal
states spanning the chosen subspace N of the particle’s Hilbert
space. This is an illustration of the general principle discussed
in Sec. V: in a weakly perturbing inaccurate measurement the
system is always represented by combinations of the relevant
probability amplitudes, given in this case by τ�(N,ψF ) of
Eq. (11).

We note also that the squares of the SWP times, rather
than the SWP times themselves, are additive. For two disjoint
subspaces N and N′, �̂(N)�̂(N′) = 0, Eq. (34) gives

T 2
SWP (N ∪ N′,�,ψI )

= [W (N,ψI ) + W (N′,ψI )]−1[W (N,ψI )T 2
SWP (N,�,ψI )

+W (N′,ψI )T 2
SWP (N′,�,ψI ). (43)

Next we look at the SWP times from a slightly different
prospective.

X. CALIBRATION AND THE UNCERTAINTY PRINCIPLE

A perhaps less direct way to arrive at the SWP time
TSWP (N,�,ψI ) is to calibrate the SWP clock by using a
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procedure similar to the one proposed by Leavens in [37].
Consider first introducing a magnetic field everywhere in
space, rather than just inside �. Now all Feynman paths
spend in the field the same duration τ = t2 − t1, we have
A(ψF ,ψI ,t2,t1|τ ) = A(ψF ,ψI ,t2,t1)δ(τ − t2 + t1) for all |ψI 〉
and |ψF 〉, and the clock decouples from the particle’s motion.
Thus, in the limit ωL → 0 this “free running” clock would
measure [cf. Eq. (38)]

Tfree(t2 − t1) = ωLQ(j )(t2 − t1)2. (44)

Next, let us measure T�(N,ψI ) in the case where the magnetic
field exists only inside �. Let us also assume that there is some
hypothetical duration τ′′in�′′ which the particle spends in �,
and during which the spin rotates. If so, the resulting value
of T�(N,ψI ) should be the same as Tfree(τ′′in�′′ ), obtained for
a spin that has been in free rotation for τ′′in�′′ s. Equating
T�(N,ψI ) in Eq. (38) to Tfree(τ′′in�′′ ) shows that we must
identify the sought τ′′in�′′ with the SWP time,

τ′′in�′′ = TSWP (N,�,ψI ). (45)

This may seem reasonable, since TSWP (N,�,ψI ) is a real
valued positive quantity, yet there is a serious concern.
Apparently, we impose a single duration while, according to
Sec. V, there shouldn’t be one. It ought to be prudent to make
further checks.

First we consider a classical case, where the magnetic field
is confined to �, and the single path which connects |ψF 〉 with
|ψI 〉, spends τcl seconds in �. Clearly, A(ψF ,ψI ,t2,t1|τ ) =
A(ψF ,ψI ,t2,t1)δ(τ − τcl), and we obtain the correct result,

τ′′in�′′ = τcl . (46)

The problems begin once quantum interference starts to play
a role. To see it, suppose that there are exactly two virtual
paths, via which |ψF 〉 can be reached from |ψI 〉 (perhaps in
a situation similar to the one shown in Fig. 1, or in a setup
where the particle’s wave packet is split into two parts, which
pass via different optical fibers, and are later recombined).
The paths spend in � τ1 and τ2 s, and have the probability
amplitudes A1 and A2, respectively. How much time does
the particle spend in �? Before proceeding, we recall the
uncertainty principle, already outlined in Sec. IV. Interference
merges the two virtual paths into a single route connecting the
particle’s initial and final states. The duration spent in � is,
therefore, truly indeterminate [15]. It is not τ1 or τ2, nor any
other similar duration. It should not exist.

Noting that now A(ψF ,ψI ,t2,t1|τ ) = A1δ(τ − τ1) +
A2δ(τ − τ2) [in the situation shown in Fig. 1, the amplitude
A(xF ,xI ,t2,t1|τ ) has two stationary regions around τ1 and τ2,
and is highly oscillatory elsewhere] and using (45) we find

τ′′in�′′ =
∣∣∣∣A1τ1 + A2τ2

A1 + A2

∣∣∣∣. (47)

There are no a priori restrictions on the magnitude or the
sign of the ratio A2/A1. Suppose the transition takes 3 s,
t2 − t1 = 3, and the paths spend in � 1 and 2 s, respectively.
Choosing A1 = 0.5 and A2 = −A1 + 0.001 we find

τ′′in�′′ = 4998 s � t2 − t1 = 3 s, (48)

FIG. 1. A semiclassical particle can reach the final state |xF 〉
from |xI 〉 directly, and by having been reflected off a wall at x = 0.
The particle is heavy, so there are two classical trajectories, which
minimize the action S in Eq. (6). The trajectories interfere, and are
traveled with the amplitudes A2 and A1, spending in the region � τ2 τ1

and τ2 s, respectively. All in all, how much time does the particle spend
in �? This is the “which way?” question at the center of the traversal
time controversy.

which is strange. Further, choosing A1 = 0.5 and A2 = −0.25,
yields

τ′′in�′′ = 0, (49)

which is also strange, especially if |ψI 〉 and |ψF 〉 are, as in
Fig. 1, localized on the opposite sides of the region �, which
the particle, therefore, has to cross.

XI. COMPLEX TIMES AND THE
“WEAK MEASUREMENTS”

Both experiments described at the end of the previous
section can be performed, at least in principle. We must,
therefore, decide on an interpretation of the results (48)
and (49). There are two possibilities. Either (A) the τ′′in�′′

represents a physical duration, and has further implications for
our understanding of quantum motion, or (B) it is something
else, in which case we need to explain what it is precisely.
Next we look at both options.

(A) The first option may appear either absurd [46] or
intriguing, depending on the reader’s viewpoint. Indeed,
should the 4998 s in Eq. (48) be “physical,” we must conclude
that quantum mechanics allows a particle to spend more than
an hour in some place during a journey that last only 3 s. By
taking the 0 s result in Eq. (48) literally, we defy Einstein’s
relativity by letting the particle cross the region infinitely fast.

Both conclusions are reminiscent of other surprising results
obtained within the so-called weak measurements approach
[57]. Among these one encounters the notions of negative
kinetic energy [62], negative number of particles [63], having
one particle in several places simultaneously [64], a photon
disembodied from its polarization [65], an electron with
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disembodied charge and mass [65], an atom with the internal
energy disembodied from the mass [65], and photons found
in places they neither enter nor leave [66,67]. Perhaps closest
to the subject of this paper is the concept of charged particles
moving faster than light through the vacuum, introduced in
[68]. In all these examples, the analysis relies on obtaining the
weak value 〈B̂〉w of an operator B̂ = ∑

i |bi〉Bi〈bi |, defined
for a system prepared (preselected) in a state |ψI 〉 and then
found (postselected) in a state |ψF 〉,

〈B̂〉w = 〈ψF |B̂|ψI 〉
〈ψF |ψI 〉 . (50)

The conclusions of Refs. [62–68], mentioned above, are then
drawn from the properties of the complex valued quantity
〈B̂〉w.

(B) Another explanation available to us is more down to
earth (see also [15,59,69,70]). The results (48) and (49) may
simply illustrate the uncertainty principle (above) by showing
that it is impossible to ascribe a meaningful duration to a
situation where two or more durations interfere to produce the
result. The response of a quantum system to an attempt to
measure the traversal time without perturbing the system’s
motion results in evaluation of the sum of the probability
amplitudes (8), which can, in principle, take any value at all.
The weak value (50) is another illustration of this general
principle. Indeed, the final state |ψF 〉 can be reached via
passing through the eigenstates |bi〉, and the amplitude for
the ith virtual path is A(i,ψf ,ψi) = 〈ψF |bi〉〈bi |ψI 〉. Thus,
Eq. (51) can be cast in the form similar to (11),

〈B̂〉w =
∑
paths

BiA(i,ψI ,ψF )

/ ∑
paths

A(i,ψI ,ψF ). (51)

where the eigenvalues of B̂ on the routes |ψF 〉 ← |bi〉 ← |ψI 〉,
Bi , replace the values of τ�[x(t)] on the virtual Feynman
paths. We could call the complex time (11) the weak value
of the traversal time functional, bearing in mind that it is
just a particular combination of the probability amplitudes
A(ψF ,ψI ,t2,t1|τ ). No other interpretation of the complex
times should be possible, as the uncertainty principle does not
allow us to view probability amplitudes, or their combinations,
as the actual values of a physical quantity [15].

We strongly advocate the second explanation. Indeed,
there is nothing strange about the result (47) itself, and
the only thing at fault is our desire to impose, through
the calibration procedure, a single physical duration |τ�|
where there shouldn’t be one. Not surprisingly, the result is
unsatisfactory. Accordingly, with Eq. (48), the clock has not
aged by more than an hour in a span of 3 s. Its final state |γ (t)〉
is a superposition of the states |γ (t |τ1)〉 and |γ (t |τ2)〉, rotated
by the angles ωLτ1 and ωLτ2, respectively. It is certainly not
equal to |γ (t |τ′′in�′′)〉, and cannot, in general, be obtained by a
rotation through any angle ωLτX,

A1|γ (t |τ1)〉 + A2|γ (t |τ2)〉 �= const|γ (t |τX)〉, (52)

since higher orders in ωL would involve quantities τn
� in

Eq. (12), and τn
� �= (τ�)n.

We must conclude that the calibration of a weak SWP
clock fails to define a meaningful traversal time for a quantum
particle. This is in agreement with the uncertainty principle.

XII. DWELL TIME

Despite the difficulties outlined in the previous section,
much of the discussion about tunneling times continues to
be built around a tacit assumption that a single classical-
like duration, which characterizes a classically forbidden
transition, exists and simply has not yet been found [5].

One candidate for the role of this parameter is the dwell
time, a special case of the complex time (11), evaluated for
the final state |ψF 〉 obtained by unperturbed evolution of the
initial state |ψI 〉,

τ dwell
� (ψI ) ≡ τ�(Ûpart(t2,t1)ψI ,ψI ). (53)

It can be written in several different ways. Expanding
|Ûpart(t2,t1)ψI 〉 is some basis |N〉, we can express τ dwell

� in
a form similar to Eq. (40),

τ dwell
� (ψI ) =

∑
N

W (N,ψI )τ�(N,ψI ). (54)

In the operator notations of Sec. VI, the dwell time becomes

τ dwell
� (ψI ) = 〈ψI |Û †

part(t2,t1)Û (1)
part(t2,t1)|ψI 〉, (55)

and using Eq. (20) yields a derived result, often mistaken for
the definition of τ dwell

� (ψI ), [16,17,37,38],

τ dwell
� =

∫ t2

t1

dt ′
∫

�

dx|ψI (x,t ′)|2. (56)

The dwell time possesses several attractive properties. First,
like its classical counterpart, it is non-negative, and never
exceeds the total duration of motion, τ dwell

� � t2 − t1, thus
avoiding the problems encountered in the previous section.
Second, written as in Eq. (56), it appears to have a simple
probabilistic structure, with the contribution from the interval
dt ′ proportional to the probability to find the particle in �.
Third, the same expression arises in approaches as different
as the Bohm trajectories method [39], and the Feynman path
approach considered here.

Before accepting τ dwell
� as the long sought classical-like

duration, we note that certain questions about it remain
unanswered. The interference between different durations,
which contribute to the transition, remains intact, and the
conflict with uncertainty principle continues unresolved. Also,
the said properties do not extend to the individual terms
τ�(N,ψI ) in Eq. (54), which remain complex valued, and
should not be confused with meaningful durations, as was
shown in the previous section. Finally, it may be that, for some
unknown reason, a classical-like duration can only be defined
for a quantum system, which follows uninterrupted evolution
along its “orbit” in the Hilbert space, |ψ(t)〉 = Ûpart(t,t1)|ψi〉.
But then, to be a true analog of the classical traversal time,
τ dwell
� (ψI ) should arise whenever a time measurement perturbs

the particle only slightly, and no postselection is performed on
the particle in the end. Should it not be so, the appealing form
of Eq. (56) would be fortuitous, and have no further physical
consequences. We will test this last assumption next.
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XIII. WOULD THE SWP CLOCK MEASURE
THE DWELL TIME?

An example at hand is the SWP clock in the ωL → 0
regime. Suppose we run an ensemble of clocks between t1
and t2 without controlling the particle’s final state, evaluate the
average TSWP (all,ψI ) by choosing N to coincide with all of
the particle’s Hilbert space, and use the calibration procedure
of Sec. X. Will the result coincide with the dwell time (56) as
was assumed in [44]? The question was studied also in [37].

The answer is yes, provided the system evolves along a
single classical path. We have already shown [see Eq. (46)] that
the SWP time coincides with the τcl , evaluated for this path.
With an (almost) classical particle represented by a very narrow
wave packet crossing the region �, the equality τ dwell

� = τcl

follows directly from the stopwatch expression (56). Thus, τcl

is the unique duration which arises from both approaches in
the classical limit.

However, in the full quantum case, the answer is no. From
Eq. (40) we have

TSWP (all,�,ψI ) = 〈ψI |Û (1)†
part (t2,t1)

∣∣Û (1)
part(t2,t1)

∣∣ψI

〉1/2
, (57)

and the application of (22) yields

TSWP (all,�,ψI ) =
√

τ dwell
� (ψI ) × τ�(ψ (1)(t2),ψI ) (58)

which, in general, is not the same as τ dwell
� (ψI ).

It is easy to see the reason for this discrepancy. Accord-
ing to Eq. (55) the dwell time must involve the product
Û

†
part(t2,t1)Û (1)

part(t2,t1), and could only appear in the linear in
ωL corrections to P (k,all) in Eq. (35). But with the choice of
the states |βk〉 in Eq. (31), all such corrections vanish for k �= 0
because 〈βk|β0〉 = 0, and for k = 0 since 〈β0|ĵz|β0〉 = 0.
Neither would τ dwell

� (ψI ) appear in the higher-order corrections
to P (k,all), since none of these corrections contain the required
term Û

†
part(t2,t1). In general, the dwell time plays no role in the

analysis of the SWP clock, as defined in Sec. VIII. However, in
some special cases, TSWP (all,�,ψI ) may accidentally reduce
to τ dwell

� (ψI ), as we will show in the next section.

XIV. STATIONARY TUNNELING AND
THE LEAVENS ANALYSIS

All that was said above applies to tunneling of a particle
prepared in a wave-packet state, shown in the diagram in Fig. 2.
The particle’s initial state at t = t1 is a superposition of the
plane waves with positive momenta p > 0,

ψI (x) = 〈x|ψI 〉 =
∫ ∞

0
A(p) exp(ipx)dp, (59)

located to the left of a barrier of finite width, V (x), occupying
the region [0,d]. The wave packet moves towards the barrier,
and the energies E(p) = p2/2μ are chosen all to lie below the
barrier height, so that in order to be transmitted the particle
has to tunnel. At a sufficiently large time t2, the scattering is
complete, and the wave packet is divided into the transmitted

FIG. 2. An incident wave packet impacts on a potential barrier,
and is divided into the transmitted (tunnelled) and reflected parts.
What is the duration the particle has spent in the region � which
contains the barrier?

(T ), ψT (x,t2), and reflected (R), ψR(x,t2), parts,

〈x|ψ(t2)〉 ≡ 〈x|Ûpart(t2 − t1)|ψI 〉 = ψT (x,t2) + ψR(x,t2)

= (2π )−1/2
∫ ∞

0
dpT (p)A(p) exp[px − iE(t2 − t1)]

+ (2π )−1/2
∫ ∞

0
dpR(p)A(p)

× exp[−ipx − iE(t2 − t1)], (60)

where T (p) and R(p) are the transmission and reflection
amplitudes, respectively.

We are interested in the duration spent in the barrier
region, and choose � ≡ [0,d]. In the limit t1,2 → ∓∞, matrix
elements of the operators in Sec. VI between the plane waves
|p〉, 〈x|p〉 = exp(ipx) are given by (n = 0,1,2, . . .)

〈p′|Û (n)
part(t2 − t1)|p〉

= in exp[−iE(p)(t2 − t1)]∂n
λT (p,λ = 0)δ(p − p′),

for p > 0 and p′ > 0, and

in exp[−iE(p)(t2 − t1)]∂n
λR(p,λ = 0)δ(|p| − |p′|),

for p > 0 and p′ < 0, (61)

where T (R)(p,λ) denote the transmission (reflection) am-
plitudes for a composite barrier V (x) + λ�[0,d](x). From
Eq. (17), for the complex tunneling and reflection times of
a particle with an initial momentum p we have

τ[0,d](p,p) = i∂λ ln T (p,λ = 0), (62)

and

τ[0,d](−p,p) = i∂λlnR(p,λ = 0). (63)

In the following we will be interested only in whether the
particle is transmitted or reflected, and employ the projectors
�̂(tunn) = ∫ ∞

0 |p〉〈p| and �̂(refl) = ∫ 0
−∞ |p〉〈p|, on all posi-

tive and all negative momenta, to distinguish between the two
outcomes.

Suppose next that a weak SWP clock is used to measure
the time the particle spends in �. To obtain the SWP time for
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transmission, we replace in Eq. (40) summation over N by
integration over p, and �̂(N) with �̂(tunn). We find

TSWP (tunn,[0,d],�I )

= W (tunn)−1/2

[∫ ∞

0
dp|T (p)|2|A(p)|2|τ[0,d](p,p)|2

]1/2

,

(64)

and similarly for reflection,

TSWP (refl,[0,d],�I )

= W (refl)−1/2

[∫ ∞

0
dp|R(p)|2|A(p)|2|τ[0,d](−p,p)|2

]1/2

,

(65)

where W (tunn) ≡ ∫ ∞
0 |T (p)|2|A(p)|2dp and W (refl) ≡∫ ∞

0 |R(p)|2|A(p)|2dp, are the tunneling and reflection prob-
abilities, respectively. Finally, if we do not care whether the
particle is transmitted or reflected, from Eqs. (40) and (61) we
find the calibrated SWP result, without postselection, to be

TSWP (all,[0,d],�I ) =
{∫ ∞

0
dp|A(p)|2[|∂λT (p,λ = 0)|2

+ |∂λR(p,λ = 0)|2]

}1/2

. (66)

Returning to the question of the previous section, we may
want to compare this with the dwell time which, according to
Eqs. (54), (62), and (63), is given by

τ dwell
[0,d] (ψI ) = i

∫ ∞

0
|A(p)|2[T ∗(p)∂λT (p,λ = 0)

+R∗(p)∂λR(p,λ = 0)]dp. (67)

As expected, the SWP result in Eq. (66) is different from the
dwell time in (67). Leavens [37] studied, mostly numerically,
the case where the incident particle has a definite momentum
p0. To arrive at his results from Eqs. (66) and (67) it is sufficient
to choose a nearly monochromatic wave packet, so narrow
in the momentum space that the transmission and reflection
amplitudes and their derivatives can be approximated by their
values at p0. Since

∫ ∞
0 |A(p)|2dp = 1, this yields

TSWP (all,[0,d],p0)

= [|∂λT (p0,λ = 0)|2 + |∂λR(p0,λ = 0)|2]1/2 (68)

and

τ dwell
[0,d] (p0) = i[T ∗(p0)∂λT (p0,λ = 0)

+R∗(p0)∂λR(p0,λ = 0)]. (69)

In [37] it was shown that a good agreement between the SWP
result TSWP (all,[0,d],p0) and the dwell time (69) is achieved
for free motion, if the width of the region, d, is sufficiently
large. Good agreement between the two was also found for a
barrier turned into a potential step, e.g., if d is sent to infinity,
thus making transmission impossible. The latter result follows
immediately by putting in Eqs. (68) and (69) T (p0,λ) ≡ 0 and
|R(p0)|λ ≡ 1, which gives

TSWP (all,[0,∞],p0) = −∂λArg[R(p0,λ = 0)] = τ dwell
[0,∞](p0).

(70)

The case of a free particle crossing the region of a width d

requires a little more attention. We can neglect the reflection
term in Eq. (69) but not in (68), and must evaluate both
derivatives instead. Using Eq. (20) we easily find

TSWP (all,[0,d],p0)

τ dwell
[0,d] (p0)

=
√

1 +
∣∣∣∣ sin(p0d)

p0d

∣∣∣∣
2

p0d→∞
→ 1,

which explains the good agreement found by Leavens for broad
regions. Finally, another minor point regarding the analysis of
[37] is consigned to the Appendix.

To summarize, we can agree with Leavens on the general
discrepancy between the dwell time, and what is measured
by a calibrated SWP clock. We also have explained why this
discrepancy must arise. However, we disagree with the final
conclusion of [37] that “it is only the dwell time, which does
not distinguish between transmitted and reflected particles,
that is a meaningful concept in conventional interpretations
of quantum mechanics.” The dwell time is, we argue, just a
special case of the complex time and is no more, and no less,
meaningful than the tunneling and reflection times in Eqs. (62)
and (63).

XV. TUNNEL IONIZATION

Our general analysis applies also to the case of tunnel
ionization, where the tunneling time problem has attracted
recent theoretical interest [5]. In an ionization experiment, an
initially bound electron has a chance to escape by tunneling
across a potential barrier briefly created by a time-dependent
external field. One may be interested in the duration the
escaped electron has spent in the classically forbidden region,
and attempt to measure it by means of a weak SWP clock,
perturbing tunneling as little as possible. A realistic calculation
of such a measurement can be found, for example, in [44],
and here we will limit ourselves to the formulation of the
problem, and the identification of the time parameters such a
measurement would produce.

A one-dimensional sketch of the setup is shown in Fig. 3.
Bound at t = t1 in the single bound state of a potential well,
|ψI 〉 = |ψ0〉, the particle can escape to the continuum while an
external field is converting the binding potential into a potential
barrier. Long after the field is switched off, at some t = t2, its
wave function is divided into the “bound” part, describing the
particles which failed to leave the well, and the “free” part,
describing the escaped particles moving away from it. We,
therefore, have

Ûpart(t2,t1)|ψI 〉 = |ψbound〉 + |ψfree〉

≡ C(t2,t1)]|ψ0〉 +
∫ ∞

0
B(p,t2,t1)|p〉dp,

(71)

and find the ionization probability to be given by

W (ion) = 〈ψfree|ψfree〉 =
∫ ∞

0
|B(p,t2,t1)|2dp. (72)

Let the particle be monitored by a weak SWP clock, with the
magnetic field localized in the classically forbidden region �,
as shown in Fig. 3. We will also have at our disposal a perfect
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FIG. 3. At first the particle is trapped in the ground state of a
potential well. A time-dependent external field turns the potential
step into a barrier, and then restores it to its original shape. The
particle’s wave function is divided into the part still trapped, and the
escaped part, freely propagating away from the well. What is the dur-
ation the particle has spent in the classically forbidden region �?

remote detector, capable of determining whether the particle
has escaped, and if it has, able to evaluate its momentum p.
With this, we can choose to postselect the particle in the free
state, and record the clock’s reading only if the particle was
seen to escape. We can also postselect it in the bound state,
and keep the readings only in the case the remote detector has
not fired. Alternatively, we can choose not to postselect at all,
and retain all of the clock’s readings.

There is a set of complex times which, as discussed in
Sec. V, are related to the response of the system to the
introduction of a constant potential λ��(x) in the region of
interest. If such a potential is introduced, the wave function at
t2 retains the form (71), but its coefficients should depend on λ,
C(t2,t1) → C(λ,t2,t1), B(p,t2,t1) → B(p,λ,,t2,t1). Thus, for
an escaped particle with a momentum p we can define the
complex time (11) and other complex “averages” (12) as (we
omit the time dependence of the coefficients C and B, and
recall that τ� ≡ τ 1

�)

τn
�(p,ψ0,t2,t1) = (i)nB(p,λ = 0)−1∂n

λB(p,λ = 0). (73)

Similarly, for a particle which remained in the well, we have

τn
�(ψ0,ψ0,t2,t1) = (i)nC(λ = 0)−1∂n

λC(λ = 0). (74)

There is also a real valued dwell time, which does not
distinguish between the particles which have escaped and those
which remained bound,

τ dwell
� (ψ0) = |C(λ = 0)|2τ�(ψ0,ψ0,t2,t1)

+
∫ ∞

0
|B(p,λ = 0)|2τ�(p,ψ0,t2,t1)dp. (75)

What is measured in an experiment depends on how the
clock is prepared and read. If the weak SWP clock of Sec. IX
is used, and the calibration procedure of Sec. X is applied,
the time found for the particles which remain bound in the

potential well is

TSWP (bound,�,ψ0) = |τ�(ψ0,ψ0,t2,t1)|
= |∂λlnC(λ = 0)|. (76)

For the particles which leave the well with unspecified
momentum, the measurement will yield

TSWP (free,�,ψ0)

= W (ion)−1/2

[∫ ∞

0
|τ�(p,ψ0,t2,t1)|2|B(p)|2dp

]1/2

= W (ion)−1/2

[∫ ∞

0
|∂λB(p,λ = 0)|2dp

]1/2

. (77)

Finally, if the final state of the particles is not controlled, from
(43) we have

TSWP (all,�,ψ0)

= {[1 − W (ion)]T 2
SWP (bound,�,ψ0)

+W (ion)T 2
SWP (free,�,ψ0)}1/2

=
[
|∂λC(λ = 0)|2 +

∫ ∞

0
|∂λB(p,λ = 0)|2dp

]1/2

, (78)

which is not the same as the dwell time in Eq. (75).
If, on the other hand, we follow Leavens [37] in choosing

|γ I 〉 = |βj 〉 (see the Appendix), the sum in the right-hand
side of Eq. (39) will vanish, and to evaluate the new SWP time
T ′

SWP , we would need to go to the next order in ωL in Eq. (28).
For example, instead of (77) from Eq. (A2), we will have

T ′
SWP (free,�,ψ0)

= W (ion)−1/3

{∫ ∞

0
Re[τ�(p,ψ0)

× τ 2
�

∗
(p,ψ0)]|B(p)|2dp

}1/3

= W (ion)−1/3

{∫ ∞

0
Im[∂λB(p,λ = 0)

× ∂2
λB∗(p,λ = 0)dp

}1/3

. (79)

and, as before, will not recover the dwell time (75) in the case
where no postselection is made.

The dwell time would, however, occur naturally if instead
of evaluating the averages (34) or (A2), we would employ
a more general Larmor clock, described in Sec. VII, and
consider a small difference in the probability P (k,all) ≡
〈�(t2)|βk〉〈βk|�(t2)〉 for the clock to be found in a state |βk〉
before and after it interacts with the particle. A simple calcu-
lation, using Eq. (28), shows that this change is proportional
to τ dwell

� (ψ0),

δP (k,all) ≡ P (k,all) − |〈βk|γ I 〉|2
= 2ωLIm[〈γ I |βk〉〈βk|ĵz|γ I 〉]τ dwell

� (ψ0) + O
(
ω2

L

)
.

(80)
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Defining the measured mean value as δT�(all,ψI ) ≡∑2j

k=0 τkδP (k,all), we obtain

δT�(all,ψI ) = Q′(j )τ dwell
� (ψ0) + O(ωL), (81)

with Q′(j ) = 2Im{∑2j

k=0 φk〈γ I |βk〉〈βk|ĵz|γ I 〉}. If the mag-
netic field is introduced everywhere in space, we find
δT free

� (t2 − t1) = Q′(j )(t2 − t1). Using this relation to calibrate
the result (81), as was done in Sec. X, shows that for this
particular clock, the duration imposed in the quantum case is
τ dwell
� (ψ0). This is the case of linear calibration, studied by

Leavens and McKinnon in [38].
Thus, also in the case of tunnel ionization, application

of a weak SWP clock does not yield a single real duration
the particle is supposed to spend in the classically forbidden
region, but rather a variety of complex valued time parameters,
through which the real valued result of the measurement is
expressed. These parameters differ for different settings of
the clock, and reduce to a unique classical value only in the
primitive semiclassical limit, where a single classical trajectory
connects the initial and final states. In the next section we give
our conclusions.

XVI. CONCLUSION AND DISCUSSION

The mathematical exercises presented above do not them-
selves form a basis for a discussion about the amount of
time a tunneling particle spends in the barrier. They only
illustrate the far more general principle at stake. Most of the
quantum transitions, and certainly tunneling, are interference
phenomena, which require contributions from many virtual
Feynman paths. Each Feynman path spends a certain amount
of time, τ�[path], inside the region of interest �. We can group
together the paths sharing the same value of τ�[path], and see a
transition as a result of interference between all traversal times
involved. The difficulty in determining the duration, spent by
a quantum particle in �, is then the well-known difficulty
in answering the “which way?” (“which τ?”) question in
the presence of interference, the only mystery in quantum
mechanics, according to Feynman [71]. In this paper we have
examined in detail one particular way of trying to answer the
question, while leaving the interference intact. Arguably, the
general conclusions, which can be drawn from our analysis,
are more important than any of its technical details. We will
formulate these conclusions in a perhaps unusual form of
attempting to ask the most relevant questions, and then trying
to answer them the best we can.

(a) What is measured by the SWP clock? Like every clock
of the Larmor family, the SWP clock measures the net time τ

the particle’s Feynman paths spend in the region of interest.
(b) How is this time measured? By modifying the contri-

butions of different τ ’s to the particle’s transition amplitude,
depending on the final state in which the clock is observed.

(c) Does the SWP analysis come up with an “operator for
the tunneling time”? Strictly speaking, no. The operator (36),
often quoted in that capacity, acts on the variables of the clock,
and not on the variables of the particle. It defines, therefore,
a von Neumann measurement which needs to be made on the
spin.

(d) To what accuracy is it measured? If the function GSWP

in Eq. (26) limits the values of τ , which contribute to the
transition |ψI 〉|β0〉 → |ψF 〉|βk〉, to a region of a width �τ

around some value τk , we can say that by observing the clock in
|βk〉, we have measured a value τk to an accuracy �τ . A weak
(ωL → ∞) SWP clock, whose main purpose is to perturb the
transition as little as possible, does not discriminate between
different times in this way. Rather, it studies the response of
a particle to the small variations of the probability amplitudes
defined in Eq. (8), and its accuracy is very poor.

(e) Is there a probability distribution for the traversal time
in the case of tunneling? Not unless it is created by an accurate
clock, which destroys the interference between different values
of τ . If a weak clock is employed, only the probability
amplitude distribution A(ψF ,ψI ,t2,t1|τ ) in Eq. (8) is available.

(f) Are complex traversal times inevitable? Interfering
(virtual) pathways should together be considered a single
route connecting the initial and final states of the system.
By the uncertainty principle [71], virtual pathways cannot
be distinguished without destroying interference between
them. Accordingly, the response of a system to a weakly
perturbing measurement of the traversal time functional (1)
is always formulated in terms of the complex valued sum of
the corresponding amplitudes, A(ψF ,ψI ,t2,t1|τ ) in Eq. (8),
weighted by the values of the functional, τ [15]. This is a
general result behind the so-called weak measurement theory
[57,59]. The complex time τ� in (11) is the weak value of the
functional (1).

(g) Can complex times be measured? Certainly, for example
by a weak SWP clock discussed above, and the fact that they
are complex valued is no major obstacle. However, since the
result of a measurement must be real, it is impossible to say
a priori whether a particular experiment would yield Reτ�,
Imτ�, |τ�|, or, indeed, any other real valued combination of
Reτ� and Imτ� (see also [18]). Our detailed analysis of the
SWP clock used by Peres [34] shows that what it measures is,
in fact, |τ�|.

(h) Are complex times related to physical time intervals?
In general, they are not. Any attempt at overinterpretation, by
treating parts of τ� as if they were actual durations, would
lead to insurmountable difficulties. For example, in the case
described in Sec. X, one would face not only the chance of
faster-than-light travel, but also the possibility of spending a
month on the beach during a one-week leave from office. None
of the two are offered by elementary quantum mechanics.

(i) What are the complex times then? Just what their
definition tells us. A complex time is what one would obtain
by multiplying the amplitude to reach |ψF 〉 from |ψI 〉 and
spend a duration τ in � by τ , and sum over all the τ ’s which
contribute to the transition.

(j) Is the dwell time more meaningful than other complex
times? No, it is a particular case of a complex time, whose
attractive properties can be traced to the fact that the operator
Ûpart(t2,t1|λ) in Eq. (15) is Hermitian for any real λ [24].
In the quantum case, it does not always take the place
of the classical duration, as was shown in Sec. XII. The
uncertainty principle does not forbid the weak values to
look appealing in particular cases. Rather, it guarantees the
existence of “unappealing” results, should different initial and
final states be chosen instead [69]. It is these other results which
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should warn one against giving too much credit to the nice
exceptions.

(k) Does the SWP clock measure the dwell time? As defined
in [34] and in Sec. VIII, it does not. The choice of the states in
which the clock is observed is such that the terms which add
up to the dwell time do not contribute to the result, even if the
final state of the particle is not controlled. With a different
Larmor clock it would, however, be possible to evaluate
τ dwell
� (ψI ) [38].

(l) Does the tunneling particle spend a finite amount of
time in the barrier? We could equally ask whether the electron
in the Young’s double slit experiment reaches the screen
by passing through the holes in the screen? All Feynman
paths which contribute to tunneling spend some time in the
barrier. Moreover, replacing the Schroedinger equation with
a relativistic Klein-Gordon one [72] leaves only the paths
spending in � a time longer than the width of the region

speed of light

[73]. In every virtual scenario (i.e., the one to which we
can ascribe an amplitude, but not the probability [15]) the
electron goes through one of the holes, and the particle spends
a reasonable duration inside the barrier.

(m) How much time does a tunneling particle spend in the
barrier? We could equally ask “which hole did the electron go
through?” In standard (Feynman) quantum mechanics it goes
through both, and through neither one in particular [71]. In the
same sense, the particle spends in the barrier all durations at the
same time. The question is meaningless in a very strong sense,
and an attempt to force it brings an unsatisfactory answer,
τ�(ψI ,ψF ). Consider two researchers using two weak Larmor
clocks, but one determining Reτ�, and the other |τ�|, for a
transition where Reτ� is zero, but |τ�| is not. To the first
researcher the transition takes no time in �, to the second
researcher this time is finite. Their subsequent argument would
have no resolution, as both would be right about their results,
but both will be wrong in their final conclusions.

(n) Can one expect the complex time (11) to occur in
other applications? Only where the quantity of interest can
be obtained by integrating the amplitudes A(ψF ,ψI ,t2,t1|τ )
over τ . Some examples were given in [18] and [21].

(o) Can there be other definitions of the tunneling time? In
quantum mechanics, the failure to define one unique tunneling
time does not mean that such times cannot be defined at all.
On the contrary, it means that there are more possible time
parameters than in the classical case [74]. First, there are Reτ�,
Imτ�, |τ�| already mentioned. Then there are weak values of
other functionals, e.g., of τin/out[xcl(t)] in Eq. (2). There are
also times not related to Feynman paths. One famous example
is the phase time [9], which can be interpreted as the weak
value of the spatial shift with which the particle leaves the
scatterer, divided by the particle’s velocity [49]. Moreover,
one can define other times, e.g., as the moments the front, the
maximum, the rear, or the center of mass of a wave packet
passes through a chosen surface in space [6]. The Pollack and
Miller time [75] and the times mentioned in Sect. III provide
further examples.

(p) Can there be a unique tunneling time scale? That is,
could one leave aside all the details of the previous discussion,
and simply be assured that tunneling takes approximately
τapprox ms, so that all devices using it should not go faster than

τapprox? The answer in standard (Feynman) quantum mechanics
appears to be no. If there were such a time scale, it could be
found by examining the corresponding amplitude distribution
A(ψF ,ψI ,t2,t1|τ ). For example, for a particle of a given
energy, tunnelling across a rectangular barrier, the amplitude
distribution is oscillatory, and exhibits a fractal behavior [21].
Hence, its Fourier spectrum contains all frequencies, and we
cannot associate with it any specific time scale a priori. In
a particular application, A(ψF ,ψI ,t2,t1|τ ) may be integrated
with a smooth function G(τ ), whose width �τ determines
which of the higher frequencies would be neglected. However,
the process of making �τ smaller will never converge to
a result which no longer depends on �τ . Thus, we argue,
any new tunneling time measured in an experiment, or found
theoretically, should be used strictly in the particular context
in which it was obtained. For instance, a statement “the peak
of the tunnelled wave packet has arrived at the detector 1
fs earlier than that of a free propagating one” is correct.
Its extension “... and, therefore, the particle has spent 1
fs less in the barrier” is unwarranted. Any claim to find
the universal tunneling time, or time scale, is likely to be
misleading.

(q) And the classical time scale? One exception to
(p) is the (semi)classical limit, where rapidly oscillating
A(ψF ,ψI ,t2,t1|τ ) develops a very narrow stationary region
around a single classical value τcl [21]. If so, the con-
tribution to any (within reason) integral over τ , involving
A(ψF ,ψI ,t2,t1|τ ), comes from the vicinity of τcl . The appear-
ance of a single stationary region signals, therefore, a return to
the classical description.

(r) Could an extension or alternative formulation of quan-
tum mechanics help define the traversal time in a different
way? Such a theory will have also solved the “which way?”
problem for the double-slit experiment.

(s) Did Bohm’s trajectories approach achieve that? One
approach which claims to achieve that is the Bohm’ causal
interpretation [56,76]. In Bohm’s theory, a particle moves
along a streamline of a probability current calculated with a
time-dependent wave function ψ(x,t), and its initial position is
distributed according to |ψ(x,t = 0)|2. The streamlines cannot
cross, and a Bohm’s trajectory leading to a given point on the
screen in the Young’s experiment always passes through one
of the slits. Similarly, a particle crossing a region of space
always spends there a unique amount of time. A detailed
comparison between the Bohm’s trajectory and the Feynman
path approaches to the tunneling time problem was made in
[39], where the author concluded that the two approaches are
incompatible. It is not our purpose to continue this discussion,
and we will limit ourselves to just two comments. First,
the unperturbed Bohm’s trajectories do not help us with
the analysis of the SWP clock, while the Feynman paths
do. Bohm’s trajectories are formulated in the absence of a
measuring device, and must change once such a device is
introduced, in order to describe its effects. Second, by using
Feynman amplitudes, one can define the time any quantum
system spends in an arbitrary subspace of its Hilbert space. For
example we can define and measure the time a qubit spends
in one of its states [77,78]. It is unclear how Bohm’s approach
can be extended to cover these cases.
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In summary, we have analyzed the work of a weakly
perturbing Salecker-Wigner-Peres clock in terms of virtual
Feynman paths, and related it to the complex traversal time
was introduced in [17]. We have shown that in the standard
(Feynman) quantum mechanics the appearance of complex
times is an inevitable consequence of the uncertainty principle.
We also explained why these complex times, or their real
valued combinations, should not be interpreted as physical
durations, and tried to draw some more general conclusions
about the state of the tunneling problem in quantum theory.
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APPENDIX: DIFFERENT CHOICE OF THE INITIAL
STATE FOR AN SWP CLOCK

It is worth clarifying one difference between our results of
Sec. X and those of [37]. According to Eq. (26) of [37], for
a free running clock, as ωL → 0, we must have T free

� ∼ ω2
L,

whereas according to our Eq. (44) it should be proportional
to ωL. The reason is that in [37] Leavens considered also
choosing a different initial state for the clock, replacing (j is
an integer) |β0〉 with |βj 〉, and effectively postulated a negative

duration τ ′
k−j = (φk − φj )/ωL < 0 each time the clock is

found in |βk〉 with 0 � k < j . In this case, from Eq. (32)
we have GSWP (ωLτ |j,βk,βj ) = GSWP (ωLτ |j,βk−j ,β0), and
|βk−j 〉 ≡ exp[−iĵz(φk − φj )]|β0〉, so that Eq. (34) becomes

T ′
�(N,ψI ) =

2j∑
k=0

τ ′
k−jP (k − j,N), (A1)

which is also Eq. (20) of [37]. Proceeding as in Sec. IX,
we find that, with this choice, the contribution to T ′

�(N,ψI ),
linear in ωL, vanishes, leaving T ′

�(N,ψI ) proportional to ω2
L

as ωL → 0. For a freely running clock, with the magnetic field
introduced everywhere in space, we have T

′f ree

� (t2 − t1) ∼
(t2 − t1)3. Calculating T ′

�(N,ψI ) to the first nonvanishing
order in ωL, and comparing the result with T

′f ree

� (t2 − t1), we
find that the time T ′

SWP (N,�,ψI ), measured by the modified
clock, is given by

T ′
SWP (N,�,ψI ) = W (N,ψI )−1/3

{∑
N∈N

W (N,ψI )

× Re[τ�(N,ψI )τ 2
�

∗
(N,ψI )]

}1/3

, (A2)

which involves also the complex valued square of the func-
tional (1), defined in Eq. (12).
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