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Experimental ladder proof of Hardy’s nonlocality for high-dimensional quantum systems
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Recent years have witnessed a rapidly growing interest in high-dimensional quantum entanglement for
fundamental studies as well as towards novel applications. Therefore, the ability to verify entanglement between
physical qudits, d-dimensional quantum systems, is of crucial importance. To show nonclassicality, Hardy’s
paradox represents “the best version of Bell’s theorem” without using inequalities. However, so far it has only been
tested experimentally for bidimensional vector spaces. Here, we formulate a theoretical framework to demonstrate
the ladder proof of Hardy’s paradox for arbitrary high-dimensional systems. Furthermore, we experimentally
demonstrate the ladder proof by taking advantage of the orbital angular momentum of high-dimensionally
entangled photon pairs. We perform the ladder proof of Hardy’s paradox for dimensions 3 and 4, both with
the ladder up to the third step. Our paper paves the way towards a deeper understanding of the nature of
high-dimensionally entangled quantum states and may find applications in quantum information science.
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I. INTRODUCTION

In 1935, Einstein, Podolsky, and Rosen (EPR) published the
famous EPR paradox, which questioned the completeness of
quantum mechanics and has led to massive investigations into
the concept of quantum entanglement [1]. In 1964, Bell proved
that the EPR argument invoking local realism leads to algebraic
predictions that are in contradiction to quantum mechanics,
which found its mathematical expression in the so-called Bell
inequality [2]. Since then, many interesting experiments have
tested the Bell inequalities, leading to a very strong agreement
with quantum mechanics while disfavoring hidden variable
theories [3]. Thirty years later, Hardy formulated another
paradox challenging the idea of locality and hidden variables
[4,5]. In contrast to Bell’s inequality, Hardy’s theory is an
attempt to demonstrate nonlocality without inequalities, and,
as such, Mermin referred to it as “the best version of Bell’s
theorem” [6]. In Hardy’s original theory, the nonlocality proof
was shown with the use of two spin-half particles [4,7–9].
Hardy’s idea has so far been realized experimentally using
entangled qubits, two-level quantum states, implemented by
the polarization, energy time, and orbital angular momentum
(OAM) of photons [10–13]. A significant progress has been
made by Boschi et al. [14] and Barbieri et al. [15], who
generalized Hardy’s proof to a ladder version that enabled
the significant increase of probability of the nonlocal events.

In the above-mentioned experimental realization analogous
to spin-half particles, only vector spaces of dimension 2
(qubits) were considered. However, from both the fundamental
and applied points of view, entangling systems in higher-
dimensional states (qudits) are of considerable importance, as
they offer higher information-density coding, increased level
of security, and new quantum imaging techniques [16–20].
Recent theoretical efforts were made to generalize Hardy’s
argument into a high-dimensional scenario, where two spin-s
particles were involved. This can be traced back to the original
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proposal by Clifton and Niemann [21]. Kunkri and Choudhary
then provided a more compact logic structure of the nonlocality
condition for two spin-s particles [22]. It was first conjectured
by Ghosh and Kar [23] and Seshadreesan and Ghosh [24], and
proven by Rabelo et al., that there existed a bounded violation
of locality constraints allowed by the quantum formalism, with
the maximum Hardy probability equal to pH = (5

√
5 − 11)/2

[25]. More importantly, the generalization to high-dimensional
systems is of particular interest because it brings Hardy’s
paradox closer to the original EPR scenario, where the
measurements have an arbitrarily large number of outcomes
[26]. Additionally, Cabello first theoretically considered the
ladder proof of Bell’s theorem for any maximally entangled
states of two spin-s particles [27]. However, these theoretical
schemes for high-dimensional systems have not yet been
translated into experimental implementations. Additionally,
the photon’s OAM degree of freedom, which can be exploited
to construct an inherently high-dimensional Hilbert space
[28,29], has only been used for a two-dimensional test, and
thus has not yet been fully explored in the framework of
Hardy’s paradox. Here, we employ OAM of entangled photons
to mimic a high spin-s system, and demonstrate theoretically
and experimentally the ladder proof in high-dimensional OAM
subspaces of d = 3,4 with the ladder order up to K = 3. We
thus demonstrate that quantum mechanics is in contradiction
with the existence of local hidden variable theories.

II. THEORETICAL FORMULATION

In the original proposals [21–24], spin particles were con-
sidered to simulate high-dimensional quantum systems. For
spin-s particles, quantum mechanics states that the component
of a spin measured along the z axis can only take the values
Sz = szh̄, where sz = −s, − (s − 1), . . . ,s − 1,s and � is the
reduced Planck’s constant [30]. For example, for a spin-1
particle, the possible values are sz = −1,0,+1. Thus, it allows
the construction of a high-dimensional Hilbert space that
is spanned by a standard orthonormal basis ordered by sz

denoted as |sz〉. Unlike the polarization degree of freedom
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of photons, which describes the vectorial nature of light and is
only associated with a two-dimensional space, OAM is related
to the helical phase structure. If light exhibits an azimuthal
phase structure such as exp(i�φ), each photon carries a
well-defined OAM of �h̄. Here, φ is the azimuthal angle of
polar coordinates, and � is an integer value describing the
OAM quantum number [31]. As � is theoretically unbounded,
the OAM degree of photons can be used as a physical
realization of qudits in a high-dimensional Hilbert space
[32], similar to a high-dimensional spin space of particles
described above. The use of OAM as another degree of
freedom to test Hardy’s paradox has two major advantages
over the analogous cases with high spin values: First, photonic
OAM, as well as arbitrary superpositions thereof, can be
readily generated and conveniently measured based on the
use of a commercial spatial light modulator (SLM) [33].
Second, Hardy’s proof requires high-dimensional bipartite
states that are nonmaximally entangled, which is well realized
for the two-photon OAM states generated by spontaneous
parametric down conversion (SPDC) [34]. Since both key
features are extremely hard to implement or even nonexistent
for higher spins, high-dimensionally entangled OAM quanta of
photon pairs provide an ideal playground for an experimental
verification of Hardy’s paradox.

Let us first formulate a ladder set of conflicting classical
logic statements in the high-dimensional spin-s subspaces.
Assume A0, A1, . . . , and AK are K+1 different noncommuting
spin observables for particle A, and similarly B0, B1, . . . , and
BK are those for particle B. The measurement outcomes for
Ak and Bl (k,l = 0,1, . . . ,K) range from −s to +s, totally
including d = 2s + 1 discrete values. With P (Ak = i,Bl = j )
as the joint probability of obtaining Ak = i and Bl = j , we
assume the following set of zero probabilities:

P (A0 = s,B0 = s) = 0, (1)

P (Ak = s,Bk−1 = i) = 0 for

i = s − 1, s − 2, . . . , − s − 1, − s, (2)

P (Ak−1 = j,Bk = s) = 0, for

j = s − 1, s − 2, . . . , − s − 1, − s, (3)

where k ranges from 1 to K . Equations (1)–(3) consist of
a total of 4Ks + 1 equations. In any local hidden variable
theory, according to Eqs. (1)–(3), we should also obtain a zero
probability for all AK = s and BK = s, i.e., P (AK = s,BK =
s) = 0. However, quantum mechanics allows a suitable choice
of observables to make the Hardy fraction,

P (AK = s,BK = s) > 0, (4)

which is logically inconsistent with the classical predictions.
By using reduction to absurdity, we show the basic idea of
the high-order ladder proof in the diagram of Fig. 1, where,
without loss of generality, K = 2 for a three-dimensional case
(s = 1, d = 3) is illustrated. Note that our formalism includes
the already known special cases: For K = 1, Eqs. (1)–(4)
reduce to those of the original proposal of Hardy’s test with
spin-s systems that only considered a single step [22–24];

FIG. 1. The diagram of Hardy’s ladder proof with K = 2 in three-
dimensional OAM subspace. Blue (dash) lines indicates zero proba-
bilities while red (solid) lines corresponds to nonzero probabilities.
According to the local hidden variable theory, we know that once we
measured P (A2 = 1, B2 = 1) > 0 then both P (A2 = 1, B1 =) = 0
and P (A2 = 1, B1 = 0) = 0 will lead to P (A2 = 1, B1 = 1) > 0.
Similarly, we also have P (A1 = 1, B2 = 1) > 0 . Thus we have
P (A1 = 1, B1 = 1) > 0. We repeat this to go down the ladder and
finally obtain P (A0 = 1, B0 = 1) > 0, being inconsistent with Eq. (1)
of P (A0 = 1, B0 = 1) = 0. In other words, if the assumptions of
Eqs. (1)–(3) hold, the measurement result of P (A2 = 1, B2 = 1) > 0
will support quantum mechanics but contradict any local hidden
variable theory.

for s = 1/2, they reduce to the ladder proof of Hardy’s
nonlocality with two-level quantum systems [11–14].

The first key step to transport the conceptual idea to
experimentally implementable states is to define a secession
of suitable observables, Ak and Bl , that satisfy the logical
statements of Eqs. (1)–(4). For Hardy’s test in two-dimensional
spaces, such as for spin-1/2 particles or photon polarizations,
the observables are readily defined by 2×2 unitary matrices,
the general form of which reads [5,10–14]

M
(2)
k =

[
cos θk eiξk sin θk

e−iξk sin θk − cos θk

]
. (5)

For each k, the matrix M
(2)
k defines a pair of orthogonal

states. Similarly, we can construct the high-order matrix
M

(2s+1)
k , which defines 2s+1 orthogonal states in the high-

dimensional spin-s space. We start with s = 1, i.e., three-
dimensional states or qutrits, for which we construct M

(3)
k by

analogy with the eigenvectors in a uniaxial crystal [35]. Light
propagates in a uniaxial crystal with its wave vector specified
by k̂ = (cos θ, sin θ cos ϕ, sin θ sin ϕ), where θ and ϕ are the
polar and azimuthal angles, respectively. Then two eigenvec-
tors of o-ray and e-ray are given by ô = (0, sin ϕ,− cos ϕ)
and ê = (sin θ,− cos θ cos ϕ,− cos θ sin ϕ), respectively [36].
These k̂, ô, and ê form a set of mutually orthogonal unit vectors,
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based on which we can construct a unitary matrix as follows:

M
(3)
k =

⎡
⎣ cos θk eiξk sin θk cos ϕke

i(ξk+ηk) sin θk sin ϕk

0 e−iηk sin ϕk − cos ϕk

e−iξk sin θk − cos θk cos ϕk −eiηk cos θk sin ϕk

⎤
⎦,

(6)

where eiξk and eiηk as well as their conjugates are in-
troduced to generalize the Euclidean space spanned by
the real vectors of k̂, ô, and ê to the associated Hilbert
space.

We employ the OAM entangled photon pairs generated by
SPDC for our ladder test of Hardy’s paradox. The two-photon
wave function can be written as |�〉SPDC = ∑

� C�|�〉A|−�〉B ,
where C� denotes the amplitude probability of finding one
signal photon (index A) with �h̄ OAM and its partner
idler photon (index B) with −�h̄ [37]. To mimic spin-1
particles, we restrict our measurements to a subset including

three OAM eigenstates such that the entangled state reads
as |�〉3D = Cl|l〉A|−l〉B + Cm|m〉A|−m〉B + Cn|n〉A|−n〉B .
Based on Eq. (6), we define the OAM measurement basis
for the signal and idler photon, respectively, in terms of OAM
eigenstates as

⎡
⎣|Ak = +1〉

|Ak = 0〉
|Ak = −1〉

⎤
⎦ = M

(3)
k

⎡
⎣ |l〉A

|m〉A
|n〉A

⎤
⎦, (7)

⎡
⎣|Bk = +1〉

|Bk = 0〉
|Bk = −1〉

⎤
⎦ = M

(3)
k

⎡
⎣ |−l〉B

|−m〉B
|−n〉B

⎤
⎦. (8)

We have calculated and specified the exact parameters
θk , ϕk , ξk , and ηk (Table S1 of Ref. [38]). By substituting
Eqs. (7) and (8) into Eqs. (2) and (3), and after a lengthy yet
straightforward algebra, we calculate analytically the K-order
Hardy fractions of Eq. (4) as

P
(3)
K =

∣∣∣∣∣
ClCmCn

[
C2K−1

n

(
C2K

l − C2K
m

)
cos2ϕ0 + C2K−1

m

(
C2K

l − C2K
n

)
sin2ϕ0

]
C2K

m

(
C2K+1

l + C2K+1
n

)
sin2ϕ0 + C2K

n

(
C2K+1

l + C2K+1
m

)
cos2ϕ0

∣∣∣∣∣
2

. (9)

One can see that the Hardy fractions have a dependence on the entangled spiral spectrum characterized by Cl , Cm, and Cn.
Note that Hardy’s test still becomes invalid for maximal OAM entanglement with Cl = Cm = Cn. Additionally, if ϕ0 = 0, then
PK simply reduces to the qubit case [14], as the rank of the matrix M

(3)
k degrades to 2 so that it explores only a two-dimensional

subspace.
In an analogous way, we can continue and generalize the unitary matrix M

(3)
k to M

(4)
k for spin-3/2 quantum systems or

equivalently to a four-dimensional OAM subspace. The set of mutually orthogonal unit vectors now reads

M
(4)
k =

⎡
⎢⎢⎣

cos θk eiξk sin θk cos ϕk ei(ξk+ηk) sin θk sin ϕkcosσk ei(ξk+ηk+τk) sin θk sin ϕksinσk

0 0 e−iτk sin σk −cosσk

0 e−iηk sin ϕk − cos ϕkcosσk −e−iτk cos ϕk sin σk

e−iξk sin θk − cos θk cos ϕk −eiηk cos θk sin ϕkcosσk −ei(ηk+τk) cos θk sin ϕk sin σk

⎤
⎥⎥⎦. (10)

The four-dimensionally entangled two-photon state
in the OAM bases can be written correspondingly
as |�〉4D = Cj |j 〉A|−j 〉B + Cl|l〉A|−l〉B + Cm|m〉A|−m〉B +
Cn|n〉A|−n〉B and the desired projective measurements per-
formed jointly on the signal and idler photons are defined as
follows:

⎡
⎢⎣

|Ak = +3/2〉
|Ak = +1/2〉
|Ak = −1/2〉
|Ak = −3/2〉

⎤
⎥⎦ = M

(4)
k

⎡
⎢⎣

|j 〉A
|l〉A
|m〉A
|n〉A

⎤
⎥⎦, (11)

⎡
⎢⎣

|Bk = +3/2〉
|Bk = +1/2〉
|Bk = −1/2〉
|Bk = −3/2〉

⎤
⎥⎦ = M

(4)
k

⎡
⎢⎣

|−j 〉B
|−l〉B
|−m〉B
|−n〉B

⎤
⎥⎦. (12)

We can still calculate the desired parameters of θk , ϕk , σk

and ξk , ηk , τk (Table S2 of Ref. [38]). After some algebra, we
can also obtain the Hardy fraction:

P
(4)
K = |Cj cos2θK − Clsin2θKcos2ϕK − Cmsin2θKsin2ϕKcos2

× σK − Cnsin2θKsin2ϕKsin2σK |2. (13)

Along this line, we are able to theoretically construct the
matrix M

(d)
k with d = 2s + 1 for an arbitrary s, which is the

key point to realize the ladder proof of Hardy’s paradox in any
Hilbert space of arbitrary dimension. As an example, without
loss of generality, we explicitly show the general forms of M

(5)
k

and M
(6)
k [Eqs. (S2) and (S9) of Ref. [38]].

III. EXPERIMENTAL SETUP

We prepare the high-dimensional two-photon OAM en-
tangled states via degenerate SPDC, where both photons have
opposite OAM quanta due to angular momentum conservation
[37]. A schematic overview of our optical setup is shown in
Fig. 2 and experimental details can be found in the correspond-
ing figure caption. In the experiment, we first characterize
our generated entangled state, by measuring the two-photon
correlated OAM spectrum. We do so by implementing a mode
filter consisting of a computer-controlled phase-only SLM and
a single mode fiber (SMF). We use the SLM to flatten the phase
structure of a specific spatial mode, which couples efficiently
into the SMF. Other modes, which are not phase flattened by
the SLM, do not couple into the SMF; hence, they are filtered
out. The measured normalized coincidence counts between
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FIG. 2. Optical system for the ladder test of Hardy’s paradox
based on high-dimensional entangled photons. A collimated 355-nm
ultraviolet laser (JDSU) pumps a 5-mm-long β-barium borate (BBO)
crystal, where a degenerate 710-nm signal and idler photons are
produced in pairs via type-I collinear SPDC. Afterwards, we separate
the two photons into two different paths by a nonpolarizing beam
splitter (BS). A longpass filter (LF) is used to block the pump beam
after the crystal. The output facet of the crystal is imaged onto both
spatial light modulators (SLM1, SLM2, Hamamatsu, X10486-1) by
two lenses in a 4-f configuration (f1 = 200 mm,f2 = 400 mm). Each
SLM is then similarly reimaged by another pair of lenses L3 and
L4 (f3 = 500 mm and f4 = 2 mm) onto a single-mode fiber (SMF),
which is connected to a single-photon detector (SPCM-AQRH-14).
The SLM together with the SMF acts as a programmable mode filter.
Bandpass filters (BF) of 10-nm width and centered at 710 nm are
placed in front of SMFs to ensure degeneracy of the detected photon
pairs. The detectors are connected to a coincidence counting circuit
(&) with a 25-ns coincidence time window. The measured entangled
OAM spectrum characterized by the peak-normalized coincidence
counts NCC is shown by the inset.

photons found with the OAM state of |�〉 in the signal arm
and |−�〉 in the idler arm (� ranging from −3 to +3) directly
correspond to the two-photon correlated OAM spectrum. This
so-called spiral spectrum is shown in the inset of Fig. 2. The
limited bandwidth, and hence the nonmaximal entanglement,

can be clearly seen, as the coincidence rate decreases with
increasing � values.

In order to perform Hardy’s test, we need to measure a
sequence of OAM superposition states. As before, we use
the SLMs in combination with the SMF to project onto
the required modes. For example, if we want to measure
the joint probability of P (Ak = +s,Bk−1 = i), we program
the SLM to project the signal and idler photons onto the
states of |Ak = +s〉 and |Bk−1 = i〉, respectively. These states
correspond to superpositions of OAM eigenstates, as defined
by Eqs. (7) and (8), or Eqs. (11) and (12). We summarize
the mathematical principle of preparing the desired holograms
[Eq. (S1) of Ref. [38]].

IV. EXPERIMENTAL RESULTS

Without loss of generality, we restrict our first set of
measurements to a three-dimensional OAM subspace of l =
−1,0,+1. From the measured spiral spectrum (see Fig. 2 inset)
we calculate the normalized coefficients of C�, which leads to
the nonmaximally entangled state |�〉3D = 0.795|0〉A|0〉B +
0.431|+1〉A|−1〉B + 0.428|−1〉A|+1〉B , with the reasonable
assumption of C� being real-valued [39]. In our first demon-
stration, we consider a ladder scenario with K = 3. Based on
Eq. (9), we can predict the quantum-mechanically expected
Hardy fractions as P1 = 6.89%, P2 = 14.12%, and P3 =
17.11%, respectively. Note that the desired joint measurements
are specified by the parameters of θk and ϕk in M

(3)
k (Table S1

of Ref. [38]). In the experiment, we first start with measuring
the joint probabilities defined in Eqs. (1)–(3) by performing in
total 4Ks + 1 = 13 (K = 3,s = 1) projective measurements
on the OAM superpositions for both photons. For all, we
expect a joint probability of exactly zero. As can be seen
in Fig. 3, they are very small; however, due to experimental
imperfections, such as slight misalignments or nonperfect

FIG. 3. Experimental results for the ladder test of Hardy’s paradox for |�〉3D. The empty bars (blue edges) are the Hardy fractions predicted
theoretically by Eq. (9), while the solid bars (green) are those obtained experimentally, where P1 = 9.23 ± 0.34%, P2 = 18.00 ± 0.54%, and
P3 = 21.85 ± 0.52%. In contrast, all the other 13 joint probabilities are almost zero, in good agreement with the theoretical prediction. Because
local realistic models would only allow all probabilities to be zero, the results are nicely demonstrating that quantum mechanics contradicts
local hidden variable models.
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FIG. 4. Experimental results for the ladder test of Hardy’s paradox in a four-dimensional OAM subspace. The empty bars (blue edges) are
theoretical predictions of the Hardy fractions based on Eq. (13), while the solid bars (green) are those obtained experimentally. The experimental
ladder test results in P1 = 5.44 ± 0.14%, P2 = 5.62 ± 0.11%, and P3 = 4.00 ± 0.05%, which is within a good agreement with the theoretical
predictions of 5.31, 6.89, and 6.16%. Since all the other 19 joint probabilities are close to zero, our measurements contradict local hidden
variable models, which would require zero probabilities for all joint measurements.

mode projections, they are ranging between 0.09 and 0.98%.
We experimentally obtain the one-, two-, and three-step Hardy
fractions as P1 = 9.23 ± 0.34%, P2 = 18.00 ± 0.54%, and
P3 = 21.85 ± 0.52%, respectively. All are well above zero;
hence, they clearly contradict the prediction of a local hidden
variable model. Additionally, they are close to the quantum-
mechanically predicted values, and as such support quantum
mechanics. One interesting remark follows: Though the orig-
inal Hardy fraction p1 has a bound of pH = (5

√
5 − 11)/2 ≈

9% [25], both the theoretical and experimental results in Fig. 3
indicate that our high-dimensional ladder scheme enables the
observation of more photon pairs showing contradiction with
local realism.

In a second experiment, we extend the ladder test into
a four-dimensional OAM subspace, physically equivalent to
s = 3/2. In order to maximize coincidence counts, we choose
the following four-dimensional subspace as the nonmaxi-
mally entangled OAM state, |�〉4D = 0.769|0〉A|0〉B + 0.417
|+1〉A|−1〉B + 0.414|−1〉A|+1〉B + 0.251|+2〉A|−2〉B . Sim-
ilar to the three-dimensional experiment, we perform pro-
jective measurements on OAM superposition states for both
photons (Table S2 of Ref. [38]), and measure the joint
probabilities (22 joint measurements in total). The resulting
measured probabilities are shown in Fig. 4 together with
the theoretical predictions. We find that the one-, two-, and
three-step Hardy fractions, P1 = 5.44 ± 0.14%, P2 = 5.62 ±
0.11%, and P3 = 4.00 ± 0.01%, are in good agreement with
theoretical values of P1 = 5.31%, P2 = 6.89%, and P3 =
6.16%. All three probabilities are significantly larger than zero
in contrast with the other 4Ks + 1 = 19 joint probabilities,
which range from P1 = 0.01 to 0.69%. In theory, these 19 joint
probabilities should be exactly zero. However, in our experi-
ment we find small nonzero probabilities, which we attribute
to slight misalignment in the optical setup. We thus show
again the clear contradiction between quantum mechanics

and classical local hidden variable predictions without using
inequalities.

V. DISCUSSION AND CONCLUSION

After showing the contraction without using inequalities,
it is interesting to investigate the accumulation of errors of
our experiment, and test if they allow the drawn conclusions.
We do so, in analogy to the two-dimensional cases [40,41],
by putting our Hardy paradox in a more general framework in
terms of the Clauser-Horne inequality,

SK = P(AK = s,BK = s) −
K∑

k=1

s−1∑
i=−s

[P(Ak = s,Bk−1 = i)

+ P(Ak−1 = i,Bk = s)] − P(A0 = s,B0 = s) � 0,

(14)

which holds for any local hidden variable theory. For our
experimental results, shown in Fig. 3, we find that S1 = 6.96 ±
1.13(%), S2 = 14.11 ± 2.09%, and S3 = 17.07 ± 2.69(%).
All violate Eq. (14) by more than five standard deviations
and, therefore, are evidently contradicting local realism.
However, for the data shown in Fig. 4, we only observe a
significant violation for the first latter step (K = 1), namely,
S1 = 3.74 ± 0.69%. For the second and third step, we find
S2 = 2.64 ± 1.09% and S3 = 0.01 ± 1.35%, which is above
and around zero due to limited count rates, which results in
noise overshadowing the quantum correlations. We further
note that the experimentally obtained Hardy fractions in both
experiments, d = 3 and 4, are deviating from the theoretical
values more than the errors bars would suggest. This difference
can be attributed to slight misalignments of our optical setup
and nonuniformity of the holographic diffraction efficiency.
Additionally, higher-dimensional Hardy tests involve more
complex OAM superposition states, for which the detection
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method leads to lower fidelities due to the limited resolution
(800×600) of the SLMs used. A possible extension of our
paper tackling these challenges would be to prepare optimal
Hardy states and manipulate the weights of different OAM
states by using suitable filtering processes [42]. Although
outside of the scope of this paper, we envision that our
experimental scheme could be extended to even higher
dimensions by utilizing a brighter source of OAM-entangled
photons, and SLMs with a higher resolution.

In conclusion, we have presented an experimental demon-
stration of a ladder test of Hardy’s paradox in a high-
dimensional quantum system by using the OAM degree of free-
dom of photons to mimic spin-s systems. Hardy’s paradox can
be considered as an example of what Greenberger, Horne, and
Zeilinger called “Bell’s theorem without inequalities” [43].
Our theoretical formulation and experimental implementation
demonstrate that the observation of a single occurrence of an
event, here AK = s and BK = s, suffices to show that quantum
mechanics contradicts local realism for high-dimensional
quantum systems. We further showed that it is advantageous
to use the OAM degree of photons for such a Hardy test:
Owing to the limited spiral bandwidth, OAM-entangled photon
pairs readily provide a natural set of Hardy’s states in high-
dimensional Hilbert spaces. Additionally, our observations of
the two-step and three-step Hardy tests, shown in Fig. 3, could

significantly surpass the one-step Hardy probability bound of
pH = (5

√
5 − 11)/2. Recent years have witnessed a rapidly

growing interest in high-dimensional quantum entanglement.
This paper represents an experiment to demonstrate nonlo-
cality without inequalities for two-photon high-dimensional
quantum systems, and may raise interesting possibilities to
verify the presence of multiphoton high-dimensional quantum
entanglement within the framework of quantum mechanics.
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