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Continuous-variable systems in quantum theory can be fully described through any one of the s-ordered family
of quasiprobabilities �s(α), s ∈ [−1,1]. We ask for what values of (s,a) is the scaling map �s(α) → a−2�s(a−1α)
a positive map? Our analysis based on a duality we establish settles this issue: (i) the scaling map generically fails
to be positive, showing that there is no useful entanglement witness of the scaling type beyond the transpose map,
and (ii) in the two particular cases (s = 1,|a| � 1) and (s = −1,|a| � 1), and only in these two nontrivial cases,
the map is not only positive but also completely positive as seen through the noiseless attenuator and amplifier
channels. We also present a “phase diagram” for the behavior of the scaling maps in the s − a parameter space
with regard to its positivity, obtained from the viewpoint of symmetric-ordered characteristic functions. This also
sheds light on similar diagrams for the practically relevant attenuation and amplification maps with respect to the
noise parameter, especially in the range below the complete-positivity (or quantum-limited) threshold.
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I. INTRODUCTION

Completely positive maps mathematically describe phys-
ical processes or quantum channels [1–5]. Positive maps
which fail to be completely positive cannot represent physical
processes, but they play a key role in the study of inseparability
of mixed states as entanglement witnesses [6–8]. The desir-
ability of studying maps represented by uniform scaling of
phase space variables of continuous-variable systems, namely,
q̂ → aq̂, p̂ → ap̂, a ∈ R\{0} was suggested in Ref. [9] in
the hope that such a map might be positive but not completely
positive, and hence partial scaling (i.e., uniform phase space
scaling on one party of a bipartite state followed or preceded
by the transpose map) could prove useful as an entanglement
witness, “generalizing” [9] the partial momentum reversal or
partial transpose criterion [10] for separability. These authors
pointed to the interesting construct that this scaling of phase
space could, alternatively, be viewed as scaling of the Planck
constant: h̄ → a2h̄. (We shall comment on this toward the end
of the paper.) Note that the signature of the scale parameter a

can be changed simply through a natural unitary evolution of
the mode through half a period.

Although this uniform scaling is a linear transformation at
the operator level, it is not canonical for |a| �= 1, and hence
cannot be implemented as a linear, unitary transformation
on Hilbert space vectors. We therefore introduce abstract
scaling maps �s,a whose action on the density operators can
be represented at the level of s-ordered quasiprobabilities
�s(q, p) in the following manner:

�s,a : �s(q,p; �s,a(ρ̂)) = a−2�s(a
−1q,a−1p; ρ̂), (1)

with s ∈ [−1,1], a ∈ R\{0}.

*solomonivan@iist.ac.in
†krishnakumar.sabapathy@gmail.com
‡simon@imsc.res.in

The Wigner distribution (s = 0) was the choice of Ref. [9]
to implement the scaling transformation through

W (q,p; ρ̂) → W (q,p; ρ̂ ′) = a−2W (a−1q,a−1p; ρ̂). (2)

That this map preserves Hermiticity and normalization of
density operators is transparent. It turns out that it does
not preserve the non-negativity property of density oper-
ators (see Proposition 2 and also Refs. [11,12]), showing
that the scaling map defined in this manner through the
Wigner quasiprobability is not positive. The original ex-
pectation of the authors of Ref. [9] thus turns out to be
unfounded.

If a positive map is obtained for any other value of order
parameter s, then there are two possibilities: (a) the positive
map may not be completely positive, in which case it will be
useful as an entanglement witness; and (b) if it turns out to be
completely positive it will correspond to a quantum channel.
Indeed, since any scaling map �s,a transforms Gaussian
quasiprobability distributions into Gaussian distributions, any
completely positive scaling map will correspond to a bosonic
Gaussian channel, a topic of considerable current interest
[12–27].

The main purpose of the present work is to address the
issue of positivity of scaling maps, a generalization of the
one raised in Ref. [9], in a definitive manner in Sec. II. In
Sec. III we introduce a “phase diagram” for the behavior of
the scaling maps �s,a over the s − a parameter space with
regard to its positivity. As an almost unintended fallout of our
analysis, we present a related phase diagram for attenuation
and amplification maps with respect to the noise parameter of
the map, especially depicting the behavior of these maps below
the complete-positivity or quantum-limited noise threshold.
We conclude in Sec. IV.
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II. QUASIPROBABILITIES AND SCALING
TRANSFORMATIONS

Quasiprobabilities are defined more conveniently in terms
of the non-Hermitian operators â,â† obeying the commutation
relation [â,â†] = 1, than in terms of their Hermitian parts
q̂,p̂ obeying [q̂,p̂] = i. In correspondence with the relation
â = (q̂ + ip̂)/

√
2 we will associate to every point (q,p) in the

phase space plane the complex number α = (q + ip)/
√

2. The
characteristic function χs(ξ ; ρ̂) of the s-ordered quasiproba-
bility �s(α; ρ̂) associated with a density operator ρ̂ is defined
through [28]

χs(ξ ; ρ̂) = exp [ 1
2 s|ξ |2]χ0(ξ ; ρ̂), −1 � s � 1;

χ0(ξ ; ρ̂) = Tr[ρ̂D(ξ )], D(ξ ) = exp[ αâ† − α∗â ]. (3)

For every −1 � s � 1, the quasiprobability �s(α; ρ̂) and the
associated characteristic function χs(ξ ; ρ̂) are related through
the Fourier pair

�s(α; ρ̂) = π−1
∫

exp[ αξ ∗ − α∗ξ ]χs(ξ ; ρ̂)d2ξ,

χs(ξ ; ρ̂) = π−1
∫

exp[ ξα∗ − ξ ∗α ]�s(α; ρ̂)d2α. (4)

The familiar diagonal “weight” function φ [29] or P distribu-
tion [30], Wigner distribution W , and Husimi or Q distribution
correspond, respectively, to s = 1,0,−1 [28]. It is clear that
the association between operators ρ̂ and quasiprobabilities
�s(α; ρ̂) [or characteristic functions χs(ξ ; ρ̂)] is one-to-one
invertible for any −1 � s � 1. While Hermiticity of ρ̂ trans-
lates into reality of �s(α; ρ̂) and the normalization Tr ρ̂ = 1
into the normalization

∫
�s(α; ρ̂)d2α = 1 [or equivalently,

χs(ξ ; ρ̂)|0 = 1], positivity of ρ̂ gets encoded in �s(α; ρ̂) in
a more subtle manner [28].

In light of Eqs. (1) and (4), we can rewrite the action of the
scaling maps �s,a as

�s(α; �s,a(ρ̂)) = a−2�s(a
−1α; ρ̂). (5)

It is clear from the Fourier transform pair (4) that the scaling
transformation �s,a described through its action on s-ordered
quasiprobability [Eq. (5)] reads, when transcribed to the
associated characteristic function, as the transformation

χs(ξ ; �s,a(ρ̂)) = χs(aξ ; ρ̂). (6)

Also, it turns out to be useful for succeeding sections to
introduce a “dual” scaling map �̃s,a in the following way:

�̃s,a : �−s(α; �̃s,a(ρ̂)) = a2�−s(aα; ρ̂). (7)

Note that while the action of the map �s,a is described at the
level of �s its dual map �̃s,a is described at the level of �−s

with the scaling a replaced by its inverse.
We begin our analysis of scaling maps by establishing an

important duality between the pair of scaling maps �s,a and
�̃s,a with regard to positivity.

Proposition 1 (Duality). The scaling map �s,a−1 is positive
if and only if the dual map �̃s,a−1 is positive.

Proof. Positivity of entities are often defined or described
through the “company they keep”. Thus an operator ρ̂ is
positive if and only if Tr (ρ̂ρ̂ ′) � 0 for all positive operators
ρ̂ ′. Transcription of this statement to the language of s-ordered

quasiprobabilities involves a dual pair of quasiprobabilities
�s(α; ρ̂) and �−s(α; ρ̂) and reads : �s(α; ρ̂) is a s-ordered
quasiprobability (i.e., it corresponds to a positive operator) if
and only if ∫

�s(α; ρ̂)�−s(α; ρ̂ ′) d 2α � 0, (8)

for every (–s)-ordered quasiprobability �−s(α; ρ̂ ′). It is in this
sense that the s-ordered quasiprobabilities �s(α; ρ̂) and the
(−s)-ordered quasiprobabilities �−s(α; ρ̂) are mutually dual.
In particular, the quasiprobability of Wigner is self-dual, and
this is the only self-dual s-ordered quasiprobability, while the
quasiprobabilities Q and P are mutually dual.

Now, by definition, the map �s,a−1 is positive if and only
if a2�s(aα; ρ̂) is an s-ordered quasiprobability for every s-
ordered quasiprobability �s(α; ρ̂). In view of (8), the necessary
and sufficient condition for �s,a−1 to be positive is that∫

�s(aα; ρ̂)�−s(α; ρ̂ ′) d 2α � 0, (9)

for every s-ordered quasiprobability �s(α; ρ̂) and (−s)-
ordered quasiprobability �−s(α; ρ̂ ′). Since a �= 0, the last
stipulation (9) is the same as the condition that∫

�s(α; ρ̂)�−s(a
−1α; ρ̂ ′) d 2α � 0, (10)

for every s-ordered quasiprobability �s(α; ρ̂) and [(−s)-
ordered quasiprobability �−s(α; ρ̂ ′)]. But this condition pre-
cisely constitutes the assertion that the scaling map �̃s,a−1 is a
positive map, and thus completes proof of the proposition.

It is well known that the Gaussian function exp[− 1
2b|ξ |2]

qualifies to be the characteristic function of some s-ordered
quasiprobability if and only if b � 1 − s. This is basically
a statement of the Heisenberg uncertainty principle. Indeed,
saturation of this inequality corresponds to the ground state of
the oscillator ρ̂ = |0〉〈0|, and this is true for every −1 � s � 1.
The case b > 1 − s corresponds to thermal states with the
temperature of the state being a monotone increasing function
of the difference b − (1 − s) = b + s − 1.

Subjecting the ground state to the transformation �s,a one
readily concludes, for all s �= 1, that a necessary condition
for this map to be positive is that |a| � 1. Note that this
requirement is independent of the value of s (excluding s = 1).
Applying this requirement on the vacuum state to both the
cases s and −s we conclude, in view of the duality established
in Proposition 1, the following.

Proposition 2. The scaling map �s,a is not a positive
map for (−1 < s < 1,|a| �= 1), (s = −1,|a| < 1), and (s =
1,|a| > 1).

It is interesting that all quasiprobabilities, other than possi-
bly P and Q corresponding to s ± 1, respectively, are on the
same footing as far as positivity of the scaling transformation
is concerned. That Proposition 2 is silent on P (with |a| < 1)
and hence on its dual Q (with |a| > 1) is due to the fact that
in the case s = 1 the s-ordered characteristic function of the
ground state is a constant. These two cases therefore need
closer examination.

It turns out that help is at hand from the detailed study of the
properties of bosonic Gaussian channels and their respective
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FIG. 1. The positivity properties of the scaling maps as depicted
on the s axis. For s ∈ (−1,1) and |a| �= 1, the scaling maps are
nonpositive. This is also true for (s = −1,|a| < 1) and (s = 1,|a| >

1). The scaling maps are completely positive for the cases (s =
−1,|a| > 1), (s = 1,|a| < 1), including the trivial situation of |a| = 1
for all s.

operator-sum representations [16], and we have the following
proposition.

Proposition 3 (Theorem 10 of [16]). The scaling map
�−1,a : Q(α; �−1,a(ρ̂)) = a−2Q(a−1α; ρ̂), a > 1, is a trace-
preserving completely positive map and corresponds to the
quantum-limited amplifier channel C2(a).

This leaves the final case of the scaling map �1,a with a < 1
and this is addressed in the following proposition.

Proposition 4 (Theorem 6 of [16]). The scaling map �1,a :
P (α; �1,a(ρ̂)) = a−2P (a−1α; ρ̂), 0 < a < 1, is a completely
positive trace-preserving map and corresponds to the quantum-
limited attenuation channel C1(a).

We have thus found the complete answer to the problem
we set out to study : (1) for none of the s ∈ (−1,1) is �s,a a
positive map for any value of the scale parameter a other than
the trivial values a = ±1; (2) for the special case s = −1,
the map is not positive if |a| < 1, and completely positive if
|a| � 1; and (3) for the dual special case s = 1, the map is
not positive if |a| > 1, and completely positive if |a| � 1. In
other words, there is no positive but not completely positive
map (entanglement witness) of the scaling type. The results of
this section are summarized in the following theorem, and also
depicted pictorially in Fig. 1.

Theorem 1. Scaling maps �s,a are completely positive for
(s ∈ [−1,1],|a| = 1), (s = −1,|a| > 1), and (s = 1,|a| < 1).
For all other values of (s,a) the scaling maps �s,a are not even
positive.

One may apply the scaling map followed (or preceded)
by the transpose map [10] (q, p) → (q,−p), i.e., α → α∗,
on one subsystem of a bipartite state to obtain what is called
the partial scaling map in Ref. [9]. From Theorem 1 and the
invertibility of the transpose map we have that partial scaling,
with nontrivial scale parameter |a| �= 1, is not a positive map
for any s ∈ (−1, 1); for s = −1, the map is not positive if
|a| < 1, and positive but not completely positive if |a| � 1;
and for s = 1, the map is not positive if |a| > 1, and positive
but not completely positive if |a| � 1. But in both the cases s =
−1, |a| > 1 and s = 1, |a| < 1 the partial scaling map can be
shown to be weaker than the transpose map in its capacity to
witness entanglement. Further implications of Theorem 1 will
be developed in the following section.

III. SCALING MAPS FROM THE VIEWPOINT OF
CHARACTERISTIC FUNCTIONS

By Theorem 1 we thus have two families of completely
positive maps of the scaling type as detailed in Propositions 3

and 4. These bosonic Gaussian channels are traditionally
described by the transformation the Wigner characteristic
function χ0 suffers through the channel [13,16,18]. So, rewrit-
ing Eq. (6) at the level of the symmetric-ordered characteristic
function (s = 0) we have

χ0(ξ ; �s,a[ρ̂]) = χ0(aξ ; ρ̂) exp[s(a2 − 1)|ξ |2/2]. (11)

Note that we now include a = 0 in the analysis as this can
be interpreted as the constant map with a one-dimensional
trivial output space. It turns out that working at the level
of the symmetric-ordered characteristic functions helps to
identify the reason the scaling maps fail to be positive in the
corresponding parameter ranges. It is useful to introduce what
we call the classical noise map given by B2(b),b ∈ R with its
action at the level of the characteristic function given by

B2(b) : χ0(ξ ;B2(b)[ρ̂]) = χ0(ξ ; ρ̂) exp[−b|ξ |2/2], (12)

with the map being completely positive for b � 0 and
nonpositive for b < 0. Note that one can replace χ0 with χs

throughout in Eq. (12) to describe the map B2(b). In terms of
the classical noise map we can rewrite the scaling maps using
Eq. (11):

�s,a = B2(s(1 − a2)) ◦ �0,a. (13)

We now consider the case |a| < 1. For s = 0, we showed that
the scaling map is not positive as can be checked by the action
of the map on the vacuum state. For s < 0 we have that the
map in Eq. (11) decomposes into χ0(aξ ; ρ̂) × exp[|s|(1 − a2)
|ξ |2/2], i.e., a composition of two nonpositive maps B2( − |s|
(1 − a2)) ◦ �0,a . For the case s ∈ [0,1) we have that the map
in Eq. (11) decomposes into χ0(aξ ; ρ̂) exp[−s(1 − a2)|ξ |2/2]
which is the composition ofB2(s(1 − a2)) ◦ �0,a , a nonpositive
map and a completely positively map. However, the product
results in a nonpositive map as can be checked on the vacuum
state. In other words, the Gaussian noise term is not sufficient
to compensate for the scaling of the characteristic function.
The situation changes abruptly, however, for the case s = 1
when the entire map now corresponds to a completely positive
map as given in Proposition 4.

Similarly, for the case |a| > 1 we have that for s >

0 Eq. (11) reduces to B2( − s(a2 − 1)) ◦ �0,a , both being
nonpositive maps. For the case s ∈ (−1,0] the transformation
in Eq. (11) can be viewed as a product of maps corresponding
to B2(|s|(a2 − 1)) ◦ �0,a , which is a product of a nonpositive
map and a completely positive map. However, the combined
map is nonpositive due to Theorem 1. Similar to the earlier
case we have that at s = −1 there is an abrupt transition into
a completely positive map as detailed in Proposition 3.

So we have presented a complete description of the de-
composition of the scaling maps at the level of the symmetric-
ordered characteristic function. This brings out in a transparent
manner the way in which the scaling maps fail to be positive in
the corresponding s − a parameter space and this is depicted
in Fig. 2.

Amplification and attenuation maps below complete
positivity threshold

The attenuation map is defined as C1(a; b) := B2(b) ◦
�0,a, |a| < 1,b > 0. It is well known that the attenuation map

022114-3



IVAN, SABAPATHY, AND SIMON PHYSICAL REVIEW A 96, 022114 (2017)

FIG. 2. Phase diagram for the scaling maps �s,a with respect to positivity in the a − s parameter space with s ∈ [−1,1] and a ∈ R. The
scaling maps corresponding to bold lines (step shape) are completely positive. The solid line at s = −1 (|a| > 1) corresponds to scaling maps
that induce the scaling of the Q function and the one at s = 1 (|a| < 1) to that of the P function, which are the quantum-limited amplifier
and attenuation channels, respectively. The dotted bold lines at a = ±1 correspond to unitary maps. For the rest of the parameter space the
corresponding scaling maps are nonpositive (regions 1–4). The specific reason for the failure of these maps to be positive is made transparent
through its decomposition into maps that are nonpositive (NP) and completely positive (CP) (the additive Gaussian classical noise channel).
However, even with composition of a nonpositive map with a completely positive map in regions 2 and 4, the CP map is not sufficient to render
the whole scaling map positive. Finally, the line a = 0 corresponds to the pinch or constant map. Except for (a = 0, s = 1) which corresponds
to constant output of the vacuum state (marked with a “×”), the rest of the line is nonpositive. The symmetry about the s axis is due to the fact
that one can go from a to −a by a unitary operation that preserves all the positivity properties.

is completely positive for b � 1 − a2 [13,14], entanglement
breaking for b � 1 + a2 [15], and nonclassicality breaking
for b � 1 + a2 [16,20,24,25]. Similarly the amplification
map is defined as C2(a; b) := B2(b) ◦ �0,a,|a| > 1,b > 0. It
is known in literature that the amplification map is completely
positive for b � a2 − 1 [13,14], entanglement breaking for
b � 1 + a2 [15], and nonclassicality breaking for b � 1 + a2

[16,20,24,25]. The importance of these two classes of maps
arises, among other things, from the fact that every noisy
amplifier or attenuator channel can be realized as a product
of two noiseless (quantum-limited) channels that have been
proved to be extremal [16,21], with one channel chosen from
either of these two classes [16,19].

Using the analysis in the preceding section, we can now
complete the property of the attenuation and amplification
maps for noise parameter b when it is below the complete
positivity threshold. We state it in the form of two theorems
with respect to the amplification and attenuation maps and this
is also depicted in Figs. 3 and 4, respectively.

Theorem 2. The amplification map C2(a; b),|a| � 1,b �
0 is nonpositive for b < a2 − 1, completely positive for
b � a2 − 1, and entanglement breaking and simultaneously
nonclassicality breaking for b � 1 + a2.

Theorem 3. The attenuation map C1(a; b),|a| � 1,b � 0
is nonpositive for b < 1 − a2, completely positive for b �

1 − a2, and entanglement breaking and simultaneously non-
classicality breaking for b � 1 + a2.

The two Gaussian families of noiseless attenuation and
amplification channels are mutually dual in multiple ways:
(i) they are naturally described as uniform scaling on the dual
pair of quasiprobabilities Q,P ; (ii) the physically allowed

FIG. 3. Phase diagram for the amplification map C2(κ,b). For a
given κ (|κ| > 1); the map is nonpositive for b < κ2 − 1, completely
positive for b � κ2 − 1, and entanglement breaking (EB) as well
as nonclassicality breaking (NB) for b � 1 + κ2. In a sense, phase
transitions occur at b = κ2 − 1 (labeled as I) and at b = 1 + κ2

(labeled as II).
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FIG. 4. Phase diagram for the attenuation map C1(κ,b). For a
given κ (|κ| < 1), the map is nonpositive for b < 1 − κ2, completely
positive for b � 1 − κ2, and entanglement breaking as well as
nonclassicality breaking for b � 1 + κ2. In a sense, phase transitions
occur at b = 1 − κ2 (labeled as I) and at b = 1 + κ2 (labeled as II).

ranges for the scale parameter are mutually reciprocal; and
(iii) the Kraus operators of the two families are mutually dual,
being simply related by Hermitian conjugation.

IV. DISCUSSION

We have presented a definitive analysis of uniform phase
space scaling maps �s,a with regard to positivity and sum-
marized the result compactly in Fig. 2 resembling a phase
diagram. We find that apart from a measure-zero set of points
in the a − s parameter space where the maps are completely
positive, the scaling maps are nonpositive. There are no scaling
maps of the positive but not completely positive type, and thus
cannot be used as an entanglement witness. These properties
were obtained by studying the induced action of the scaling
maps at the level of s-ordered quasiprobabilities and a certain
duality we established among the scaling maps.

As an almost unintended fallout, we also studied the
behavior of the amplification and attenuation maps with
respect to their classical Gaussian noise parameter taken below
the complete positivity threshold. For this purpose, it was
useful to view the scaling maps from their induced action
at the level of the characteristic functions. Our main finding
is that below the complete positivity threshold, the attenuation
and amplification maps are nonpositive. As noted earlier, this
dual pair of noiseless amplifier and attenuator channels are of
fundamental importance due to their practical relevance as in
modeling fiber optical communication. A natural question that
follows is the behavior of other single-mode Gaussian channels
below their corresponding complete positivity or quantum-
limited noise threshold. The extension to the multimode case
is entirely open.

It may be seen that nothing more interesting can be
achieved by replacing the uniform scaling by a more general
scaling matrix K acting on the vector (q,p)T . For every
nonsingular 2 × 2 matrix K , there exist symplectic matrices
S1,S2 ∈ Sp(2,R) such that

S1KS2 = a11 or aσ3 (14)

according as det K is positive or negative. This simply corre-
sponds to pre- and postprocessing the given uniform scaling
map by unitary (metaplectic) transformations U (S1),U (S2),

corresponding to symplectic matrices S1,S2. But unitary
processes do not alter the positivity properties of the
map.

There is currently considerable interest in non-Gaussian
states as potentially advantageous resources in quantum
information processing tasks [17,31–40] and one measure of
non-Gaussianity based on the departure of the Q distribution
of a given state from the closest Gaussian was proposed in
[41]. The measure has the property that a Fock state |m〉
and the m-photon added thermal state [42] possess the same
value of non-Gaussianity for every m, since their respective Q

functions are related by a uniform scaling of the phase space
variables [41] that preserves the shape of the distribution (the
temperature being a monotone function of the scale param-
eter). There are also other possible applications of scaling
maps such as to the study of nonclassicality of optical fields
like in [43].

We conclude with a remark on Ref. [9] with respect to
scaling of the Planck constant, already referred to in the
Introduction. That uniform scaling of the Wigner distribution
corresponds to scaling of the Planck constant, h̄ → h̄′ = a2h̄

[44], is true: one can define Wigner distributions for any chosen
numerical value of the Planck constant. Let �h̄ denote the
convex set of Wigner distributions corresponding to a chosen
numerical value of the Planck constant h̄. Now, expecting
the scaling map to be a positive map is to expect that the
union �(h̄1) ∪ �(h̄2) of �(h̄1) and �(h̄2) is also a valid set
of Wigner distribution. Indeed, this expectation extends to
the convex hull of �(h̄1) ∪ �(h̄2), but its untenability can be
settled without going that far. Let h̄(1) be the larger of h̄1,h̄2.
Let Wh̄1 (q,p; |1〉〈1|) be the Wigner distribution of the first
excited state corresponding to Planck constant h̄1, and let
Wh̄2 (q,p; |0〉〈0|) be that of the ground state corresponding to
h̄2. Since Wh̄1 (q,p; |1〉〈1|) is negative over a circle around the
origin of area proportional to h̄1, and since Wh̄2 (q,p; |0〉〈0|)
centered at the origin is narrower than Wh̄1 (q,p; |1〉〈1|), it is
clear that

∫
dq dp Wh̄1 (q,p; |1〉〈1|) Wh̄2 (q,p; |0〉〈0|) < 0. (15)

This shows that while any numerical value of Planck con-
stant is acceptable, two distinct values of Planck’s con-
stant cannot coexist in the Wigner scheme of things. In
a sense, it is fortunate that the Wigner scheme protects
itself against a perhaps awkward question of the following
type : if W (q,p; ρ̂) = λW1(q,p; ρ̂) + (1 − λ)W2(q,p; ρ̂),0 <

λ < 1 with Wj (q,p; ρ̂) ∈ �(h̄j ) is a Wigner distribution, to
what numerical value of h̄ would W (q,p; ρ̂) correspond
to?
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