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Exceptional points and symmetry recovery in a two-state system
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We consider a two-state system consisting of a pair of coupled ferromagnetic waveguides. A monotonically
increasing bias magnetic field can dynamically manipulate the system to enter a P T -symmetry-broken phase and
then reenter a symmetric phase. The symmetry recovery is enabled by the presence of accidental degeneracy points
when the system has no loss and each degeneracy point can spawn a pair of exceptional points when asymmetric
loss is introduced. We performed microwave experiments to demonstrate the presence of the exceptional point
and symmetry recovery.
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I. INTRODUCTION

Non-Hermitian systems can possess real eigenvalues if their
complex potential has parity-time (P T ) symmetry [1]. The
system undergoes a transition at an exceptional point (EP)
when the degree of non-Hermiticity is increased [2–4], after
which the real parts of the eigenvalues coalesce while the
imaginary parts bifurcate. In optics, P T symmetry can be
realized if the system possesses the symmetry ε(x) = ε∗(−x)
and μ(x) = μ∗(−x) [5]. Although it is difficult to realize
optical gain experimentally, EPs can also be found in passive
non-Hermitian systems with asymmetric loss, which can
be viewed as P T -symmetric systems with a background of
uniform loss [6]. The unique physics of EPs has given rise to
many interesting phenomena and applications such as unusual
beam dynamics [7,8], lasing effects [9–12], unidirectional
transmissions [13,14], asymmetric mode switching [15], and
others [16–23]. Exceptional points are typically manipulated
by tuning gain and loss. When gain and loss are increased
relative to coupling strength, there is only one EP for a
two-state linear system and the P T -symmetric state cannot be
recovered once the system has entered the symmetry-broken
phase. However, the system can reenter the P T -symmetric
phase if the system has more than two states [21,24,25] or if
the system is nonlinear [26,27].

In this work we report the experimental observation of an EP
and a subsequent symmetry recovery in a two-state system by
tuning an external parameter adiabatically. We first investigate
a P T -symmetric coupled ferromagnetic waveguide system in
the presence of a bias magnetic field. The system possesses
multiple degeneracy points (DPs), which are diabolical points
due to the absence of mode couplings at specific field strengths.
Each DP becomes a pair of EPs when gain and loss are
introduced. As a result, the system carries multiple EPs and
exhibits symmetry-recovery behaviors in a dynamical process
when the external field is tuned. Using a pair of waveguides,
we experimentally demonstrate the presence of a pair of
EPs originating from a single DP at microwave frequencies.
Experimental measurements on the transmission spectra and
field distributions clearly demonstrate the presence of the EP
as well as symmetry recovery.
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II. THEORETICAL DESIGN

We start by showing the physical mechanism underlying the
presence of multiple EPs for a two-state system. Figure 1(a)
illustrates the P T -symmetric coupled ferromagnetic waveg-
uide system with balanced gain and loss (ε1 = 12.3–iγ and
ε2 = 12.3 + iγ ). Static magnetic fields are applied to the two
waveguides along opposite directions, inducing a diagonal
term μb and off-diagonal terms ±iχ of the permeability
tensors [28]. The background material is assumed to have
ε3 = 12 and μ3 = 1. For the sake of simplicity, we first set
μb = 1, which does not affect the underlying physics. We
calculate the dispersions of the weakly guided modes in this
paraxial waveguide system without gain and loss (γ = 0) using
COMSOL [29]. Figure 1(b) shows the effective mode index,
defined as neff = βz/k0, with βz and k0 denoting the mode
propagation constant and vacuum wave number, respectively,
for the fourth pair of symmetric and antisymmetric modes as
a function of χ (solid lines). Here χ depends on the external
magnetic field, as will be stipulated later. For comparison, we
show the dispersion of the fourth mode in a single waveg-
uide (dashed line), which crosses the coupled symmetric-
antisymmetric modes at two DPs. The mode degeneracy
phenomenon has been reported in ferromagnetic waveguides
in the presence of an external magnetic field due to the
absence of mode couplings [30]. To substantiate this point, we
define a mode-coupling coefficient η = ∫∫

(E1D∗
2 + H1B∗

2)dσ

to represent the coupling strength between the two waveguides,
where the subscript j corresponds to the uncoupled eigenfield
in the system with only waveguide j . Figure 1(c) shows
the coupling coefficient between the uncoupled fourth set of
modes. We find two regions with vanishing coupling strengths
that match well with the two DPs in Fig. 1(b). The absence of
mode couplings in this system can be attributed to the mode
symmetry transition induced by the transverse bias magnetic
fields from linear polarization to elliptical polarization (see
Appendix A for a detailed discussion on the origin of the DPs
as well as the behaviors of other order modes).

The coupled waveguide system without gain and loss can be
described by a Hamiltonian of the form H = [β0 κ

κ∗ β0
], where

β0 is the propagation constant of an uncoupled mode in the
single waveguide and κ denotes the couplings between the two
uncoupled modes. We use the numerical results in Fig. 1(b)
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FIG. 1. (a) Schematic diagram of the coupled ferromagnetic waveguide system with bias magnetic fields applied along opposite directions.
(b) Calculated effective mode index of the fourth pair of modes in the coupled system (solid lines) and that of the fourth mode in a single
waveguide (dashed line) as a function of χ with γ = 0, where we find two degeneracy points. (c) Calculated mode-coupling coefficient |η|
(see the text for definition).

to fit κ as a function of χ . Figure 2(a) plots the fitted curve
(solid line), showing that κ displays a similar dependence
on χ as the coupling coefficient η in Fig. 1(c). In fact, κ

and η are calculated based on the eigenvalues and eigenfields,
respectively, and they both support the finding of DPs in the
proposed system. We then introduce gain and loss into the
system. We show three cases of gain and loss (γ = 3×10−4,
4.9×10−4, and 2×10−3) in Figs. 2(b)–2(d), respectively, where
the effective mode index becomes complex. A P T -broken
phase emerges at an EP when the gain or loss parameter
becomes larger than the coupling. As the coupling is vanishing
at the DPs, we expect that even a very small γ can give rise
to EPs. This is indeed the case, as shown in Fig. 2(b), where
a small γ = 3×10−4 is sufficient to turn each DP into a pair

of EPs. For ordinary two-level systems, there is only one EP
and the P T symmetry of eigenmodes remains broken beyond
the EP. However, as χ increases, our system first enters a
P T -broken phase but reenters a P T -symmetric phase before
becoming P T -broken again. P T -symmetry recovery has been
reported in multistate systems [21,24,25], but it occurs here in
a two-state system. When the gain or loss reaches a particular
threshold (γ = 4.9×10−4), the right-hand EP of the left bubble
and the left-hand EP of the right bubble merge to form one EP,
as shown in Fig. 2(c). Increasing γ further, the two P T -broken
phase regions merge into one so that the broken-symmetry
regime broadens [Fig. 2(d)]. To better understand the variation
of the eigenmode behaviors, we plot the calculated magnitude
of the imaginary part of the propagation constant (defined

FIG. 2. (a) Coupling parameter κ (solid line) obtained through fitting for the fourth pair of modes in the system without gain and loss.
The dashed lines show the calculated imaginary part of the effective mode index of the fourth mode in a single waveguide with gain and
loss corresponding to those in (b)–(d). (b)–(d) Calculated effective mode index of the fourth pair of modes with different gain and loss:
(b) γ = 3×10−4, (c) γ = 4.9×10−4, and (d) γ = 2×10−3. We find multiple EPs and symmetry recovery behaviors. The inset of (b) shows Hy

eigenfield distributions at different χ , showing features typical of P T -symmetric and P T -broken regions.
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FIG. 3. (a) Schematic diagram of a passive coupled YIG waveguide system with microwave absorbers attached to the side of one waveguide.
(b) Calculated effective mode index as a function of the bias magnetic field, in which we find the salient feature of an EP as well as symmetry
recovery. The inset of the upper panel shows the results for the lossless coupled system, where a DP appears and can spawn a pair of EPs when
an absorber is added. The inset of the lower panel (see the six colored patterns) shows the power flow distributions on the x-y plane at different
bias magnetic fields. (c) Numerically simulated transmission spectra as a function of the magnetic field for L = 200 and 400 mm, where a
region with enhanced transmission can be found that matches well with the broken phase region predicted in (b). The peaks correspond to
Fabry-Pérot resonances. (d) Power flow distributions in the coupled system with L = 400 mm for different magnetic fields marked as (i)–(iv)
in (c). The field patterns in (iii) and (iv) have been scaled up by a factor of 2 for improved readability. The frequency is 9.5 GHz in all of these
simulations.

as βr ± iβi) in a single waveguide for the above three cases
of gain and loss in Fig. 2(a) (see the dashed lines). We
see that the regimes corresponding to |κ| < βi match well
with the numerically obtained P T -broken phase regimes in
Figs. 2(b)–2(d).

In fact, a system with asymmetric losses (rather than exact
P T symmetry) already exhibits the aforementioned effects. We
design a non-Hermitian passive system consisting of a pair
of yttrium iron garnet (YIG) dielectric waveguides placed in
air working at microwave frequencies. Microwave absorbers
are attached to the side of YIG waveguide 2 [red region in
Fig. 3(a)] to introduce asymmetric losses into the system,
given that the intrinsic dielectric loss of YIG is negligible. We
apply a bias magnetic field along the −x axis. The eigenfield
distributions move towards the +y interface due to the field
displacement effect when the transverse bias magnetic field is
perpendicular to the rf magnetic field [28]. Exceptional points
and symmetry recovery can also appear in this configuration
due to the field-induced variation of mode couplings. We
first theoretically analyze the eigenmodes supported in this
system. The permeability tensor of YIG is modeled with
μb = 1 + ωmω0/(ω2

0 − ω2) and χ = ωmω/(ω2
0 − ω2), where

ω0 = μ0γRH0 is determined by the gyromagnetic ratio γR and
bias magnetic field H0 and ωm = μ0γRM is determined by
the magnetization M , which is measured experimentally as
shown in Fig. 4(a). Here permeability losses can be ignored
because the system works far away from the gyromagnetic
resonance. Figure 3(b) shows the calculated effective mode

index of the coupled YIG waveguides at 9.5 GHz as a function
of the bias magnetic field. In the simulation, the permittivity
of YIG and the microwave absorber are chosen as ∼15.2 [31]
and ∼4 + 15i [see Fig. 4(b)], respectively. Given the structure
parameters [see Fig. 3(a)] and frequency (∼ 9.5 GHz), the
coupled system supports only two eigenmodes, indicating
that each waveguide is in fact operating at the single-mode
condition. We find a region (0.02–0.16 T) where the real parts
of the two modes almost coalesce while the corresponding
imaginary parts first repel and then attract each other again.
This is a typical feature of an EP associated with the symmetry
recovery. The inset of Fig. 3(b) shows the presence of a
DP when the microwave absorber is removed. This DP
spawns a pair of EPs when asymmetric losses are introduced
and symmetry recovery naturally arises. The power flow
distributions of the eigenmodes are also shown in the inset

FIG. 4. (a) Measured hysteresis loop of YIG. (b) Measured
permittivity of the microwave absorber.
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FIG. 5. (a) Schematic diagram of a YIG coupled waveguide
system in which the width of waveguide 2 is denoted by W .
(b) Calculated effective mode index at 9.5 GHz as a function of
the bias magnetic field with W = 8.014 mm, where the EP can be
accessed at 0.019 T. (c) Items shown are the same as in (b) but with
W = 7.704 mm, where the symmetry recovery point can be accessed
at 0.162 T.

of Fig. 3(b), where the field displacement effect can be found.
The symmetry of the eigenmode (P T symmetric or broken) is
also evident.

In Fig. 3(b) we note that the real and imaginary parts are
separated in the broken and/or symmetric phase region. This is
due to the mode detuning induced by the broken symmetry of
the two waveguides, i.e., only one waveguide is attached with
the microwave absorber. In other words, the system is very
close to the “exact” EP and symmetry recovery point. We show
that the EPs can be accessed if we slightly tune a parameter of
the system such as the width of YIG waveguide 2. The studied
system is shown in Fig. 5(a), where W denotes the width
of YIG waveguide 2 and the other parameters are the same
as those in Fig. 3(a). It turns out that the EP and symmetry-
recovery point can be accessed with W = 8.014 and 7.704 mm,
as shown in Fig. 5(b) and 5(c), respectively. Although the EPs
can never be accessed in experiments, creating a system that
is very close to the EPs as we show in this work is sufficient
to study the physics and consequences of EPs.

III. EXPERIMENTAL REALIZATIONS

We performed microwave experiments to implement the
theoretical design. A photograph of the experimental setup
is shown in Fig. 6(a), where a pair of YIG waveguides

FIG. 6. (a) Photograph of the coupled YIG waveguide system placed inside a vibrating sample magnetometer. Microwave absorbers are
attached on the side of one waveguide. Each waveguide measures 8×4×200 mm3 and the gap distance is 0.5 mm. (b) Experimentally measured
transmission spectra for different magnetic-field strengths and frequencies, where the black dashed line shows the calculated DPs. The modes
are cut off in the region below the white dashed line. (c) and (d) Experimentally measured surface electric-field intensity along the propagation
direction [see (a) for the definition of z axis] at 9.5 GHz for (c) waveguide 1 and (d) waveguide 2. The two gray dashed lines mark the boundary
between symmetric phase and broken phase regimes.
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(8×4×200 mm3) with a gap of ∼0.5 mm are placed inside
a vibrating sample magnetometer, which can provide a
quasiuniform bias magnetic field along the −x axis in the
area of interest (see Appendix B for a discussion of the
uniformity of the bias field). The transmission spectra of
the system were measured to identify the EP as well as
the symmetry-recovery behavior, since the transmission is
enhanced in the broken phase region [6]. We placed an antenna
near the surface of the lossy waveguide, which breaks the
symmetry so that the two eigenmodes in the system can
both be excited sufficiently. Another antenna was used on the
other side of the system to receive the transmission power.
Both antennas were connected to the cable of an Agilent
Technologies 8720ES Network Analyzer for measuring the
transmission spectra. The measured transmission spectra for
different magnetic-field strengths and frequencies are plotted
in Fig. 6(b). We observe that for each frequency there is a
considerable transmission enhancement at some specific bias
fields. The enhanced transmission regime corresponds to the
symmetry-broken phase, in which the wave can travel a longer
distance in the waveguide without the absorber. For example,
we observe enhanced transmission at 9.5 GHz mainly between
0.02 and 0.16 T, which matches well with the broken phase
region predicted in Fig. 3(b). This enhanced region shifts to
higher external fields at lower frequencies, which is due to the
shift of the DPs in the lossless system. The black dashed line
in Fig. 6(b) marks the calculated DPs, which lies almost at the
center of the experimental broken phase region, indicating that
the EPs are indeed spawned from the DPs.

To investigate the underlying physics, we measured the
electric-field intensity on the surface of each waveguide along
the waveguiding direction [see the z axis in Fig. 6(a)]. The
experimental results at 9.5 GHz for different bias fields are
shown in Figs. 6(c) and 6(d), respectively, for waveguide 1
and waveguide 2. The transmission enhancement regime at
9.5 GHz estimated from Fig. 6(b) is marked by the two gray
dashed lines, which divide the regime into two symmetric
phases and one broken phase. In the symmetric phase regime,
both the symmetric and antisymmetric modes experience
considerable losses, meaning that the electric-field intensity
decays exponentially along the direction of propagation in
both waveguide 1 [Fig. 6(c)] and waveguide 2 [Fig. 6(d)]. In the
broken phase region, however, the two eigenmodes propagate
individually in the two waveguides [see the power flow patterns
in the inset of Fig. 3(b)]. As a result, the wave in waveguide
1 can travel a longer distance since the mode losses are
small [Fig. 6(c)], while the wave in waveguide 2 experiences
high losses because of the attached absorber [Fig. 6(d)]. The
transmission of the whole system is then increased as a result of
the longer transport distance in the lossless waveguide 1. The
high contrast of the field distributions in the two waveguides
strongly demonstrates the presence of the symmetric phase
and broken phase.

We show numerical simulation results to support the above
experimental results. To calculate the transmission spectra,
we place a line current source [white lines in Fig. 3(d)]
near the edge of the lossy waveguide to mimic the antenna
in experiments. The power flow Sz at the output surface
is integrated to provide the transmission. The calculated
transmission spectrum of the system at 9.5 GHz with a length

of 200 mm, which can reproduce the salient features observed
in experiments, is shown in Fig. 3(c). The transmission exhibits
an oscillating behavior in both experiments and simulations
due to the Fabry-Pérot resonance associated with the change
in effective mode index under the variation of the bias magnetic
field for a waveguide of a finite length. A further increase in the
waveguide length to 400 mm in the simulation can double the
resonant peak number [see Fig. 3(c)], confirming the presence
of the Fabry-Pérot effect. We show in Fig. 3(d) the calculated
power flow distributions for four cases marked (i)–(iv) in
Fig. 3(c) to show the mode behaviors in the symmetric
phase regime [(i) and (iv)] and broken phase regime [(ii)
and (iii)]. The simulated field distributions coincide with the
experimental results in Figs. 6(c) and 6(d). We also note from
Fig. 3(c) that after the broken phase region, the transmission
again increases when the field is greater than 0.2 T [also
see Fig. 6(b) for experiment]. This is due to the overall
decrease in mode losses [see the imaginary part in Fig. 3(b)]
as field strength increases because a stronger external field can
displace the eigenfield from the absorber [see the field patterns
in Fig. 3(b)]. A further increase in the external field drives
the two eigenmodes close to the cutoff [see the real part in
Fig. 3(b); also refer to the white dashed line in Fig. 6(b)] as
μb approaches zero [28]. As a result, the transmission shows
a sudden drop. All these numerical results are consistent with
the above experimental results, demonstrating the presence of
EPs as well as symmetry-recovery behaviors.

IV. CONTROL EXPERIMENTAL RESULTS

We show four sets of control experimental results in this
section to further support the findings in this work.

A. Control experiment I: Rotating the system by 90◦

We performed a control experiment in which the coupled
waveguide system is rotated by 90◦ taking the z axis as the
shaft. In this case the bias field is parallel to the short edge
of the YIG waveguide, as shown in Fig. 7(a) . The calculated
effective mode index as a function of the bias magnetic field
at 9.5 GHz is shown in Fig. 7(b). We find that in the field
range of interest, there is no EP-related phenomenon. This is
due to the fact that the system does not possess a DP when
the microwave absorber is absent [see the inset of Fig. 7(b)].
The measured transmission spectra at different bias magnetic
fields are shown in Fig. 7(c). These spectra look almost the
same, indicating that such a configuration really does not
support the presence of EPs. This control experiment can
further support our conclusion that the enhanced transmission
in Fig. 6(b) is due to the presence of EPs and symmetry
recovery.

B. Control experiment II: Increasing the gap distance

We performed another control experiment in which the
gap distance between the two YIG waveguides is increased to
g = 2 mm. The measured transmission spectra are shown in
Fig. 8(c), where we find that the broken phase region becomes
broader than that of the case g = 0.5 mm [see Fig. 6(b)]. To
explain this phenomenon, we calculate the effective mode
index of the lossless system at 9.5 GHz and show the results
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FIG. 7. (a) Schematic diagram of a coupled ferromagnetic waveg-
uide system with the bias magnetic field parallel to the short edge of
the waveguide. (b) Calculated effective mode index as a function of
the bias magnetic field at 9.5 GHz. The inset shows the effective
mode index in the lossless system, showing the absence of DPs.
(c) Measured transmission spectra with different bias-field strengths,
where the gray dashed line shows the result for the system without
the absorber attached.

in Fig. 8(a). We note that the position of the DP exhibits a
shift compared to the case of g = 0.5 mm. In other words, the
DP will appear at a lower bias field when the gap distance is
increased. This trend is also shown in Fig. 8(d) for different
frequencies (comparing the red line and black line). The shift
of the DP in the lossless system results in a corresponding
shift of the broken phase region in the lossy system. We plot
in Fig. 8(b) the calculated imaginary part of the effective
mode index of the lossy system. It turns out that with a
larger gap distance of 2 mm, the system with a zero-bias
field at 9.5 GHz is already in the broken phase region [also
see Fig. 8(c)]. The mode coupling becomes weaker when the
gap distance is increased. As a consequence, with the same
microwave absorber attached, the bandwidth of the broken
phase region becomes broader [see Fig. 8(b) for theoretical
results, Fig. 8(c) for experimental phenomena, and Fig. 2(a) for
interpretation].

C. Control experiment III: Removing the microwave absorber

We performed a third control experiment in which the
microwave absorber is removed, as illustrated schematically
in Fig. 9(a). Figure 9(b) shows the measured transmission
spectra of this system with different bias magnetic fields
and the results for three typical frequencies are given in
Fig. 9(c). By investigating the spectra, we do not observe the
aforementioned enhanced transmissions, indicating that the
observed transmission enhancement in Fig. 6(b) is not due to
some coupling effects between two lossless waveguides but
deeply related to the microwave absorber since EPs can only
exist in non-Hermitian systems.

FIG. 8. Calculated effective mode index as a function of the bias magnetic field in the (a) lossless system and (b) lossy system with
different gap distances at 9.5 GHz. (c) Measured transmission spectra of the system with g = 2 mm as a function of bias fields and frequencies.
(d) Calculated bias magnetic field required to reach the DP in the lossless system with g = 0.5 and 2 mm.
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FIG. 9. (a) Schematic diagram of the coupled system without the microwave absorber attached. (b) Measured transmission spectra of this
system with different bias-field strengths. (c) Measured transmission intensities as a function of the bias field for three typical frequencies.

D. Control experiment IV: Single YIG waveguide
with the microwave absorber

We performed a fourth control experiment by studying a
single YIG waveguide with the microwave absorber attached
[see Fig. 10(a)]. Figure 10(b) shows the measured transmission
spectra of this system with different bias magnetic fields. It
turns out that these spectra are almost the same, demonstrating
that the observed transmission enhancement in Fig. 6(b) is
not due to the variation of mode losses as the bias field
increases. To create an EP, at least two modes are required
in non-Hermitian systems.

V. SUMMARY

To conclude, we have shown both theoretically and
experimentally that in a two-state coupled ferromagnetic
waveguide system, EPs can be manipulated by tuning a bias
magnetic field, creating multiple EPs and symmetry-recovery
behaviors that are rarely seen in two-state systems. Compared
to conventional EP systems based on tuning gain and loss, the
tuning process in this work is both adiabatic and continuous.
This process can be employed to tune system parameters to

FIG. 10. (a) Schematic diagram of a single YIG waveguide with
the microwave absorber attached. (b) Measured transmission spectra
of this system with different bias-field strengths.

encircle an EP to manifest the topological properties of the
system [15,32,33] and may be applicable to the nonreciprocal
transport of electromagnetic waves and communications.
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APPENDIX A: ORIGIN OF THE DEGENERANCY POINTS

1. Mode analysis

We give a detailed study on the origin of the DPs. We first
consider the coupled ferromagnetic waveguide system shown
in Fig. 1(a). Under the bias magnetic fields, the permeability
tensors take the form

μ1 =
⎡
⎣ μb 0 iχ

0 1 0
−iχ 0 μb

⎤
⎦, μ2 =

⎡
⎣μb 0 −iχ

0 1 0
iχ 0 μb

⎤
⎦. (A1)

Figure 11(a) shows the calculated effective mode index of
the first four pairs of modes as a function of χ . Each pair of
modes consists of a symmetric and an antisymmetric mode
as a result of waveguide couplings. We find that multiple
DPs can be supported in the system (see the circles) due to
the absence of mode couplings at specific values of χ . To
further explore the origin of the absence of mode couplings,
we study a single ferromagnetic waveguide under a bias
magnetic field [see the inset of Fig. 11(b)] and show the
corresponding effective mode index as a function of χ in
Fig. 11(b). The variation of the eigenfield characteristics of
the single waveguide mode under a bias magnetic field should
account for the origin of DPs. To show this point, we illustrate
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FIG. 11. (a) Calculated effective mode index of the first four pairs of modes in the coupled waveguides as a function of χ . (b) Calculated
effective mode index of the first four modes in the single waveguide as a function of χ . (c) Magnetic-field distributions for the first four modes
in the single waveguide with χ = 0 and 0.2.

in Fig. 11(c) the magnetic-field distributions Hx and Hy in the
single waveguide for the first four modes with χ = 0 (upper
figures) and χ = 0.2 (lower figures). When the bias field is
absent (χ = 0), the eigenmodes are linearly polarized and
the first, second, third, and fourth modes are Ey/Hx , Ex/Hy ,
Ey/Hx , and Ex/Hy polarized, respectively. The polarization
of the eigenmodes becomes elliptical as evidenced by the
coexistence of x- and y-field components when a transverse
bias field is applied as shown by the results with χ = 0.2. Then
we see a significant change of the eigenmode characteristics,
i.e., from linear polarization to elliptical polarization upon
increasing the bias magnetic field. Since the bias magnetic
field in the two waveguides is along opposite direction, in the
above transition process the corresponding eigenfields should
change in a different way, which results in the absence of
mode couplings associated with DPs. The absence of mode

couplings at a specific value of χ = 0.0816 can be understood
from Fig. 12, where we show the field distributions of the two
uncoupled fourth set of modes, corresponding to the first DP of
the fourth pair of modes in Fig. 11(a). An integration of the two
uncoupled eigenfields via η = ∫∫

(E1D∗
2 + H1B∗

2)dσ gives a
zero coupling strength. The z component of the eigenfield is
very small and therefore is not shown here.

We can follow the same way to demonstrate the presence of
a DP in the coupled YIG waveguide system shown in Fig. 3(a).
We calculate the coupling strength and show the result in
Fig. 13(a). The vanishing coupling strength at ∼0.095 T can
account for the DP in the inset of Fig. 3(b). We further show in
Fig. 13(b) the eigenfield patterns of the two uncoupled modes
in a single YIG waveguide at this DP. The integration between
the two eigenfields via η = ∫∫

(E1D∗
2 + H1B∗

2)dσ is exactly
zero at this point.

FIG. 12. Eigenfield patterns of the two uncoupled fourth set of modes in a single waveguide with χ = 0.0816. At the same value, a DP
appears between the fourth pair of modes in the coupled waveguides. The integration of the field patterns gives a zero coupling strength.
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FIG. 13. (a) Coupling coefficient between the two uncoupled fundamental modes in the coupled system shown in Fig. 3(a). The frequency is
9.5 GHz. (b) Eigenfield patterns of the two uncoupled modes in a single YIG waveguide with a bias magnetic field of ∼0.095 T, corresponding
to the case of the DP in (a).

2. Slab model

We apply a simple slab model to investigate the mode
behavior when a bias magnetic field is applied. Consider a
ferromagnetic slab (εr ,μr ) with air on either side of the slab
boundary. The two boundaries are parallel to the z-x plane and

the guided mode is propagating along the z axis. We apply a
bias magnetic field along the y axis. Assuming ∂/∂z = iβ and
applying ∂/∂x = 0, where β is the mode propagation constant,
the Maxwell equations read

⎧⎨
⎩

iβEx = iωμ0Hy iβHx = −iωε0εrEy
∂Ex

∂y
= −ωμ0χHx − iωμ0μbHz

∂Hx

∂y
= iωε0εrEz

iβHy − ∂Hz

∂y
= iωε0εrEx iβEy − ∂Ez

∂y
= −iωμ0μbHx + ωμ0χHz

⎫⎬
⎭. (A2)

We find that when the bias field is absent (μb = 1 and
χ = 0), there are two types of solutions, i.e., the TE modes
(Ex , Hy , and Hz) and TM modes (Hx , Ey , and Ez). In the
presence of the bias field (χ �= 0), the TE modes and TM
modes are coupled via χ so that the eigenmodes acquire all
the field components (Ex , Ey , Ez, Hx , Hy , and Hz). That is
the reason why we find in Fig. 11 that all the field components
emerge at χ = 0.2.

After some derivations of Eq. (A2), we have the equation
for Ex :

∂4Ex

∂y4
+ [2ω2μ0μbε0εr − (1 + μb)β2]

∂2Ex

∂y2

+
(

ω2μ0μbε0εr − β2 − ω2μ0ε0εr

χ2

μb

)

× (ω2μ0μbε0εr − μbβ
2)Ex = 0. (A3)

We simply set μb = 1 and define ζ = ω2μ0ε0εr − β2 and
ξ = ω2μ0ε0εrχ

2. Then Eq. (A3) becomes ∂4Ex

∂y4 + 2ζ ∂2Ex

∂y2 +
ζ (ζ − ξ )Ex = 0. The y dependence of Ex should take the
form

Ex = A exp(iα1y) + B exp(iα2y) + C exp(−iα1y)

+D exp(−iα2y), (A4)

where we have defined α1,2 =
√

ζ ± √
ζ ξ and A, B, C, and

D are coefficients to be determined. There are two k, i.e.,
α1 and α2, coexisting in the ferromagnetic layer due to the
nonreciprocity induced by the bias magnetic field, whereas
in a reciprocal system the two k should be degenerate.
The difference between α1 and α2 depends on χ and their
interference determines the eigenfields in the waveguide. We
then find in Fig. 11 that there are more standing waves along
the y direction when the bias field is applied.

FIG. 14. (a) Nonuniformity of the bias magnetic field acting on
the system. (b) Calculated transmission spectra with uniform and
nonuniform bias fields.
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APPENDIX B: NONUNIFORMITY
OF THE BIAS FIELDS

The external magnetic field acting on the coupled waveg-
uide system with a length of 200 mm is actually not uniform,
but we show in this appendix that this slight nonuniformity
will not affect the phenomena expected in experiments.
Figure 14(a) shows the measured bias magnetic fields at

different positions (circles), which are fitted with the solid line
for numerical simulations. We then calculate the transmission
spectrum at 9.5 GHz with this nonuniformity taken into
account in Fig. 14(b), where the result with a uniform bias
magnetic field is also given for reference. It turns out that
there is only a slight shift of the transmission spectrum if the
bias magnetic field is nonuniform, but all the physics discussed
in this work remains the same.
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