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Weak measurements, quantum-state collapse, and the Born rule
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Projective measurement is used as a fundamental axiom in quantum mechanics, even though it is discontinuous
and cannot predict which measured operator eigenstate will be observed in which experimental run. The
probabilistic Born rule gives it an ensemble interpretation, predicting proportions of various outcomes over
many experimental runs. Understanding gradual weak measurements requires replacing this scenario with a
dynamical evolution equation for the collapse of the quantum state in individual experimental runs. We revisit the
quantum trajectory framework that models quantum measurement as a continuous nonlinear stochastic process.
We describe the ensemble of quantum trajectories as noise fluctuations on top of geodesics that attract the quantum
state towards the measured operator eigenstates. In this effective theory framework for the ensemble of quantum
trajectories, the measurement interaction can be specific to each system-apparatus pair, a context necessary for
understanding weak measurements. Also in this framework, the constraint to reproduce projective measurement
as per the Born rule in the appropriate limit requires that the magnitudes of the noise and the attraction are
precisely related, in a manner reminiscent of the fluctuation-dissipation relation. This relation implies that both
the noise and the attraction have a common origin in the underlying measurement interaction between the system
and the apparatus. We analyze the quantum trajectory ensemble for the scenarios of quantum diffusion and
binary quantum jump, and show that the ensemble distribution is completely determined in terms of a single
evolution parameter. This trajectory ensemble distribution can be tested in weak measurement experiments. We
also comment on how the required noise may arise in the measuring apparatus.

DOI: 10.1103/PhysRevA.96.022108

I. BACKGROUND

The axiomatic formulation of quantum mechanics has two
distinct dynamical mechanisms for evolving a state. One is
unitary evolution, specified by the Schrödinger equation

i
d

dt
|ψ〉 = H |ψ〉, i

d

dt
ρ = [H,ρ]. (1)

It is continuous, reversible, and deterministic. The other is the
von Neumann projective measurement, which gives one of the
eigenvalues of the measured observable as the measurement
outcome and collapses the state to the corresponding eigenvec-
tor. With Pi denoting the projection operator for the eigenstate
|i〉,

|ψ〉 −→ Pi |ψ〉/|Pi |ψ〉|, (2)

Pi = P
†
i , PiPj = Piδij ,

∑
i

Pi = I. (3)

This change is discontinuous, irreversible, and probabilistic in
the choice of “i.” It is consistent on repetition, i.e., a second
measurement of the same observable on the same system gives
the same result as the first one.

Both these evolutions, not withstanding their dissimilar
properties, take pure states to pure states. They have been
experimentally verified so well that they are accepted as basic
axioms in the theoretical formulation of quantum mechanics.
Nonetheless, the formulation misses something: While the
complete set of orthogonal projection operators {Pi} is fixed by
the measured observable, only one “i” occurs in a particular
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experimental run, and there is no prediction for which “i” that
would be.

What appears instead in the formulation is the probabilis-
tic Born rule, requiring an ensemble interpretation for the
outcomes. Measurement of an observable on a collection of
identically prepared quantum states gives

prob(i) = 〈ψ |Pi |ψ〉 = Tr(Piρ), ρ −→
∑

i

PiρPi. (4)

This rule evolves pure states to mixed states. All predicted
quantities are expectation values obtained as averages over
many experimental runs. The mixed state also necessitates a
density matrix description, instead of a ray in the Hilbert space
description for a pure state.

A. Environmental decoherence

Over the years, many attempts have been made to combine
the two distinct quantum evolution rules in a single framework.
Although the problem of which “i” will occur in which
experimental run has remained unsolved, understanding of
the “ensemble evolution” of a quantum system has been
achieved in the framework of environmental decoherence. This
framework assumes that both the system and its environment
(which includes the measuring apparatus) are governed by
the same set of basic quantum rules. The essential difference
between the system and the environment is that the degrees
of freedom of the system are observed while those of the
environment are not. Consequently, all the unobserved degrees
of freedom need to be “summed over” to determine how the
remaining observed degrees of freedom evolve.

Interactions between the system and its environment, with
a unitary evolution for the whole universe, entangles the
observed system degrees of freedom with the unobserved envi-
ronmental degrees of freedom. The extent of this entanglement
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can be controlled somewhat by designing experiments where
the system mostly interacts with the measuring apparatus and
has little direct interaction with the rest of the environment.
When the unobserved degrees of freedom are summed over,
a pure but entangled state for the whole universe reduces to a
mixed density matrix for the system:

|ψ〉SE −→ USE |ψ〉SE, ρS = TrE(ρSE), ρ2
S �= ρS. (5)

In general, the evolution of a reduced density matrix is linear,
Hermiticity preserving, trace preserving, and positive, but not
unitary. Such a superoperator evolution can be expressed in
the Kraus decomposition form

ρS −→
∑

μ

MμρSM
†
μ,

Mμ = E〈μ|USE |0〉E,
∑

μ

M†
μMμ = I, (6)

using a complete basis for the environment {|μ〉E}. Since
the reduced density matrix has the same structure as the
probabilistic ensemble of classical statistical mechanics, it
can be described in the same language. But, a “quantum
jump” mechanism is still needed to explain how an entangled
system-environment state collapses to an unentangled system
eigenstate in every single experimental run.

Generically, the environment has a much larger number of
degrees of freedom than the system. Then, in the Markovian
approximation which assumes that information leaked from
the system does not return, the evolution of the reduced density
matrix for the system can be expressed by the Lindblad master
equation [1,2]

d

dt
ρS = i[ρS,H ] +

∑
μ

L[Lμ]ρS, (7)

L[Lμ]ρS = LμρSL
†
μ − 1

2
ρSL

†
μLμ − 1

2
L†

μLμρS. (8)

The terms on the right-hand side involving sum over μ

modify the unitary Schrödinger evolution, while Tr(dρS/

dt) = 0 preserves the total probability. When H = 0, the
fixed point of the evolution is a diagonal ρS , in the basis that
diagonalizes {Lμ}. This preferred basis is determined by the
system-environment interaction. (When there is no diagonal
basis for {Lμ}, the evolution leads to equipartition, i.e., ρS ∝
I .) Furthermore, the off-diagonal elements of ρS decay, due
to destructive interference among environmental contributions
with varying phases (arising from a large number of random
elastic scattering events), which is known as decoherence.

This modification of a quantum system’s evolution, due
to its interaction with the unobserved environmental degrees
of freedom, provides a proper ensemble description, and a
quantitative understanding of how the off-diagonal elements
of ρS decay [3,4]. Still, the “measurement problem” is not fully
solved until we find the quantum jump process that can predict
outcomes of individual experimental runs, and that forces us
to go beyond the dynamics of Eq. (1).

B. Continuous stochastic measurement

The von Neumann interaction is usually taken to be the
first step of the measurement process. It is continuous and

deterministic, and creates perfectly entangled “Schrödinger
cat” states between the measurement eigenstates of the system
and the pointer states of the apparatus (which is part of the
system’s environment):

|ψ〉S =
∑

i

ci |i〉S, |ψ〉S |0〉E −→
∑

i

ci |i〉S |ĩ〉E. (9)

To complete the measurement process, it needs to be sup-
plemented by the probabilistic quantum jump that selects a
particular |i〉 and collapses the reduced ρS to a projection
operator. Although the physical mechanism behind quantum
jump is not understood, it is common to attribute quantum
jump to interactions of a system with its surroundings.
With this postulate, we can define which system-environment
interactions are measurement interactions: a measurement
interaction is the one in which the apparatus does not remain,
for whatever reasons, in a superposition of pointer states.

The quantum jump can be realized via a continuous
stochastic process, while retaining the ensemble interpretation.
The familiar method is to add noise to a deterministic
evolution, converting it into a Langevin equation [5–7]. Such
a realization is strongly constrained by the properties of
quantum measurement. To ensure repeatability of measure-
ment outcomes, the measurement eigenstates need to be fixed
points of the evolution. The attraction towards the eigenstates
as well as the noise have to vanish at the fixed points,
which requires the evolution dynamics to be either nonlinear
or nonunitary. Furthermore, lack of simultaneity in special
relativity must not conflict with outcome probabilities in
multipartite measurements. For instance, one can consider
pausing (or even abandoning) measurement part of the way
along, and that must not conflict with the consistency of the
results. Since the Born rule is fully consistent with special
relativity, a solution is to demand that the Born rule be
satisfied at every instant of the measurement process, when
one averages over the noise. It is indeed remarkable that such a
continuous stochastic process for quantum measurement exists
[6]. It uses a precise combination of the attraction towards the
eigenstates and unbiased white noise to reproduce the Born
rule. (Some variations of the stochastic process away from
this specific form have been studied [5], but they fail to satisfy
all the constraints [8].)

The relation between the attraction towards the eigenstates
and the noise, needed to make the Born rule a constant of
evolution in Ref. [6], implies that the environmental degrees
of freedom contribute to either both the attraction and the noise
(these degrees of freedom would be considered the apparatus)
or to neither of them (these degrees of freedom can be ignored).
This division strongly indicates a common origin for the
deterministic and the stochastic contributions to the measure-
ment evolution, quite reminiscent of the fluctuation-dissipation
theorem of statistical mechanics which is a consequence of
both diffusion and viscous damping arising from the same
underlying molecular scattering. Such an intrinsic property of
quantum measurement dynamics would be an important clue
to figuring out what may lie beyond, an underlying theory of
which quantum measurement would be an effective process.

Understanding quantum measurement as a stochastic pro-
cess is the focus of our investigation, and we analyze its
ingredients in detail in Sec. II. With the technological progress
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in making quantum devices, such an analysis is not just
a formal theoretical curiosity, but is also a necessity for
increasing accuracy of quantum control and feedback [4].
A practical situation is that of the weak measurement [9],
where information about the measured observable is extracted
from the system at a slow rate. Such a stretching out of the
time scale would allow one to monitor how the system state
collapses to an eigenstate of the measured observable, and
to track properties of the intermediate states created along
the way by an incomplete measurement. Knowledge of what
really happens in a particular experimental run (and not the
ensemble average) would be invaluable in making quantum
devices more efficient and stable.

C. Beyond quantum mechanics

The stochastic measurement process does provide a con-
tinuous interpolation of projective measurement. But, its
nonlinear dynamics is distinct from the unitary Schrödinger
evolution, and one wonders how it may arise as an effective
description from a theory more fundamental than quantum
mechanics. Over the years, a variety of theoretical approaches
have been proposed to either solve or bypass the quantum
measurement problem.

Some of the approaches that go beyond quantum mechanics
are physical, e.g., introduction of hidden variables with novel
dynamics or ignored interactions with known dynamics.
Examples include Bohmian mechanics [10], Ghirardi-Rimini-
Weber (GRW) and Continuous-Spontaneous-Localization
(CSL) spontaneous collapse mechanisms [11,12], and mod-
ification of quantum rules due to gravity [13]. Some others
philosophically question what is real and what is observable,
in principle as well as by human beings with limited capacity.
Examples include the “many worlds” interpretation [14]
that assigns a distinct world (i.e., an evolutionary branch)
to each probabilistic outcome, and the consistent histories
formalism [15]. Although these attempts are not theoretically
inconsistent, none of them have been positively verified by
experiments; only bounds exist on their parameters.

In this work, we reanalyze the quantum trajectory for-
malism for state collapse (earlier reviews can be found
in Refs. [16,17]) to achieve a deeper understanding of its
dynamics. It is a particular case of the class of stochastic
collapse models that add a measurement driving term and a
random noise term to the Schrödinger evolution of Eq. (1) [12].
We treat these terms in an effective theory approach, without
assuming a specific collapse basis (e.g., energy or position
basis) or a specific collapse interaction (e.g., gravity or some
other universal interaction). This approach allows us to address
the possibility that the collapse process is nonuniversal, and the
signal amplification during the system-apparatus measurement
interaction may be responsible for it. The GRW and CSL
models have not explored this possibility much, and have
typically focused on a particular collapse basis with a particular
collapse interaction.

Our approach is motivated by recent experimental advances
in monitoring quantum evolution during weak measurements
on superconducting transmon qubits [18,19], where the
collapse basis as well as the system-apparatus interaction
strength can be varied by changing the circuit parameters

and without changing the apparatus size. With suitable choice
of parameters, quantum trajectories interpolating from the
initial state to the final projected state have been observed
[19], setting up a stage where the validity of the stochastic
collapse paradigm during measurement can be experimentally
tested in detail. Such effective theory tests would then impose
restrictions on any extension of the standard quantum theory,
and that is what we aim for.

We formulate our model in the next section, separating the
quantum collapse trajectories into a geodesic evolution part
and a fluctuating part on top of it. This separation allows us
to point out that the Born rule is equivalent to a fluctuation-
dissipation type of relation between the two parts, and we
demonstrate that for two different types of noise in Secs. III
and IV. We conclude with a discussion on the implications of
this property and the possible physical origin of the noise.

II. QUANTUM GEODESIC COLLAPSE

In what follows, to keep the analysis simple, we concentrate
only on the evolution due to the effective system-apparatus
interaction that leads to measurement; other contributions to
the system evolution can be added later when needed. It is also
convenient to abbreviate ρS as ρ. We now proceed to construct
the complete quantum collapse dynamics in steps.

A. A single geodesic trajectory

Assuming that the projective measurement results from a
continuous geodesic evolution of an initially pure quantum
state to an eigenstate |i〉 of the measured observable, i.e., a
great circle on the unit sphere in the Hilbert space, one arrives
at the nonlinear evolution equation [20]

d

dt
ρ = g[ρPi + Piρ − 2ρ Tr(Piρ)]. (10)

Here, t is the “measurement time,” the coupling g represents
the strength of the system-apparatus interaction, while gt

is dimensionless. This simple nonlinear evolution equation
describing an individual quantum trajectory has several note-
worthy properties [21].

(a) In addition to maintaining Tr(ρ) = 1, the evolution
takes pure states to pure states. ρ2 = ρ implies

d

dt
(ρ2 − ρ) = ρ

d

dt
ρ +

(
d

dt
ρ

)
ρ − d

dt
ρ = 0. (11)

Thus, the component of the state along Pi grows at the expense
of the other orthogonal components.

(b) Each projective measurement outcome is the fixed
point of the deterministic evolution

d

dt
ρ = 0 at ρ∗

i = PiρPi/T r(Piρ). (12)

The fixed-point nature of the evolution makes the measurement
outcome consistent on repetition.

(c) In a bipartite setting (which includes the decoher-
ence scenario), the complete set of projection operators can
be selected as {Pi} = {Pi1 ⊗ Pi2}, with

∑
i Pik = Ik . Since

the evolution is linear in the projection operators, a sum
over the unobserved projection operators and a partial trace
over the unobserved degrees of freedom produces the same
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equation (and hence the same fixed point) for the reduced
density matrix for the system, as long as g is independent
of the environment. This decoupling from the environment
forbids any possibility of superluminal signaling. Moreover,
the evolution purifies the state; for example, a qubit state in
the interior of the Bloch sphere evolves to a fixed point on its
surface.

(d) For pure states, the geodesic evolution equation is just
[using the notation of Eq. (8)]

d

dt
ρ = −2gL[ρ]Pi. (13)

Compared to Eq. (7), here the Lindblad operator acts on the
pointer state, the density matrix plays the role of Lμ, and the
sign is reversed. This structure hints at an action-reaction rela-
tionship between the processes of decoherence and collapse.
Note here that both ρ and Pi are projection operators, and after
the von Neumann interaction creates a symmetric entangled
state of the system and the apparatus as in Eq. (9), it is a matter
of subjective choice to consider whether the system decoheres
the apparatus or the apparatus decoheres the system. In partic-
ular, Pi can be looked upon as the apparatus state influenced
by the system operator ρ. Adding 0 = L[ρ]Pi − L[ρ]Pi to
the joint system-apparatus evolution equation, one can then
envision the following breakup during the measurement pro-
cess:L[ρ]Pi combined with the apparatus dynamics decoheres
the apparatus state Pi (it cannot remain in superposition by
definition), and the equal and opposite −L[ρ]Pi combined
with the system dynamics collapses the system state ρ. Details
of such a scenario remain to be worked out.

(e) The limit gt → ∞ corresponds to projective measure-
ment, while small gt values describe weak measurements.
Asymptotic convergence to the fixed point is exponential,
||ρ − Pi || ∼ e−2gt as t → ∞, similar to the charging of a
capacitor.

These properties make Eq. (10) a legitimate candidate for
describing the collapse of a quantum state during measure-
ment, modeling the single quantum trajectory specific to a
particular experimental run. It represents a superoperator that
preserves Hermiticity, trace, and positivity, but is nonlinear.

B. Ensemble of geodesic trajectories

We next need a separate criterion for selection of Pi to
reproduce the stochastic ensemble interpretation of quantum
measurement. This choice of “quantum jump” requires a
particular Pi to be picked with probability Tr[Piρ(t = 0)] as
per the Born rule. Picking one of the Pi at the start of the
measurement, and leaving it unaltered thereafter, is unsuitable
for gradual weak measurements, and we look for other ways
to combine the evolution trajectories for different Pi .

Let wi be the weight of the evolution trajectory for Pi , with∑
i wi = 1. We want to find real wi(t), as some functions of

ρ(t), that reproduce the well-established quantum behavior.
The geodesic trajectory averaged evolution of the density
matrix during measurement is

d

dt
ρ =

∑
i

wig[ρPi + Piρ − 2ρ Tr(Piρ)]. (14)

Irrespective of the choice for wi , this evolution maintains the
properties (a)–(d) described in the previous subsection, i.e.,
preservation of purity, fixed-point nature of all Pi , decoupling
from environment, and a role-reversal relation with Lindblad
operators.

With the decomposition ρ = ∑
jk PjρPk , the projected

components of the density matrix evolve as

d

dt
(PjρPk) = PjρPkg

[
wj + wk − 2

∑
i

wiT r(Piρ)

]
.

(15)

Independent of the choice of {wi}, we have the identity

2

PjρPk

d

dt
(PjρPk

) = 1

PjρPj

d

dt
(PjρPj )

+ 1

PkρPk

d

dt
(PkρPk), (16)

with the consequence that the diagonal projections of ρ

completely determine the evolution of all the off-diagonal
projections. For an n-dimensional quantum system, therefore,
the evolution has only n − 1 independent degrees of freedom.
For one-dimensional projections, Pjρ(t)Pj = dj (t)Pj with
dj � 0, we obtain

Pjρ(t)Pk = Pjρ(0)Pk

[
dj (t)dk(t)

dj (0)dk(0)

]1/2

. (17)

In particular, phases of the off-diagonal projections PjρPk

do not evolve, in sharp contrast to what happens during
decoherence. Also, their asymptotic values, i.e., Pjρ(t →
∞)Pk , may not vanish, whenever more than one diagonal
Pjρ(t → ∞)Pj remains nonzero.

It is easily seen that when all the wi are equal, no
information is extracted from the system by the measurement
and ρ does not evolve. More generally, the diagonal projections
evolve according to

d

dt
dj = 2gdj

(
wj −

∑
i

widi

)
. (18)

Here, with
∑

i di = 1,
∑

i widi ≡ wav is the weighted average
of {wi}. Clearly, the diagonal projections with wj > wav grow
and the ones with wj < wav decay. Any dj that is zero initially
does not change, and the evolution is therefore restricted to the
subspace spanned by all the Pjρ(t = 0)Pj �= 0. These features
are stable under small perturbations of the density matrix.

A naive guess for the trajectory weights is the “instanta-
neous Born rule,” i.e., wj = wIB

j ≡ Tr[ρ(t)Pj ] throughout the
measurement process. It avoids logical inconsistency in weak
measurement scenarios, where one starts the measurement,
pauses somewhere along the way, and then restarts the mea-
surement. In this situation, the geodesic trajectory averaged
evolution is

d

dt
(PjρPk) = PjρPkg

[
wIB

j + wIB
k − 2

∑
i

(
wIB

i

)2

]
.

(19)
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This evolution converges towards the subspace specified by
the largest diagonal projections of the initial ρ(t = 0), i.e., the
closest fixed points. It is deterministic too, and differs from
Eq. (4). So, wj = wIB

j is unphysical, and we need to find wi

with stochastic behavior that would reproduce the Born rule.

C. Addition of noise

Instead of heading towards the nearest fixed point, quantum
trajectories can be made to wander around and explore other
possibilities by adding noise to their dynamics. The combi-
nation of geodesics and fluctuations generically appears in
variational calculus, easily seen in the path-integral framework
for instance. Noisy fluctuations are also expected to contribute
to the measurement process [18,19,22]. So, we search for
a suitable noise, which when combined with the geodesics
already described would reproduce Eq. (4). The existence of
such a noise is a hypothesis, to be verified by its explicit
construction and evaluation of its consequences. In order to
not lose the handsome features of the geodesic trajectories,
we make the noise part of the trajectory weights wi , while
retaining

∑
i wi = 1. In describing quantum measurement as

a stochastic process, two commonly considered situations
are “white noise” and “shot noise,” with the corresponding
evolution dynamics labeled “quantum diffusion” and “binary
quantum jump,” respectively [16,17], and we analyze them
in turn in the next two sections. It should be noted that our
formalism allows us to freely vary the size of the noise,
unlike the fixed specific values considered in earlier works,
and explore the consequences.

III. QUANTUM DIFFUSION

In the quantum diffusion model, unbiased and uncorrelated
noise (i.e., white noise) is added to the geodesic evolution. With
a gradual addition of the noise, the quantum trajectories remain
continuous but become nondifferentiable. The deterministic
evolution equation in the Hilbert space gets converted to a
stochastic Langevin-type equation, and we need to find the
magnitude of the frequency-independent noise that makes the
measurement process consistent with the Born rule.

A. Constraint on white noise

Results of the previous section take a considerably simpler
form in case of the smallest quantum system, i.e., the two-
dimensional qubit with |0〉 and |1〉 as the measurement eigen-
states. Evolution of the density matrix during the measurement,
Eqs. (18) and (17), is then given by

d

dt
ρ00 = 2g(w0 − w1)ρ00ρ11, (20)

ρ01(t) = ρ01(0)

[
ρ00(t)ρ11(t)

ρ00(0)ρ11(0)

]1/2

. (21)

Because of ρ11(t) = 1 − ρ00(t) and w1(t) = 1 − w0(t), only
one independent variable describes the evolution of the system.
Selecting the trajectory weights as addition of real white noise
to the “instantaneous Born rule”, we have

w0 − w1 = ρ00 − ρ11 + √
Sξ ξ. (22)

 0

 0.25

 0.5

 0.75

 1

 0  2  4  6

ρ 0
0

gt

FIG. 1. Individual quantum evolution trajectories for the initial
state ρ00 = 0.5, the measurement eigenstates ρ00 = 0,1, and in
presence of measurement noise satisfying gSξ = 1.

Here, 〈〈ξ (t)〉〉 = 0 is unbiased, 〈〈ξ (t)ξ (t ′)〉〉 = δ(t − t ′) fixes the
normalization of ξ (t), and Sξ is the spectral density of the noise.

Equations (20) and (22) define a stochastic differential
process on the interval [0,1]. The fixed points at ρ00 = 0,1
are perfectly absorbing boundaries where the evolution stops.
In general, a quantum trajectory would zigzag through the
interval before ending at one of the two boundary points. Some
examples of such trajectories are shown in Fig. 1.

Let P (x) be the probability that the initial state with ρ00 = x

evolves to the fixed point at ρ00 = 1. Obviously, P (0) = 0,
P (0.5) = 0.5, P (1) = 1. Two extreme situations are easy to
figure out. When there is no noise, the evolution is governed
by the sign of ρ00 − ρ11 and the trajectory monotonically
approaches the fixed point closest to the starting point:

Sξ = 0 : P (x) = θ (x − 0.5). (23)

Also, when ρ00 − ρ11 is negligible compared to the noise, sym-
metry of the evolution makes both eigenstates equiprobable,
i.e., P (x) = 0.5 for Sξ → ∞.

The stochastic evolution equations (20) and (22) are in the
Stratonovich form. For further insight into the evolution, and
for numerical simulations, it is instructive to convert them into
the Itô form that specifies forward evolutionary increments
[23]:

dρ00 = 2gρ00ρ11
(
ρ00 − ρ11

)
(1 − gSξ )dt

+ 2g
√

Sξρ00ρ11dW. (24)

Here, the stochastic Wiener increment dW = ξdt obeys
〈〈dW (t)〉〉 = 0, 〈〈(dW (t))2〉〉 = dt , and can be modeled as a
random walk. The first term on the right-hand side produces
drift in the evolution, while the second term gives rise to
diffusion.

The evolution with no drift, i.e., the pure Wiener process, is
particularly interesting. In that case, after averaging over the
stochastic noise, the Born rule is a constant of evolution [5,6]:

〈〈dρ00〉〉 = 0 ⇐⇒ gSξ = 1. (25)

More explicitly, starting at x, one moves forward to
x + ε with some probability, moves backward to x − ε

with the same probability, and stays put otherwise. On
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P
(x
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x

00.250.5
1
2
4

∞

FIG. 2. Probability that the initial qubit state ρ00 = x evolves to
the measurement eigenstate ρ00 = 1, for different magnitudes of the
measurement noise. The gSξ values label the curves.

balancing the probabilities, P (x) = α[P (x + ε) + P (x −
ε)] + (1 − 2α)P (x), and we get

gSξ = 1 : P (x + ε) − 2P (x) + P (x − ε) = 0. (26)

The general solution, independent of the choice of ε, is
that P (x) is a linear function of x. Imposing the boundary
conditions P (0) = 0 and P (1) = 1, we obtain P (x) = x,
which is the Born rule. Note that specific choices of g, ε, and
α only alter the rate of evolution, but not this final outcome.

Going further, we performed numerical simulations of the
stochastic evolution for several values of gSξ , and the results
are presented in Fig. 2. We used the integrated form of Eq. (20)
over a short time step g	t � 1:

ρ00(t + 	t)

ρ11(t + 	t)
= ρ00(t)

ρ11(t)
e2g	tw, (27)

w = 1

	t

∫ t+	t

t

(w0 − w1)dt. (28)

w was generated as a Gaussian random number with mean
ρ00(t) − ρ11(t) and variance Sξ/	t . We averaged the results
over a million trajectories at each simulation point. The data
clearly show the crossover from evolution with no noise to
evolution with only noise, and the Born rule behavior appears
for gSξ = 1.

We point out that with gSξ = 1, Eq. (24) is the same as the
corresponding result of Ref. [6]. But, our strategy of breaking
up the evolution into geodesic and fluctuating parts allows
us to analyze the two contributions separately, e.g., in the
fluctuation-dissipation relation described later in Sec. III C,
and explore the implications. Also, we can easily extend the re-
sult to n-dimensional orthogonal measurements as in Eq. (29).

The preceding results are valid for binary orthogonal
measurements on any quantum system, with the replacement
ρii → Tr(ρPi). One way to extend them to a larger set of Pi ,
is to express nonbinary orthogonal projection operators as a
product of mutually commuting binary projection operators,
and then treat each binary projection as per the preceding
analysis with its own stochastic noise [6]. An alternate way to
implement n-dimensional orthogonal quantum measurements
is to observe that P0 − P1 is one of the Cartan generators

of SU(n), and it can be rotated to any of the other Cartan
generators of SU(n) by the unitary symmetry. Such a rotation
of Eq. (22) allows us to fix all the orthonormal set of weights
as (k = 1,2, . . . ,n − 1)

k−1∑
i=0

wi − kwk =
k−1∑
i=0

ρii − kρkk +
√

k(k + 1)Sξ

2
ξk. (29)

Here, ξk(t) are independent white-noise terms. The condition
for the evolution to be a pure Wiener process, and consequently
satisfy the Born rule, remains gSξ = 1. With this condition,
the evolution equation in the Stratonovich form is Eq. (18),
while in the Itô form it is given by

d(dj ) = 2
√

gdj

(
w̃j −

∑
i

w̃idi

)
, (30)

k−1∑
i=0

w̃i − kw̃k =
√

k(k + 1)

2
dWk. (31)

Two important properties, arising from the parametric
freedom of the stochastic evolution analyzed here are worth
stressing: (a) The equations need specification of only the
first two moments of the stochastic noise, whether ξ (t) or
dW (t). We can use the remaining freedom in the specification
of the noise to simplify our analysis as much as possible.
The binary or Z2 noise is the simplest choice, producing two
stochastic possibilities at every time step. (b) The solution to
the equations implies that a complete measurement formally
takes infinite time, and that may not be a desirable feature
[8]. The formal “measurement duration” can be made finite
by making the coupling g time dependent. Such a stochastic
differential process does not have a time translation symmetry,
but the change of variables does not alter the measurement
outcomes because the Born rule is satisfied at every instant
during the measurement process. With such a modification, the
only change required in the results described here is to replace
gt by τ ≡ ∫ t

0 g(t ′)dt ′. The choice of g(t) is not unique, and its
physical meaning would depend on the nature of the system-
apparatus interaction. For example, with g(t) = 1/(1 − t2),
the measurement interval becomes t ∈ [0,1] and Eq. (20) can
be written in coupling-free form as

d

ds
ρ00 = 2(ρ00 − ρ11 + ξ̃ )ρ00ρ11, (32)

where s = tanh−1 t ∈ [0,∞] and 〈〈ξ̃ (s)ξ̃ (s ′)〉〉 = δ(s − s ′).

B. Born rule satisfying trajectory ensemble

Henceforth, we impose gSξ = 1, and focus on the set of the
Born rule satisfying quantum trajectories. For a qubit, the map

tanh(z) = 2ρ00 − 1 = ρ00 − ρ11, (33)

between ρ00 ∈ [0,1] and z ∈ [−∞,∞], simplifies the evolu-
tion equations. Both the Stratonovich and the Itô forms, Eqs.
(20) and (24), then have the same structure:

dz

dt
= g tanh(z) + √

gξ, (34)

dz = g tanh(z)dt + √
gdW. (35)
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FIG. 3. Evolving distribution of the quantum measurement tra-
jectories for a qubit state initialized to ρ00 = δ(0.6). The curves are
labeled by values of the evolution parameter τ ≡ ∫ t

0 g dt , and they
accumulate on the eigenstates as τ → ∞.

In terms of z(t), the density matrix has the form

ρ[z(t)] =
( 1+tanh[z(t)]

2
ρ01[z(0)]sech[z(t)]

sech[z(0)]
ρ10[z(0)]sech[z(t)]

sech[z(0)]
1−tanh[z(t)]

2

)

= sech[z(t)]

( 1
2ez(t)

ρ01[z(0)]
sech[z(0)]

ρ10[z(0)]
sech[z(0)]

1
2e−z(t)

)
, (36)

and average over the stochastic noise provides the Born rule
constraint 〈〈tanh[z(t)]〉〉 = tanh[z(0)].

The stochastic Langevin evolution can be converted to the
Fokker-Planck equation to obtain the collective behavior of the
quantum trajectories. For measurement of a single qubit with
gSξ = 1, the probability distribution of trajectories p(ρ00,t) or
p(z,t) satisfies

∂p(ρ00,t)

∂t
= 2g

∂2

∂2ρ00

[
ρ2

00(1 − ρ00)2p(ρ00,t)
]
,

∂p(z,t)

∂t
= −g

∂

∂z
[tanh(z)p(z,t)] + g

2

∂2

∂z2
p(z,t). (37)

With the initial condition p(ρ00,0) = δ(x), this equation
can be solved exactly [5,6]. The solution consists of two
noninterfering peaks with areas x and 1 − x, monotonically
traveling to the boundaries at ρ00 = 1 and 0, respectively. In
terms of the variable z, the two peaks are diffusing Gaussians,
with centers at z±(t) = tanh−1(2x − 1) ± gt and common
variance gt ,

p(z,t) = 1√
2πgt

{
x exp

[
− (z − z+)2

2gt

]

+ (1 − x) exp

[
− (z − z−)2

2gt

]}
. (38)

The two peaks reach the boundaries only asymptotically:

p(ρ00,∞) = xδ(ρ00 − 1) + (1 − x)δ(ρ00). (39)

A particular case of how a narrow initial distribution splits into
two components that evolve to the measurement eigenstates
is illustrated in Fig. 3. For gt > 10, 99% of the probability is

within 1% of the two fixed points. Subsequent convergence
to projective measurement is exponential, e.g., 99.9% of the
probability is within 0.1% of the two fixed points for gt > 15.

Upon taking the ensemble average,∫ ∞

∞
tanh[z(t)]p(z,t)dz = 2x − 1, (40)∫ ∞

∞
sech[z(t)]p(z,t)dz = e−gt/2sech[z(0)]. (41)

The resultant expectation value of the density matrix is [cf.
Eq. (36)]

〈〈ρ(t)〉〉 =
(

x e−gt/2ρ01(0)

e−gt/2ρ10(0) 1 − x

)
, (42)

where the diagonal elements do not evolve and the off-diagonal
elements decay exponentially. Directly, the constraint of
Eq. (21), and Eq. (24), also give

dρ01 = ρ01

(
1 + ρ11 − ρ00

2ρ00ρ11
dρ00 − 1

8ρ2
00ρ

2
11

dρ2
00

)
=⇒ 〈〈dρ01〉〉 = ρ01(−gdt/2). (43)

We observe that this mixed state results from averaging
individual pure-state fluctuating trajectories. Note that in the
conventional ensemble interpretation [cf. Eq. (4)], all the
expectation values are linear functions of the density matrix
and so depend only on 〈〈ρ(t)〉〉.

The Lindblad master equation for the same system gives
evolution identical to Eq. (42), with the single decoherence
operator Lμ = √

γ σ3 and γ = g/4:

d

dt
ρ = γ (σ3ρσ3 − ρ), (44)

ρ(t) = 1 + e−2γ t

2
ρ(0) + 1 − e−2γ t

2
σ3ρ(0)σ3. (45)

Amazingly, the nonlinear stochastic evolution of the density
matrix, after averaging over the noise, becomes linear evolu-
tion described by a completely positive trace-preserving map.

The result can also be expressed in the Kraus decomposed
orthogonal form as

ρ(t) = M0ρ(0)M0 + M3ρ(0)M3, (46)

M2
0 + M2

3 = I, Tr(M0M3) = 0, (47)

where, with cosh ε = e2γ t = egt/2,

M0 =
√

e−γ t cosh(γ t)I = cosh(ε/2)√
cosh ε

I, (48)

M3 =
√

e−γ t sinh(γ t)σ3 = sinh(ε/2)√
cosh ε

σ3. (49)

The Kraus decomposition can also be performed in a symmet-
ric but nonorthogonal form as

ρ(t) = M+ρ(0)M+ + M−ρ(0)M−, (50)

M2
+ + M2

− = I, Tr(M2
+) = Tr(M2

−), (51)

M± = e±ε/2

√
2 cosh ε

(
I + σ3

2

)
+ e∓ε/2

√
2 cosh ε

(
I − σ3

2

)
.

(52)
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This is the form used to describe binary weak measurement
evolution in Ref. [24], with ε as the evolution parameter. Then,
the two evolution possibilities can be expressed as a biased
walk,

ρ(z,ε) = M+ρ(z)M+ + M−ρ(z)M−
= p+ρ(z + ε) + p−ρ(z − ε), (53)

with the parametrization of Eq. (36), and

p± = Tr(M±ρM±) = [1 ± tanh(z) tanh(ε)]/2. (54)

Note that when ρ(z) is a pure state, so are ρ(z ± ε). So the
two contributions on the right-hand side of Eq. (53) can be
considered two possible trajectories with unequal weights p±;
it is indeed the finite duration integral of Eq. (35) with Z2

noise.

C. Salient features

The evolution constraint that produces the Born rule,
gSξ = 1, relates the strength of the geodesic evolution g to
the magnitude of the noise Sξ . So, it is sensible to express it as
a fluctuation-dissipation relation.

For the white-noise measurement, the geodesic parameter
is ρ00 − ρ11. From Eq. (24), the size of the fluctuations is,
dropping the subleading o(dt) terms,

〈〈(dρ00 − dρ11)2〉〉 = 16g2Sξρ
2
00ρ

2
11dt. (55)

The geodesic evolution term is, from Eq. (20) with wj replaced
by its average wIB

j ,

(dρ00 − dρ11)geo = 4g(ρ00 − ρ11)ρ00ρ11dt. (56)

Hence, gSξ = 1 amounts to the coupling-free relation

〈〈(dρ00 − dρ11)2〉〉 = 4ρ00ρ11
(dρ00 − dρ11)geo

ρ00 − ρ11
. (57)

The proportionality factor between the noise and the damping
term is not a constant because of the nonlinearity of the
evolution, but it becomes independent of (gdt) when the Born
rule is satisfied.

In addition, our analysis has revealed the following notable
aspects of the quantum diffusion model:

(1) Individual quantum trajectories maintain purity, even in
the presence of noise. Mixed states arise only when multiple
quantum trajectories with different evolutionary weights are
combined.

(2) Although the trajectory weights wi(t) are real and add
up to one, they are not restricted to the interval [0,1], and so
cannot be interpreted as probabilities.

(3) The measurement outcomes are independent of ρi �=j ,
and so are not affected by decoherence. In general, a different
noise can be added to the phases of ρi �=j , without spoiling the
described evolution of ρii . The Born rule imposes no constraint
on that off-diagonal noise. Measurement and decoherence can
therefore be looked upon as independent and complementary
processes.

(4) When the Born rule is satisfied, the measurement
dynamics allows free reparametrization of the “measurement
time” but no other freedom. The choice of measurement time

is local between the system and the apparatus; different in-
teracting system-apparatus pairs can have different couplings
governing their collapse time scales.

(5) The quantum trajectory distribution, given by Eq. (38)
and illustrated in Fig. 3, is fully determined in terms of
the single evolution parameter τ ≡ ∫ t

0 g(t ′)dt ′. In weak mea-
surement experiments on superconducting qubits [18,19], the
coupling g is a tunable parameter and τ can be gradually
varied, e.g., in the range [0,10]. Such experiments can observe
quantum trajectory distributions in detail, and so can verify the
theoretical predictions.

IV. BINARY QUANTUM JUMP

In the quantum jump model, a large but infrequent noise
(i.e., shot noise) is added to the geodesic evolution. The
quantum trajectories are smooth most of the time, except for
the instances where sudden addition of the noise makes them
discontinuous. The measurement is often a binary process
in the Fock space, and sudden jumps terminate it, e.g., by
emission of a photon. Again, we need to find the magnitude of
the noise that makes the measurement process consistent with
the Born rule.

A. Constraint on shot noise

Consider the binary measurement scenario, where the
eigenstate P0 is reached by continuous geodesic evolution,
while the eigenstate P1 is reached by a sudden jump. Then, the
density matrix evolution during measurement is specified, with
trajectory weights wi = δi0 and binary shot noise dN ∈ {0,1},
as

dρ = g[ρP0 + P0ρ − 2ρ Tr(P0ρ)]dt + (P1 − ρ)dN. (58)

The shot-noise contribution is not infinitesimal; the density
matrix instantaneously jumps to P1, whenever dN = 1. Of
course, the probability of occurrence of dN = 1 is an infinites-
imal function of ρ, and it has to vanish at the measurement
eigenstate ρ = P0.

For a single qubit, Eq. (58) reduces to

dρ00 = 2gρ00ρ11dt − ρ00dN, (59)

dρ01 = gρ01(ρ11 − ρ00)dt − ρ01dN. (60)

Once again, evolution of the off-diagonal elements is com-
pletely determined in terms of that for the diagonal elements.
The Born rule can be implemented as a constant of evolution,
constraining how often the jumps occur:

〈〈dρ00〉〉 = 0 ⇐⇒ 〈〈dN〉〉 = 2gρ11dt. (61)

From these evolution equations, an ensemble of quantum
trajectories can be constructed, allowing for two possibilities
for dN at every instance. The dN = 0 branch gradually keeps
moving towards ρ00 = 1 as a function of time, while the dN =
1 branch stops evolving immediately after the jump to ρ00 = 0.
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FIG. 4. Properties of the quantum measurement trajectories for
quantum jump evolution of a qubit. The initial state is ρ00(τ = 0) =
0.6, and the evolution parameter is τ ≡ ∫ t

0 g(t ′)dt ′. The initial distri-
bution splits into a monotonically moving component a1(τ )δ[x(τ )]
and a stationary component a0(τ )δ(0), which respectively move to
the measurement eigenstates ρ00 = 1 and 0 as τ → ∞.

B. Born rule satisfying trajectory ensemble

Even though Eqs. (59) and (60) are not differential
equations in the usual sense, due to finite dN , they can be
solved exactly as a biased random walk process.

Let the initial condition be p(ρ00,0) = δ(x). Because the
dN = 1 evolution branch terminates at ρ00 = 0, the solution
consists of two δ functions at any instant. The δ function at
ρ00 = 0 steadily grows in size, while the δ function slowly
moving to ρ00 = 1 gradually reduces in size. Explicitly,

p(ρ00,t) = [x + (1 − x)e−2gt ]δ

[
x

x + (1 − x)e−2gt

]

+ (1 − x)(1 − e−2gt )δ(0). (62)

A particular case of how the variables in this distribution evolve
is shown in Fig. 4.

The corresponding distribution for the off-diagonal element
also consists of two δ functions, given by

p(ρ01,t) = [x + (1 − x)e−2gt ]δ

[
ρ01(0)

xegt + (1 − x)e−gt

]

+ (1 − x)(1 − e−2gt )δ(0). (63)

Upon taking the ensemble average, the expectation value of
the density matrix becomes

〈〈ρ(t)〉〉 =
(

ρ00(0) e−gtρ01(0)

e−gtρ10(0) ρ11(0)

)
. (64)

The exponential decay of the off-diagonal elements can also
be obtained from Eq. (60) as

〈〈dρ01〉〉 = ρ01(−gdt). (65)

This result is again the solution of the Lindblad master
equation for the same system, with the single decoherence op-
erator Lμ = √

γ (P0 − P1), γ = g/2. The nonlinear evolution
of quantum trajectories, after averaging over their distribution,
produces a linear completely positive trace-preserving evolu-
tion for the density matrix. It can be expressed in the Kraus

decomposed form the same way as in the case of quantum
diffusion.

C. Salient features

The evolution constraint yielding the Born rule 〈〈dN〉〉 =
2gρ11dt relates the strength of the geodesic evolution g to the
frequency of the noise dN . It can again be expressed as a
fluctuation-dissipation relation.

For the shot-noise measurement, the geodesic parameter is
ρ00 and (dN)2 = dN . Dropping the subleading o(dt) terms,
Eq. (59) gives the size of the fluctuations as

〈〈(dρ00)2〉〉 = ρ2
00〈〈dN〉〉. (66)

The geodesic evolution term, also from Eq. (59), is

(dρ00)geo = 2gρ00ρ11dt. (67)

Hence, 〈〈dN〉〉 = 2gρ11dt amounts to the coupling-free rela-
tion

〈〈(dρ00)2〉〉 = ρ2
00

(dρ00)geo

ρ00
. (68)

Once more, the noise is proportional to the damping term.
Although the proportionality factor differs from that in
Eq. (57), because of a different nonlinear evolution, it still
becomes independent of (gdt) when the Born rule is satisfied.

In addition, our analysis has brought out the following
features of the binary quantum jump model: (1) In the presence
of shot noise, the quantum trajectories are monotonic, and
smooth except for infrequent discontinuous jumps. They still
maintain purity, and mixed states arise when multiple quantum
trajectories with different noise histories are combined. (2)
The trajectory weights can be interpreted as probabilities
since the shot noise has a direct probabilistic interpretation
as a Poisson process. (3) Evolution of the diagonal ρii is
independent of the off-diagonal ρi �=j , and so is unaffected by
decoherence. So, as in case of quantum diffusion, measurement
and decoherence can be looked upon as independent and
complementary processes. Also, free reparametrization of the
“measurement time” is allowed, when the Born rule is satisfied.
(4) The measurement dynamics is local between the system
and the apparatus. The quantum trajectory distribution, given
by Eq. (62), is fully determined in terms of the evolution
parameter

∫ t

0 g(t)dt . Weak measurement experiments in quan-
tum optics should be able to verify this theoretical prediction.

V. DISCUSSION

We have described a quantum trajectory formalism for state
collapse during measurement, which replaces the discontinu-
ous projective measurement by a continuous stochastic process
and remains consistent with the Born rule. It supplements the
Schrödinger evolution by addition of quadratically nonlinear
measurement terms:

dρ = i[ρ,H ]dt +
∑

i

wig[ρPi + Piρ − 2ρ Tr(ρPi)]dt

+ noise. (69)

Instead of attributing the additional terms to novel interactions
beyond the standard quantum theory, we look at them as an
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effective description of the system-apparatus measurement
interaction that replaces the von Neumann projection axiom.
The task is then to figure out what restrictions such an effective
description imposes on the underlying unknown measurement
dynamics (including the type of noise that may be present),
and whether or not the necessary ingredients exist in the
physical world. Nonlinear superoperator evolution for the
density matrix is avoided in quantum mechanics because it
conflicts with the probability interpretation for mixtures of
density matrices. Nevertheless, nonlinear quantum evolutions
need not be unphysical, and our analysis in Sec. II shows that
Eq. (69) obeys the well-known rules of the quantum theory.

Separation of the quantum trajectory evolution into attrac-
tion towards the measurement eigenstates and stochastic mea-
surement noise exposes the striking fact that the magnitudes of
these two dynamical contributions have to be precisely related
for the Born rule to emerge as a constant of evolution. In
general stochastic processes, vanishing drift and fluctuation-
dissipation relations are quite unrelated properties, involving
first and second moments of the distribution, respectively.
The fact that both follow from the same constraint (gSξ = 1
or 〈〈dN〉〉 = 2gρ11dt in the cases we have analyzed) is an
exceptional feature of quantum trajectory dynamics. It means
that the Born rule can be looked upon as a consequence
of Eqs. (57) and (68), instead of Eqs. (25) and (61). This
change in viewpoint has powerful implications regarding the
cause of probabilistic observations in quantum theory. Since
the dissipation (convergence to the measurement eigenstates)
is produced by the system-apparatus interaction, the pre-
cisely related fluctuations (noise giving rise to probabilistic
measurement outcomes) too must be produced by the same
system-apparatus interaction. The rest of the environment
may contribute to decoherence, but it can influence the
measurement outcomes only via the apparatus and not directly!

Another feature brought forth by our analysis is the com-
plementary relationship between the processes of decoherence
and measurement. An important consequence of experimental
interest is to check whether the system relaxation can be
suppressed by reducing the apparatus decoherence (or vice
versa).

Each quantum trajectory with its noise history can be
associated with an individual experimental run, and can be
considered one of the many possibilities that make up the
ensemble. A model for the measurement apparatus is needed,
however, to understand where the noise comes from. During
measurement, the observed signal is amplified from the quan-
tum to the classical regime [25]. The interactions involved are
usually electromagnetic, and often the dynamics is nonlinear.
Coherent states that continuously interpolate between quantum
and classical regimes are a convenient choice for the apparatus
pointer states. They are the minimum uncertainty (equal to
the zero-point fluctuations) states in the Fock space. The

crucial point is that amplification incorporates quantum noise
when the extracted information is not allowed to return (e.g.,
spontaneous versus stimulated emission with precisely related
magnitudes). So, amplifiers can indeed provide attraction to-
wards the measurement eigenstates together with the requisite
noise. That is a direction worth investigating further, in order
to find the cause of the noise and the irreversible collapse,
and hopefully to construct a more complete theory of quantum
measurements.

The quantum trajectory framework that we have advocated
does not solve the fundamental measurement problem. What
it does is to separate the Born rule from the irreversible
collapse, by explaining the system-dependent probabilistic
measurement outcomes in terms of a system-independent (but
apparatus-dependent) stochastic noise. The location of the
“Heisenberg cut”, defining the crossover between quantum and
classical regimes, is thus shifted higher up in the dynamics of
the amplifier. This cut is not a universal feature, but depends
on the hardware of the measurement apparatus, in terms of
the type of the noise and how it originates in the amplification
process. The fluctuation-dissipation relation, and the Born rule
implied by it as per our analysis, quite likely transcend the
specific nature of the noise. It is certainly a challenge to figure
out whether the fluctuation-dissipation relation is universal for
all amplifiers, or whether it is possible to design amplifiers
that would bypass or modify the noise under some unusual
conditions.

Finally, the quantum trajectory framework we have ana-
lyzed can be vindicated by verifying its predicted trajectory
distributions in weak measurement experiments. In these
experiments, the coupling g is a characteristic parameter for
each system-apparatus pair, and is not a universal constant.
Also, g can be tuned by varying the circuit parameters
without changing the apparatus size, and it has to be made
small enough to observe the intervening stages between the
initial state and the final projective outcome. Given the type
of the noise, the complete trajectory distribution (not just
its first two moments) is determined in terms of a single
evolution parameter, as evidenced by Eqs. (38) and (62). The
experimental technology has developed enough for observing
such trajectory distributions in case of superconducting qubits
[18,19], and would generalize to other quantum systems. Work
in this direction is in progress.
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