
PHYSICAL REVIEW A 96, 022105 (2017)

Quantum measurements with prescribed symmetry

Wojciech Bruzda
Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland

Dardo Goyeneche
Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland

and Faculty of Applied Physics and Mathematics, Technical University of Gdańsk, 80-233 Gdańsk, Poland
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We introduce a method to determine whether a given generalized quantum measurement is isolated or if it
belongs to a family of measurements having the same prescribed symmetry. The technique proposed reduces to
solving a linear system of equations in some relevant cases. As a consequence, we provide a simple derivation
of the maximal family of symmetric informationally complete positive operator-valued measure SIC-POVM in
dimension 3. Furthermore, we show that the following remarkable geometrical structures are isolated, so that
free parameters cannot be introduced: (a) maximal sets of mutually unbiased bases in prime power dimensions
from 4 to 16, (b) SIC-POVM in dimensions from 4 to 16, and (c) contextual Kochen-Specker sets in dimension
3, 4, and 6, composed of 13, 18, and 21 vectors, respectively.
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I. INTRODUCTION

Positive operator-valued measure (POVM) is the most
general kind of measurement in quantum mechanics, which
generalizes projective measurements. Some POVMs having a
prescribed symmetry play a crucial role in quantum mechanics:
symmetric informationally complete (SIC)-POVM [1,2] and
mutually unbiased bases (MUBs) [3,4]. These geometrical
structures have important applications in quantum theory: SIC-
POVM and MUBs allow us to unambiguously reconstruct any
density matrix of size d [1,3] and define entropic uncertainty
relations [5,6]. Even more, MUBs are important to detect
entanglement [7] and bound entanglement [8], and to lock
classical information in quantum states [9].

Finitely many SIC-POVMs are known in dimension d �
64 [10], including a one-parameter family in dimension
3 [1]. The existence of SIC-POVM with free parameters in
dimension d > 3 is still an open problem. Moreover, maximal
sets of MUBs are known to be isolated in dimensions 2–5 [11]
and finitely many nonequivalent maximal sets of MUBs are
known for dimensions 3–5 [12] and N qudit systems [13].
On the other hand, families of symmetric POVMs are useful
for practical applications, as the parameters can be optimized
for different convenient purposes. For example, from the
one-parameter family of SIC-POVM existing in dimension
3 [1] only a single member maximizes the informational power,
that is, the classical capacity of a quantum-classical channel
generated by the SIC-POVM [14]. Furthermore, inequivalent
sets of MUBs provide different estimation of errors in quantum
tomography [15].

Highly symmetric quantum measurements, like SIC-
POVM or MUBs, play an important role in quantum in-
formation and foundations of quantum theory. On the one
hand, it is interesting itself to design a mathematical tool
that allows one to construct a family of POVMs having a

prescribed symmetry from a given particular solution. On the
other hand, construction of such families of solutions provides
flexibility when designing experimental implementations of
these measurement sets. For instance, a detailed description of
a complete list of solutions of a set of k MUBs in dimension
d may be helpful in tackling the problem whether an extended
set of k + 1 MUBs exists. Furthermore, it is also interesting
to highlight those quantum measurements having a prescribed
symmetry that do not belong to a family, which makes them
special. A possible application of such isolated cases is the
existence of a unique solution optimizing a given function. For
instance, isolated solutions might define sets of measurement
having a unique maximal violation of a Bell inequality, which
is a fundamental ingredient for self-testing [16].

In this work, we present a method to introduce free
parameters in generalized measurements having a predefined
geometrical structure. The method proposed divides the entire
nonlinear problem, calledP (1)

NL, into a linear problemP (2)
L and a

secondary nonlinear problemP (3)
NL, which is simpler thanP (1)

NL.
Remarkably, in some cases the linear problem P (2)

L provides a
definite answer to the full problem PNL.

The paper is organized as follows: In Sec. II we establish a
connection between any given POVM and certain Hermitian
unitary matrices having constant diagonal.

In Sec. III we apply the notion of a defect of a unitary
matrix to identify isolated cases of generalized quantum
measurements having a prescribed symmetry, for which no
free parameters can be introduced. Furthermore, in other cases
we present a constructive method to extend known solutions
to an entire family by introducing free parameters.

In Sec. IV we show that known maximal sets of MUBs
in dimensions 4, 8, 9, and 16 and known SIC-POVMs in
dimensions 4–16 are isolated. We also study the robustness
of our results for a given accuracy in specifying the POVM,
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which allows us to derive conclusive results from approximate
solutions. In Sec.V we find an upper bound for the maximal
number of free parameters that can be introduced in sets of
2 � m � d + 1 MUBs in dimension d and in some classes
of equiangular tight frames. Moreover, we show how the
method works to give the known one-parameter families of
SIC-POVMs in dimension 3. In Sec. VI we prove that some
existing Kochen-Specker sets from quantum contextuality are
isolated. In Sec. VII we summarize our results and pose open
questions.

II. QUANTUM MEASUREMENTS AND TIGHT FRAMES

A POVM {�j } is a set of N positive-semidefinite sub-
normalized operators defined in dimension d such that∑N−1

j=0 �j = Id , where Id is the identity matrix of size d.
Throughout the work, we restrict our attention to rank-1
POVMs and consider rank-1 projectors �j , being proportional
to the elements of POVM; that is, �j = c�j , where c = N/d.
For simplicity, we refer to the set of projectors {�j } as a
POVM, understanding that they are formally proportional to
the elements of a POVM. The rank-1 projectors �j satisfy the
geometrical relation

Tr(�i�j ) = Sij , (1)

where S is a real symmetric matrix of size N . It is interesting
to ask about the most general projectors having the prescribed
symmetry (1) given by a real symmetric matrix S. For
example, the case S = IN + N−d

d(N−1) (JN − IN ) corresponds to
equiangular tight frames composed of N vectors in dimension
d. Here, JN denotes the matrix of size N having all entries
equal to unity. We recall that a set of N vectors {|φi〉}
defined in dimension d forms an equiangular tight frame
(ETF) if |〈φi |φj 〉|2 = d(N − 1)/(N − d), for every i �= j =
0, . . . ,d2 − 1.

A remarkably important subclass of ETF is given by the
so-called SIC-POVM [1], corresponding to the case N = d2.
Also, two orthonormal bases |φi〉 and |ψj 〉 in dimension
d define a pair of MUBs if |〈φi |ψj 〉|2 = 1/d, for every
i,j = 0, . . . ,d − 1. A set of m orthonormal bases is mutually
unbiased if every pair of the set is mutually unbiased. Also, a
set of m MUBs in dimension d has associated the symmetric
matrix S = Idm + 1

d
(Jm − Im) ⊗ Jd . For a recent review on

discrete structures in Hilbert spaces, including MUBs and
SIC-POVM, see Ref. [17].

Let us recall a close connection existing between POVM
and tight frames. A set of rank-1 projectors {�j } defines a
tight frame if there exists a real number A > 0 such that∑N−1

j=0 Tr(��j ) = ATr(�2) = A, for any rank-1 projector �

acting on dimension d. Therefore, POVMs are tight frames
for A = c. A crucial property for our work is the fact that the
Gram matrix associated to a tight frame, or POVM, is closely
related to an Hermitian unitary matrix, as we see in Proposition
1. We recall that the Gram matrix of a set of N vectors |φj 〉 is
given by

Gij = 〈φi |φj 〉, (2)

where i,j = 0, . . . ,N − 1. For example, the Gram matrix of an
equiangular tight frame composed of N vectors in dimension

d has the form

GETF =

⎛
⎜⎜⎜⎝

1 reiα12 · · · reiα1N

re−iα12 1 · · · reiα2N

...
...

. . .
...

re−iα1N re−iα2N · · · 1

⎞
⎟⎟⎟⎠, (3)

where r2 = d(N − 1)/(N − d). Furthermore, the Gram ma-
trix of a set of m + 1 MUBs {Id ,H1,H2, . . . ,Hm} in dimension
d is given by

GMUB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Id H1 H2 · · · Hm

H
†
1 Id H

†
1 H2 · · · H

†
1 Hm

H
†
2 H

†
2 H1 Id · · · H

†
2 Hm

...
...

...
. . .

...
H

†
m H

†
mH1 H

†
mH2 · · · Id

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where H1,H2, . . . ,Hm are suitable unitary complex Hadamard
matrices, so that HiH

†
i = I and |(Hi)jk|2 = 1/d for every

j,k = 0, . . . ,N − 1 and i = 1, . . . ,m; see Ref. [18]. Let us
establish a connection between Gram matrices of POVM and
a special kind of unitary Hermitian matrices.

Proposition 1. Let �j be a rank-1 POVM composed of
N vectors in dimension d and G be the corresponding Gram
matrix. Then, the matrix U = IN − 2d

N
G is unitary.

Proof. A Gram matrix G represents a POVM composed of
N vectors in dimension d � N if and only if G2 = N

d
G (cf.

Proposition 1 in Ref. [19]). From this property and taking into
account that Tr(G) = N , the spectrum of G satisfies

λ(G) = (N/d, . . . ,N/d︸ ︷︷ ︸
d

, 0, . . . ,0︸ ︷︷ ︸
N−d

). (5)

Therefore, U = IN − 2d
N

G is a unitary matrix. �
From Proposition 1 we realize that the existence of a POVM

with a symmetry prescribed by the matrix S from Eq. (1)
is equivalent to prove the existence of a unitary Hermitian
matrix U having positive constant diagonal Uii = 1 − 2d/N

and satisfying |Uij | = 2d
N

√
Sij for i �= j . Unitary matrices

U = IN − 2d
N

G have been recently studied for the particular
case of equiangular tight frames [20]. In the Bloch sphere
associated to a one-qubit system we have some relevant
geometrical structures: the orthonormal basis (line), three
MUBs (three orthogonal lines), and SIC-POVM (tetrahedron).
All these structures are unique, up to a global rotation. In higher
dimensions, however, some geometrical structures allow one
to introduce free parameters, which cannot be absorbed in a
global rotation. In Sec. III we introduce the method which
considerably simplifies the study of this problem.

III. RESTRICTED DEFECT AND FREE PARAMETERS

In this section, we derive the method to introduce the
maximal possible number of free parameters into a given
POVM composed by N vectors in dimension d associated
to a given symmetric matrix S; see Eq. (1). Using Proposition
1, this problem is equivalent to finding the most general real
antisymmetric matrix R of size N such that

Vij (t) = Uij e
itRij (6)
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is a unitary matrix, provided that U = IN − 2d
N

G is associated
to a given particular POVM satisfying Eq. (1); that is, U is an
Hermitian unitary matrix having constant diagonal Uii = 1 −
2d/N and |Uij | = δij − 2d

N

√
Sij . Note that we have introduced

a parameter t in Eq. (6) for convenience, which can be set to
t = 1 after applying our method. The full problem is given as
follows:

Problem P (1)
NL. Find the most general matrix Vτ (t) of size

N of the form of Eq. (6), initially depending on τ parameters,
such that

Vτ (t)Vτ (t)† = IN . (7)

This problem implies solving a system of nonlinear coupled
equations, which depends on τ = [N (N − 1)/2 − z] − (N −
1) nontrivial variables, where z is the number of zeros existing
in the strictly upper triangular part of the matrix R. Note that τ

is composed of the total number of parameters Rij , i.e., N (N −
1)/2 − z, minus the number of trivial variables (N − 1). These
trivial parameters can be absorbed by applying the transfor-
mation V → EV E†, where E = Diag(1,eitR01 , . . . ,eitR0(N−1) ).
In order to simplify the resolution of problem PNL we define
the following linear problem:

Problem P (2)
L . Find the most general matrix Vτ (t) of size

N , initially depending on τ parameters, such that

lim
t→0

d

dt
[Vτ (t)Vτ (t)†] = 0. (8)

Using Eq. (6), we can explicitly write Eq. (8) as

−2Vk,kVk,jRj,k +
∑
l �=j,k

Vk,lVl,j (Rk,l − Rj,l) = 0, (9)

for 1 � j < k � N and 1 � l � N , which is a linear problem
on variables Rij . Note that P (2)

L ⊂ P (1)
NL, as Eq. (8) is a

necessary condition to obtain Eq. (7).
The linear problem P (2)

L allows us to simplify the full
problem PNL by determining r out of τ variables Rij , where
r is the number of linearly independent equations (9). After
solvingP (1)

L , the remaining number of free parameters Rij lead
us to the definition of the restricted defect � of the Hermitian
unitary matrix U . It reads

� = τ − r, (10)

where τ = (N − 1)(N − 2)/2 − z and z is the number of zeros
existing in the strictly upper triangular part of the matrix U .
Note that this quantity is closely related to the defect of a
unitary matrix [21], adapted to the case of matrices with a
special structure. The standard defect was used to define an
upper bound on the number of free parameters allowed by
complex Hadamard matrices [18] and forms, by construction,
an upper bound for the restricted defect. In both cases, the
defect equal to zero implies that a given solution is isolated,
so no free parameters can be introduced.

In general, the restricted defect represents an upper bound
for the maximal number of free parameters allowed by the
full problem PNL. If � = 0, then the full problem PNL is
solved by the linear problem P (1)

L . In this case, it is not
possible to introduce free parameters into the matrix V . On
the other hand, if � > 0, it is necessary to solve an additional

nonlinear problem in order to determine the continuous family
of solutions.

Problem P (3)
NL. Find the most general matrix V�(t) of size

N , initially depending on � parameters, such that

V�(t)V�(t)† = IN . (11)

Note that problemP (2)
NL is simpler than problemPNL as � < τ .

This is so because r > 0 in Eq. (10). After solving problem
P (2)

NL we can assume that t = 1, without loss of generality. In
Sec. IV we apply our results to SIC-POVM and maximal sets
of MUBs.

Let us first illustrate the method in action by considering
two MUBs for a single-qubit system: |φi〉 = |i〉, i = 0,1, and
|ψ±〉 = (|0〉 ± |1〉)/√2. The Gram matrix (4) associated to
this set of m = 2 MUBs is given by

GMUB = 1

2

⎛
⎜⎝

2 0 1 1
0 2 1 −1
1 1 2 0
1 −1 0 2

⎞
⎟⎠. (12)

A family of two MUBs stemming from this fixed set would
have associated a Gram matrix of the form

GMUB = 1

2

⎛
⎜⎜⎝

2 0 eitR13 eitR14

0 2 eitR23 −eitR24

e−itR13 e−itR23 2 0
e−itR14 −e−itR24 0 2

⎞
⎟⎟⎠, (13)

and, from Proposition 1, the unitary matrix U = IN −
2d
N

GMUB. Note that the full problem P (1)
NL initially depends

on τ = 1 nontrivial parameter, as R13, R14, and R23 can be
absorbed by considering the diagonal unitary operator E =
diag[1,e−iR23 ,eiR13 ,eiR14 ] and the redefinition V → EV E†.
Therefore, according to Eq. (6), and after considering the
diagonal transformation E, we find that

Vτ (t) = 1

2

⎛
⎜⎝

0 0 1 1
0 0 1 −eitR24

1 1 0 0
1 −e−itR24 0 0

⎞
⎟⎠. (14)

Problem P (2)
L implies the following equation:

R24 = 0, (15)

where r = 1 and, therefore, � = 0. Thus, we cannot introduce
free parameters in Eq. (14), which implies that the considered
pair of MUBs is isolated. Indeed, |φi〉 = |i〉, i = 0,1, and
|ψ±〉 = (|0〉 ± |1〉)/√2 is the unique pair of MUBs existing
in dimension 2, up to a global rotation [11].

IV. ISOLATED MUB AND SIC-POVM

In this section, we study the problem of introducing free
parameters in MUB and SIC-POVM. Our first main result
consists in proving that maximal sets of MUBs exist in low
prime power dimensions.

Proposition 2. Maximal sets of d + 1 MUBs in dimensions
d = 4, 8, 9, and 16 are isolated.

The results arises as follows. The upper triangular part of
the Gram matrix associated to a set of m MUBs in dimension
d contains z = md(d − 1)/2 zero entries. Given that the size
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of the Gram matrix of the set is NMUB = md and m = d + 1
we have z = d(d2 − 1)/2. Therefore, the matrix G contains
τ = (NMUB − 1)(NMUB − 2)/2 − z parameters. The next step
consists in determining how many of these parameters are
remaining after solving the linear problem P (1)

L . To this end,
we calculated the number of linearly independent equations of
the linear system defined in Eq. (9) for the cases d = 4, 8, 9, and
16, finding r4 = 141, r8 = 2233, r9 = 3556, and r16 = 34545,
respectively. By using these results and Eq. (10) we find that
the restricted defect � vanished in all these cases. We based
our calculation of the restricted defect � on the maximal sets
of MUBs provided in Refs. [4,12]. In dimension d = 9, we
considered Ref. [22] to obtain simpler expressions of results
presented in Ref. [4].

Let us now consider the case of SIC-POVM. It is well
known that SIC-POVM for a qubit system is essentially unique,
as it represents the regular tetrahedron inscribed into the Bloch
sphere, up to a global rotation. Furthermore, single-parameter
families of SIC-POVM for a qutrit system exist [1], which rep-
resents the most general solution [23]. For higher dimensions,
the problem of introducing free parameters in SIC-POVM
is still open. As a preliminary result, exhaustive numerical
simulations indicate that free parameters cannot be introduced
in SIC-POVM, at least in low dimensions higher than three.
For this problem, we have solved the linear problem P (1)

L in
dimensions d = 4, . . . ,16, obtaining the following results.

Proposition 3. SIC-POVMs in dimensions d = 4, . . . ,16
are isolated.

This result also includes the Hoggar lines [24], a special
class of SIC-POVM defined in dimension d = 8. We consid-
ered the total number of parameters τ = (NSIC − 1)(NSIC −
2)/2, as there is no pair of orthogonal vectors in SIC-POVM
(z = 0), and NSIC = d2. In order to prove Proposition 3 we
solved the linear problem P (1)

L for both analytical [24–28] and
highly accurate numerical SIC-POVMs [10]. In all the cases
we have found � = 0, which implies that free parameters
cannot be introduced. Calculations of the restricted defect have
been done in MATLAB.

Let us now study the robustness of the restricted defect �

under the presence of inaccuracies in describing the POVM.
Given the set of vectors {φj } defined in Eq. (2) we quantify the
inaccuracy in approximate vectors {φ′

j } ≈ {φj } by introducing
the inaccuracy factor:

s = 1√
d

max
j

‖φ′
j − φj‖. (16)

The factor sμ quantifies the maximal allowed inaccuracy in
entries of vectors φj . For example, in the case of approximate
solutions {φ′

j } having k digits of precision we have s ≈ 10−k .
In our study of robustness of the defect �, we simulate the
introduction of inaccuracies by considering

(φ′
j )i = (φj )i + sξi, (17)

where (x)i denotes the ith entry of the vector x and ξi are
random numbers uniformly distributed in the interval [−1,1].

Let us assume that R is the real matrix associated to
the linear system of equations (9). Note that the number of
linearly independent equations of such a system is given by
rank(R) = r . When considering inaccuracies in the POVM the

FIG. 1. Smallest singular values σ0 and σ1 of R as a function of
the inaccuracy factor s for SIC-POVM. Open and solid symbols
represent σ0 and σ1, respectively, for two- (◦) and three-qubit
(�) systems. Each case is averaged over eight samples randomly
chosen and generated from the approximate SIC-POVM provided in
Ref. [10], which has accuracy s = 1×10−32. The confidence regions
(blue and red rectangles) are given by values of s existing between
zero and the value determined by the intersection of the lower and
upper bounds. Here, s2 and s3 stand for two- and three-qubits systems,
respectively. Outside the confidence regions it is not possible to
discriminate between singular values σ0 and σ1.

rank of the perturbed matrix R′ and R may differ. Therefore,
we need to study how much the singular values of R′ are
affected under the presence of inaccuracies. In particular, we
are interested in the perturbation of the two smallest singular
values σ0 = 0 and σ1 > 0, which are responsible for the
variation of the rank. In order to obtain a confidence region
for the restricted defect (10) we need to consider the following
two bounds: (i) an upper bound for the maximal perturbation
of σ0 and (ii) a lower bound for the maximal perturbation of
σ1. In Appendix we show that

|σ ′
i − σi | � f (d,N ) s (18)

for i = 0,1, where s is the inaccuracy quantifier defined in
Eq. (16) and

f (d,N ) = 26d2

N

(
1 − 2d

N

)2
√

N − d

N (N − 1)
(19)

for N > 2d. Let us now find the smallest possible value
of s such that the critical condition σ ′

0 = σ ′
1 holds, which

imposes an upper bound for the confidence region of the
restricted defect �. By considering Eq. (18) we find that
� does not change its value for 0 � s � smax, where smax =
σ1(2f (d,N ))−1. Note that σ1 depends on the exact solution,
which is not known if the exact solution is not available. By
using Eq. (18) we find that σ1 � σ ′

1 + f (d,N ) s, which implies

smax � σ ′
1 + f (d,N ) s

2f (d,N )
. (20)

Note that this inequality provides a confidence region only if
f (d,N ) s  1.

Confidence regions for SIC-POVM and maximal sets of
MUBs for two and three qubits are depicted in Figs. 1
and 2, respectively. For the case of four-qubit systems we
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FIG. 2. Smallest singular values σ0 and σ1 of R as a function
of the inaccuracy factor s for maximal sets of MUBs. Open and
solid symbols represent σ0 and σ1, respectively, for two- (◦) and
three-qubit (�) systems. Each case is averaged over eight samples
randomly chosen and generated from analytic solutions.

have solutions with precision s = 1×10−32, whereas the upper
bound for the confidence region is s4 ≈ 4×10−3. For MUBs,
we calculated the restricted defect � by considering analytic
solutions in all the cases [4,12,22].

V. FREE PARAMETERS IN MUB AND SIC-POVM

In Sec. IV we prove that some maximal sets of MUBs and
SIC-POVMs are isolated in low dimensions. In this section, we
first calculate the restricted defect for sets of m = 2, . . . ,d + 1
MUBs in dimensions d = 2, . . . ,8 (see Table I). Interestingly,
the restricted defect for a pair of MUBs B1 and B2 coincides
with the standard defect of the complex Hadamard matrix
H = B

†
1B2. Indeed, the maximal number of free parameters

that can be introduces in the Gram matrix

GMUB =
(
Id H

H † Id

)
(21)

TABLE I. Upper bound on the maximal number of free param-
eters � allowed by subsets of m MUBs in dimension d . The results
do not depend on selecting m subsets of MUBs out of the full set of
d + 1 MUBs. As a remarkable observation, maximal sets of MUBs
are isolated. Also, subsets of m � 6 in dimension 8 and m � 5 MUBs
in dimension 9 are isolated in all the cases. Question marks denote our
lack of knowledge about given number of MUB, while � indicates
the case of three MUBs in dimension 6, which is still considered
unresolved.

m \ d 2 3 4 5 6 7 8 9

2 0 0 3 0 4 0 21 16
3 0 0 3 0 � 0 27 20
4 0 0 0 ? 0 19 32
5 0 0 ? 0 7 0
6 0 ? 0 0 0
7 ? 0 0 0
8 0 0 0
9 0 0
10 0

coincides with the maximal number of parameters that can
be introduced in H . Let us explain some details concerning
Table I. First, note that � = 0 for every subset of 2 � m �
d + 1 MUBs in prime dimensions d = 2,3,5,7. This is so
because every complex Hadamard matrix involved in the set
is equivalent to the Fourier matrix, which is isolated in prime
dimensions [18]. For triplets in dimension 4, we have � = 3,
which coincides with the maximal number of free parameters
that can be introduced [11]. The number of generic restricted
defects for a pair of MUBs in dimension 6 is four, coinciding
with the generic defects of complex Hadamard matrices of size
6 [21]. However, note that there is an exceptional pair of MUBs
for which � = 0, as an isolated complex Hadamard matrix of
size 6 exists [29]. Generic defects for triplets of MUBs are not
well understood (�); see Table I and Ref. [30].

In dimensions 8 and 9 we restricted our attention to subsets
of MUBs arising from the maximal sets defined in Refs. [4,12].
Note that subsets of m � 6 MUBs are isolated in dimension 8,
whereas several families of m = 5 MUBs exist [31]. Another
observation is that the restricted defect � for maximal sets of
d + 1 MUBs in dimension d coincides with the defect for d

MUBs. This is so because the (d + 1)th MUB is univocally
determined by the first d MUBs. For subsets of m < d, the
restricted defect for m MUBs may depend on the subset
chosen. However, results presented in Table I are consistent
for every subset of MUB.

We also studied the restricted defect for equiangular tight
frames composed of N = k2 vectors in dimension d = k(k −
1)/2, typically denoted as ETF(d,N ) [32]. These ETFs have
associated the following Hermitian unitary matrices [20]:

Ui1+ki2+1,j1+kj2+1 = ωi1j2−j1i2 , (22)

where i1,i2,j1,j2 ∈ {0, . . . ,k − 1} and ω = e2πi/k . Matrix (22)
is equivalent to the tensor product of Fourier matrices, Fk ⊗ Fk ,
where (Fk)st = ωst . Table II summarizes the restricted defect
for matrix U in low dimensions. Results are shown in Table II.
For prime values of k, the formula

� = 1
2 (k + 1)(k − 1)(k − 2) (23)

matches all solutions presented in Table II, so we are tempted
to believe that it holds for any prime k.

Let us now study the SIC-POVM problem in dimension d =
3. By considering the fiducial state |φ00〉 = (1, − 1,0)/

√
2 a

TABLE II. Maximal number of free parameters that can be
introduced in ETF composed by N = k2 vectors in dimension
d = k(k − 1)/2. The case k = 2 corresponds to an ETF(3,4) which is
isolated (regular simplex in dimension 3). Also, k = 3 has associated
a SIC-POVM in dimension 3, where � = 4 but only two-parameter
families exist [1]. For the case k = 4 there exists several six-parameter
families of ETF(6,16) [20].

k � k � k �

2 0 7 120 12 1237
3 4 8 273 13 924
4 21 9 352 14 1632
5 36 10 576
6 112 11 540
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BRUZDA, GOYENECHE, AND ŻYCZKOWSKI PHYSICAL REVIEW A 96, 022105 (2017)

SIC-POVM is given by [25]

|φst 〉 = XsZt |φ00〉, (24)

where X|j 〉 = |[j ⊕ 1]〉, Z|j 〉 = ωj |j 〉, ω = e2πi/3, and ⊕
means addition modulo 3. The 9×9 Gram matrix GSIC of
the SIC-POVM and its associated unitary matrix U = IN −
2d
N

GSIC depends on τ = 36 − 8 = 28 parameters, where the
N − 1 = 8 trivial parameters R1,j for j = 2, . . . ,9 have been
set as zero. The linear system of equations (8) associated
with problem P (1)

L has r = 24 linearly independent equations,
which provides a four-dimensional complex set of solutions
Rij , depending on four parameters: R23, R26, R48, and R89.
The additional restriction to have real parameters implies

R23 − 3R89 = R23 − 3R26 = R89 − R26 = 0,

which is equivalent to R26 = R89 = R23/3. After setting t = 1,
we obtain three solutions to problem P (1)

L : V�(R23,R48),
V�(R26,R48), and V�(R89,R48). Now, we are in position to
solve the nonlinear problem P (2)

NL, which is much simpler
than the full nonlinear problem PNL. Indeed, P (2)

NL implies
solving trivial trigonometric equations, which give us the
solutions R26 ∈ {0,π}, R89 ∈ {0,π}, and R23 ∈ {0,π}, respec-
tively. Therefore, we generate six one-parameter families of
SIC-POVM in dimension 3:

S1 : V�(R23 = 0,R48), S2 : V�(R23 = π,R48),

S3 : V�(R26 = 0,R48), S4 : V�(R26 = π,R48),

S5 : V�(R89 = 0,R48), S6 : V�(R23 = π,R48). (25)

Here we note that � = 4 and six one-parameter real solutions
exist. These six solutions belong to the four-dimensional
tangent plane defined by Eq. (8) and do not fit into a lower-
dimensional tangent space, which explains why � cannot take
a lower value. Furthermore, solutions (25) are equivalent, in
the sense that we can transform one into the other by applying a
permutation of rows or columns and multiplication of diagonal
unitary operations to the Gram matrix, which is equivalent to
relabeling and applying global phases to vectors. Solution (25)
represents the most general SIC-POVM existing in dimension
3 [23], up to equivalence. We remark that the generic Hermitian
defect for a SIC-POVM in dimension 3 is � = 2, with the
only exception of the particular vector |φ00〉, where � = 4;
however, from this fact we cannot define a larger family.

VI. ISOLATED KOCHEN-SPECKER SETS

In this section, we apply our method presented in Sec. III to
show that some sets of vectors used in a proof of the Kochen-
Specker contextually theorem [33], typically called KS sets,
are isolated.

KS sets are collections of N vectors in dimension d, which
contain m subsets of d vectors forming orthonormal basis.
Some of these orthonormal bases have common vectors, so
that N < md. These intersections are crucial to prove that a
deterministic local hidden variable theory is not possible [33].
That is, for a system prepared in a quantum state ρ and a set
of KS vectors {φ0, . . . ,φN−1} it is not possible to end up with
N deterministic probabilities Pk = Tr(ρ|φk〉〈φk|) ∈ {0,1}, for
k = 0, . . . ,N − 1. Therefore, the assumption of hidden deter-
minism in quantum mechanics implies that predefined values

TABLE III. Isolated KS sets composed of 13 vectors in dimension
3, 18 vectors in dimension 4, and 21 vectors in dimension 6.
The number of zeros (z) appearing into the upper triangular part
of the Gram matrix of the KS set, total number of parameters (τ ),
rank of the linear system defined in Eq. 8 (r), and restricted defect
(� = τ − r) are defined in Sec. III. For these three KS sets the free
parameters produced by a positive restricted defect � can be absorbed
as global phases of the vectors.

N d z τ r � No. free parameters

13 3 24 78 66 12 0
18 4 63 90 83 7 0
21 6 105 105 103 2 0

of observables depend on the context in which measurements
were implemented. The original proof given by Kochen and
Specker involves N = 117 vectors in dimension d = 3 [33].
Subsequently, examples exhibiting a lower number of vectors
were found. Some remarkable examples are KS sets composed
of N = 13 vectors in dimension d = 3 [34], N = 18 vectors
in dimension d = 4 [35], and N = 21 vectors in dimension
d = 6 [36].

Let us now apply our method to prove that these three
inequivalent KS sets are isolated. The first important obser-
vation is that the three KS sets form three POVMs. This
means that Proposition 1 holds for these sets and, therefore,
the method to introduce free parameters presented in Sec. III
can be applied. In order to do so we have to calculate the
restricted defect � defined in Eq. (10), which is a function
of the total number of parameters τ and the number of
linearly independent equations associated to problem P (2)

L
(see Sec. III). The geometrical structure is determined by
the orthogonality restrictions imposed by the KS sets. For
the above-mentioned three KS sets we have shown that they
are isolated. The way to proceed is similar to the proof
that maximal sets of MUBs or SIC-POVMs are isolated (see
Proposition 2). However, there is a minor additional remark:
the sets are isolated despite that the restricted defect � of the
sets is nonzero. This is so because the apparently remaining �

free parameters can be absorbed by considering a sequence of
nontrivial emphasing in the Gram matrices, which means that
the free parameters can be absorbed as global phases of the
KS vectors. Table III resumes the details of our calculations.

VII. CONCLUSION

We studied the problem to introduce free parameters
in a given POVM having prescribed symmetry, where
mutually unbiased bases (MUBs) and symmetric information-
ally complete-positive operator-valued measurement (SIC-
POVM) are relevant examples (see Sec. II). In particular, our
method allows us to determine whether a given quantum t

design having prescribed symmetry [25] forms an isolated
structure. We introduced a powerful method that divides this
fully nonlinear problem into a linear problem and a simpler
nonlinear problem (see Sec. III).

Using our method, we proved that known maximal sets of
MUBs in dimensions 4, 8, 9, and 16 and known SIC-POVM
in dimensions 4–16 are isolated. In particular, a special class
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of SIC-POVM existing for three-qubit systems, called Hoggar
lines, is isolated (see Sec. IV). Moreover, we calculated an
upper bound for the maximal number of free parameters that
can be introduced in subsets of 2 � m � d + 1 MUBs in
dimensions d = 2–9 (see Sec. V). The same study has been
done for equiangular tight frames in low dimensions, which
define equiangular POVM (see Table II).

As a further result, we studied the robustness of our method
under the presence of inaccuracies in defining the generalized
measurement, which allowed us to establish a confidence
region for the maximal possible number of free parameters
that can be introduced (see Sec. IV). The importance of
robustness relies on the fact that some geometrical structures,
like SIC-POVM, are established analytically in low dimension
only, whereas accurate numerical solutions exist in every
dimension d � 121 and also in d = 124, 143, 147, 168, 172,
195, 199, 228, 259, and 323 [10,37].

Additionally, we proved that three Kochen-Specker con-
textuality sets are isolated (see Sec. VI). Namely, 13 vectors
in dimension 3 [34], 18 vectors in dimension 4 [35], and 21
vectors in dimension 6 [36].

Finally, we pose some intriguing open questions: (i)
Are maximal sets of MUBs isolated in every prime power
dimension? (ii) Are SIC-POVMs isolated in every dimension
d > 3? Furthermore, it would be welcome to develop a more
efficient software to solve the linear problem P (1)

L for POVMs
having N > 300 elements, e.g., maximal sets of MUBs or
SIC-POVM in dimension d > 16.

A MATLAB source code to support calculation of the
restricted defect and additional features is available on the
GitHub platform: https://github.com/matrix-toolbox/defect.
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APPENDIX: ROBUSTNESS OF RESTRICTED DEFECT

In this Appendix we derive the function f (d,N ) which
appears in Eq. (18) and allows us to show that the restricted
defect of a unitary matrix associated to a given generalized

measurement is stable with respect to small perturbations.
Consider a set of vectors φj and the approximate vectors
φ′

j = φj + δφj . The perturbed Gram matrix is given by

(G + δG)ij = 〈φi + δφi |φj + δφj 〉
≈ 〈φi |φj 〉 + 〈δφi |φj 〉 + 〈φi |δφj 〉,

which implies that

|δGij | � ‖φi‖‖δφi‖ + ‖φj‖‖δφj‖ � 2
√

d s. (A1)

Here, we used Eq. (16). Also, from U = I − 2d
N

G we have
|δUii | = 0 and |δUij | � 4d3/2 s/N for i �= j . Let us now
calculate the perturbations on entries of the matrix R, which
defines the system of equations (9). It is simple to show that
if N > 2d the maximal perturbations are produced by the
entries of Rjk = −2UkkUkj , associated to the left-hand term
of Eq. (9). Therefore,

|δRij | = 2|Ukk||δUij | � 2

(
1 − 2d

N

)
4d3/2

N
s

� 8 d3/2

N

(
1 − 2d

N

)
s. (A2)

Using this result, we have

|δ(R†R)ij | = |δ(R†)ijRij + (R†)ij δ(R)ij |
� 2 max

Rij

|δ(R†)ijRij |

� 2 max
Rij

|δ(R†)ij | max
Rij

|Rij |

� 26d5/2

N2

(
1 − 2d

N

)2
√

N − d

d(N − 1)
s. (A3)

Now we are in position to estimate the maximal perturbation
on the eigenvalues of R†R:

λ′ = λk + δλk ≈ λk + 〈δ(R†R)〉. (A4)

From the Gerschgorin circle theorem [38] we have

|〈δ(R†R)〉| �
∑
ij

|δ(R†R)ij |. (A5)

From combining Eqs. (A3), (A4), and (A5) we find that
|λ′

i − λi | � f (d,N ) s, where

f (d,N ) = 26d5/2

N2

(
1 − 2d

N

)2
√

N − d

d(N − 1)
s.

Given that R†R is a positive operator, its eigenvalues λi

coincide with its singular values σi . Therefore, |σ ′
i − σi | �

f (d,N ) s, which proves Eq. (18).
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