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We present a method for accelerating adiabatic protocols for systems involving a coupling to a continuum,
one that cancels both nonadiabatic errors as well as errors due to dissipation. We focus on applications to a
generic quantum state transfer problem, where the goal is to transfer a state between a single level or mode, and a
propagating temporal mode in a waveguide or transmission line. Our approach enables perfect adiabatic transfer
protocols in this setup, despite a finite protocol speed and a finite waveguide coupling. Our approach even works
in highly constrained settings, where there is only a single time-dependent control field available.
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Introduction. Adiabatic quantum evolution provides an
efficient and robust way to implement a variety of impor-
tant quantum operations including state transfer [1–7], state
preparation [8–11], and even quantum logic gates [12–14].
While such protocols are robust against timing errors, they
are necessarily slow, making them vulnerable to dissipation
or fluctuations. There is thus considerable interest in finding
ways to accelerate adiabatic protocols, such that fast evolution
is possible without significant nonadiabatic errors [15–19].
These techniques are generally referred to as “shortcuts to
adiabaticity” (STA), and involve modifying control fields to
suppress the net effect of nonadiabatic errors [20–25]. Recent
experiments have successfully implemented versions of these
strategies [26–30].

A key drawback of the transitionless driving strategy and
its higher-order variants [20–25] is that they require the exact
diagonalization of a time-dependent Hamiltonian, making
them unwieldy for systems with many degrees of freedom.
They are thus unsuitable for an important class of quantum
state transfer problems, where the goal is to transfer an initial
state in a localized system having discrete energy levels to a
propagating state in a continuum such as a waveguide or a
transmission line (see, e.g., Refs. [31–33]).

In this Rapid Communication, we present a general method
for applying STA to the above class of problems. The method
is based on first deriving an effective non-Hermitian Hamilto-
nian, and then constructing dressed states and modified control
sequences that suppress both nonadiabatic errors (due to finite
protocol speed) and “dissipative” errors (due to the coupling
to the continuum). We apply our technique to two ubiquitous
quantum state transfer problems based on stimulated Raman
adiabatic passage (STIRAP) [2]. Such protocols have been
discussed in systems ranging from atomic cavity QED setups
[31,32] to optomechanics [34]. Remarkably, we show that
our method works even in the highly constrained protocol
introduced by Duan et al. [32], where there is only a single
time-dependent control field in the Hamiltonian.

Our work represents a substantial advance over previous
work using STA to accelerate adiabatic state transfer [20–25],
as these works did not include a coupling to a continuum. It
also differs significantly from studies exploring STIRAP-style
state transfer to a continuum [35–38], as these did not consider
any kind of STA correction. References [39–41] applied STA
techniques to phenomenological non-Hermitian Hamiltonians,

but in a very different context from the work presented here. In
particular, Ref. [39] requires both the diagonalization of a non-
Hermitian Hamiltonian, and the use of non-Hermitian control
fields. In contrast, the approach that we develop in this Rapid
Communication leads to simple modifications of the original
pulse sequence, without requiring additional non-Hermitian
controls which would be very challenging to experimentally
implement.

System. While our approach can be applied to a wide
variety of adiabatic protocols [see, e.g., Figs. 1(b) and 1(c)
and Ref. [43]], for concreteness we focus on the generic state
transfer problem depicted in Fig. 1(a), where three discrete
levels A, B, and C are coupled in a �-system configuration,
with the C state additionally coupled to a waveguide. The
goal is to convert an initial state |A〉 to a propagating
mode in the waveguide. The system has two time-dependent
couplings G1(t),G2(t), and is described by the Hamiltonian
Ĥ = Ĥ0(t) + Ĥint + ĤWG, with (h̄ = 1):

Ĥ0(t) = G1(t)|A〉〈B| + G2(t)|C〉〈B| + H.c.,

Ĥint =
√

κ

2π

∫ ωmax/2

−ωmax/2
dω[|C〉〈Dω| + |Dω〉〈C|],

ĤWG =
∫ ωmax/2

−ωmax/2
dω ω |Dω〉〈Dω|. (1)

The states in the continuum are defined as |Dω〉 = ĉ†(ω)|vac〉,
where ĉ(ω) is the photon annihilation operator of a mode
at frequency ω in the waveguide, obeying the commutation
relation [ĉ(ω),ĉ†(ω′)] = δ(ω − ω′), and |vac〉 is the vacuum
of the whole system. We consider a waveguide with a
finite bandwidth ωmax, and also that the amplitude of the
interaction between the state |C〉 and the waveguide states |Dω〉
is frequency independent [κ(ω) = κ,∀ |ω| � ωmax/2]. As is
standard, we will consider the Markovian regime throughout
this work, where the waveguide bandwidth is much larger than
any other frequency scale in the problem. As such, we can take
ωmax → ∞.

The above model corresponds to the basic setup described
in Refs. [31,32]; we will consider both the case where G1(t)
and G2(t) are independently tunable, and the more constrained
situation where only G1(t) is tunable. Note that our results will
also immediately apply to the model where the discrete levels
A,B,C are replaced by bosonic modes, as is the situation in
optomechanical state transfer problems [5–7]. In this case, our
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(a)
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(c)

FIG. 1. (a) Three-level � system with time-dependent couplings
G1(t),G2(t). The level |C〉 is coupled (rate κ) to a waveguide. The goal
is to perform a STIRAP-style state transfer to adiabatically transfer
state |A〉 to a propagating mode in the waveguide. (b) System of three
bosonic modes coupled in a � configuration, as can be realized in
optomechanics [42]. â1 and â2 are photonic modes, b̂ is a mechanical
mode, and Gj (t) represent many-photon optomechanical couplings.
In the single-excitation subspace, this system is completely equivalent
to (a). The correspondence also holds for a general initial state due
to the linearity of the dynamics [43]. (c) Realization of (a) using the
setup introduced in Refs. [31,32], where a three-level system is placed
in a cavity (the cavity mode annihilation operator is denoted by â),
which is in turn coupled to a waveguide. Here, there is only a single
time-dependent control field [G2(t) = g is time independent].

protocol can be used to transfer an arbitrary A-mode state to
the state of a propagating wave packet in the continuum [43].

The starting point for our accelerated adiabatic protocols
is the basic STIRAP approach for moving population from A

to C in the case where κ = 0 [2]. This protocol uses the fact
that Ĥ0(t) has two instantaneous eigenstates |±(t)〉 of energy
±G0(t) (the bright states [43]) and a zero-energy instantaneous
eigenstate (the dark state),

|dk(t)〉 = cos θ (t)|A〉 − sin θ (t)|C〉, (2)

where we have parametrized the control fields as G1(t) =
G0(t) sin θ (t) and G2(t) = G0(t) cos θ (t). The “dark state” has
zero overlap with |B〉. Standard STIRAP [2] works by evolving
θ (t) continuously from 0 to π/2, such that |dk(t)〉 changes
continuously from being |A〉 at the initial time, to being |C〉
at the final time. If this is done slowly enough compared to
the gap G0(t) separating |dk(t)〉 from the “bright” adiabatic
eigenstates |±(t)〉, the system will remain in |dk(t)〉 at all
times, thus effecting the desired transfer.

For κ nonzero, we could again imagine a STIRAP-like
protocol, where the dark state changes adiabatically from being
localized in A to C. As C is now coupled to the waveguide, in
the ideal case the excitation will be transferred to a propagating
waveguide excitation. This dark-state approach for stationary
to itinerant state transfer has been discussed in numerous works
[31,32,34].

Accelerated STIRAP with dissipation. While the above
approach has many advantages, any finite speed will lead to
nonadiabatic errors which disrupt this transfer. Reference [25]
presented a dressed-state approach for mitigating this problem
in the case where κ = 0. In our case, the coupling to the
waveguide will create additional errors. We show here how
these can also be mitigated by using a dressed-state approach.

We start by writing the solution to the Schrödinger equation
(in the original laboratory frame) in the form

|ψ(t)〉 = uA(t)|A〉 + uB(t)|B〉 + uC(t)|C〉

+
∫ +∞

−∞
dω uWG(ω,t)|Dω〉. (3)

One can next solve the linear equations of motion for the
waveguide mode amplitudes uWG(ω,t) [43], and use these
to simplify the equations for the remaining amplitudes. By
assuming that there are no excitations in the waveguide at
the initial time ti , one finds that the equations of motion
of the remaining amplitudes correspond to a Schrödinger
equation for the effective non-Hermitian Hamiltonian Ĥ1(t) =
Ĥ0(t) − i(κ/2)|C〉〈C|. This Hamiltonian possesses a special
structure: Its Hermitian part [Ĥ0(t)] possesses a set of adiabatic
eigenstates (the dark and bright states), whose existence will
allow us to construct and correct a useful state transfer
protocol. While this structure is of course not generic to an
arbitrary problem with a continuum, it is sufficiently general
to apply to many situations of interest.

We next transform to the adiabatic frame [via a time-
dependent unitary Ûad(t) = ∑

k=±,dk |k(t)〉〈k|], in which the
adiabatic eigenstates of Ĥ0(t) have no explicit time de-
pendence. This involves diagonalizing the three-dimensional
Hamiltonian Ĥ0(t) (and not the full, infinite-dimensional
Hamiltonian Ĥ ). In this frame, our effective non-Hermitian
Hamiltonian takes the form

Ĥ1,ad(t) = Û
†
ad(t)Ĥ1(t)Ûad(t) − iÛ

†
ad(t)

d

dt
Ûad(t)

= G0(t)(|+〉〈+| − |−〉〈−|) − i
κ

2
sin2 θ (t)|dk〉〈dk|

−i
κ

2
cos2 θ (t)

|+〉 + |−〉√
2

〈+| + 〈−|√
2

−i

(
θ̇(t) + κ

4
sin[2θ (t)]

) |+〉 + |−〉√
2

〈dk|

−i

(
− θ̇ (t) + κ

4
sin[2θ (t)]

)
|dk〉 〈+| + 〈−|√

2
. (4)

The diagonal terms in the second line describe the desired
evolution: There is no mixing of the adiabatic eigenstates, and
the decay of the dark state corresponds to the desired emission
into the waveguide. The remaining off-diagonal terms describe
imperfections. In particular, both the dissipation (κ 	= 0) and
the finite protocol speed (θ̇ 	= 0) cause a deleterious mixing of
adiabatic eigenstates. This implies that, while the deleterious
nonadiabatic effects can be arbitrarily reduced by slowing
down the protocol, the deleterious effect of the dissipation
will still be a problem in this regime.

To design improved pulses that overcome these limitations,
we extend the dressed-state approach introduced in Ref. [25].
One first constructs a “dressed” dark state |d̃k(t)〉 ≡ V̂ (t)|dk〉
that coincides with the original dressed state at the initial and
final protocol time i.e., [V̂ (ti) = V̂ (tf ) = 1]. V̂ (t) here is the
unitary operator which defines the dressing (in the adiabatic
frame). Second, one modifies the control pulses G1(t),G2(t)
such that the dynamics never causes transitions between
the dressed dark state and the other two dressed adiabatic
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eigenstates |±̃(t)〉 ≡ V̂ (t)|±〉. We describe this modification
of the control pulses by an added control Hamiltonian Ĥcor(t),
such that the original Hamiltonian is modified as Ĥ0(t) →
Ĥ0(t) + Ĥcor(t) (in the laboratory frame).

Formally, the above “no transitions” requirement is best for-
mulated by writing the effective non-Hermitian Hamiltonian
Ĥ1,ad(t) in the frame where the dressed states V̂ (t)|k〉 (k =
+, − ,dk) have no explicit time dependence. This transformed
Hamiltonian is given by

Ĥ1,dsb(t) = V̂ †(t)[Ĥ1,ad(t) + Û
†
ad(t)Ĥcor(t)Ûad(t)]V̂ (t)

−iV̂ †(t)
d

dt
V̂ (t). (5)

The requirement that the dynamics does not cause transitions
out of the dressed dark state then becomes

〈+̃|Ĥ1,dsb(t)|d̃k〉 = 〈−̃|Ĥ1,dsb(t)|d̃k〉 = 0. (6)

Note that as Ĥ1,dsb(t) is non-Hermitian, fulfilling the above
condition does not also imply 〈d̃k|Ĥ1,dsb(t)|±̃〉 = 0. This is
not a concern, as our initial condition (i.e., we start in the dark
state) means that only the matrix elements in Eq. (6) are of
relevance.

In order to implement the above strategy, we take a dressing
operator

V̂ (t) = exp

[
iμ(t)

( |+〉 − |−〉√
2

〈dk| + H.c.

)]
. (7)

Here, μ(t) parametrizes the strength of the dressing at time t .
The fact that the dressing must turn off at the initial and final
times implies that μ(t) must tend to zero at the start and end
of the protocol.

We also parametrize the added correction Hamiltonian via
two functions gx(t) and gz(t),

Ĥcor(t) = Ûad(t)

[
gx(t)

( |+〉 − |−〉√
2

〈dk| + H.c.

)

+gz(t)(|+〉〈+| − |−〉〈−|)
]
Û

†
ad(t), (8)

which leads modifications of the pulses G1(t) and G2(t),

G1,cor(t) = G1(t) − gx(t) cos θ (t) + gz(t) sin θ (t),

G2,cor(t) = G2(t) + gx(t) sin θ (t) + gz(t) cos θ (t). (9)

With these definitions in hand, we can now constrain the
dressing and modified control pulses so that they fulfill Eq. (6),
the condition which prevents transitions out of the dressed
dark state (either by nonadiabatic errors, or by dissipation).
One finds [43]

gx(t) = −μ̇(t) + κ

4
sin2[θ (t)] sin[2μ(t)], (10)

gz(t) = 1

tan μ(t)

(
θ̇(t) + κ

4
sin[2θ (t)]

)
− G0(t). (11)

We thus have an infinite number of corrected protocols that
can yield a perfect fidelity despite nonzero κ and θ̇ : For any
possible dressing function μ(t) that starts and ends at zero,
one simply needs to use modified control pulses that satisfy
Eqs. (10) and (11).

Accelerated protocol in the presence of dissipation. In the
case where both G1(t) and G2(t) are controllable, one can find
a simple correction by choosing the dressing strength μ(t) so
that the control-correction gz(t) = 0. Using Eq. (11), we obtain
easily

μ(t) = arctan

[
θ̇(t) + (κ/4) sin[2θ (t)]

G0(t)

]
. (12)

Recall that for STIRAP, θ (t) varies from 0 to π/2 during
the protocol; hence, the above μ(t) is guaranteed to vanish at
the start and end of the protocol (as required) as long as the
original uncorrected protocol is sufficiently smooth. With μ(t)
determined, the needed modification of the control pulses is
given immediately by Eqs. (10) and (9).

For κ = 0, the dressed states defined by this choice of μ(t)
correspond to the instantaneous eigenstates of the adiabatic
Hamiltonian Ĥ1,ad (the so-called superadiabatic states). The
corresponding corrected pulse sequence then coincides with
that described in Refs. [25,29] and is termed superadiabatic
transitionless driving (SATD). With nonzero κ , we see that
both the choices of dressed states and control fields are
modified [via the second term in Eq. (12)]. This modification
ensures that irrespective of the size of κ , we can still have a
perfect state transfer from |A〉 to a propagating temporal mode
in the waveguide. We term this correction scheme “SATD+κ .”

With the correction implemented, the dynamics is easy
to describe. One prepares the system in |A〉 at the initial
time ti , which coincides with the dressed dark state, |A〉 =
|d̃k(ti)〉. At t > ti , the correction ensures that the system only
has amplitude to be in the dressed dark state |d̃k(t)〉 or in
the waveguide; the remaining dressed states |±̃(t)〉 are never
occupied. Defining ũdk(t) = 〈d̃k(t)|ψ(t)〉, one obtains

|ũdk(t)|2 = exp

[
−

∫ t

ti

dt ′ κeff(t
′)
]
, (13)

where κeff(t ′) = κ
2 sin2[θ (t ′)] cos2[μ(t ′)]. The physics is thus

that the dressed dark state simply leaks directly into the
waveguide at an effective instantaneous rate κeff (t). The fidelity
of the state transfer operation at time t , F (t), can then be
defined as the probability of having the initial excitation in the
waveguide, i.e.,

F (t) =
∫

dω|uWG(ω,t)|2 = κ

∫ t

ti

dτ |uC(τ )|2, (14)

where in the last equality we made use of the expression
of uWG(ω,t) in the Markovian limit [43]. A full transfer to
the waveguide will thus necessarily require a total protocol
time ttot > 1/κ . There is, however, no additional constraint
on the size of the adiabatic gap G0(t) relative either to protocol
time or the size of the dissipation.

It is also interesting to ask about the temporal mode shape
f (t) of the state produced in the waveguide. This is defined
via the amplitude uWG(ω,t) [cf. Eq. (3)] at the end of the
protocol, and is completely determined by the time-dependent
amplitude associated with |C〉, uC(t),

f (t) = lim
T →∞

∫ +∞

−∞

dω√
2π

e−iω(t−T )uWG(ω,T ) = −i
√

κuC(t).

(15)
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Finally, the perfect fidelity possible with the corrected
protocol does come with a price: The use of a dressed dark
state means that at intermediate times, the level |B〉 will have
a nonzero occupancy given by

|uB(t)|2 = sin2[μ(t)] exp

[
−

∫ t

ti

dt ′ κeff(t
′)
]
. (16)

As the dressing strength μ(t) is proportional to θ̇ (t) [see
Eq. (12)], the faster the protocol speed, the greater is the
population of |B〉 at intermediate times.

To demonstrate the utility of SATD+κ , we use it to correct
the optimal STIRAP pulses discussed by Vitanov et al.
in Ref. [44]. They are defined by G0(t) = G0 and θ (t) =
π/[2(1 + e−νt )], and only turn on and off asymptotically
as t → ±∞. To mimic a realistic experiment, we truncate
the pulses to a finite time interval −ti = tf � 7.4/ν, which
ensures G1(ti) = G2(tf ) = 10−3G0. Figure 2(a) shows the
asymptotic behavior of fidelity limt→∞ F (t) for this protocol
versus the protocol speed ν, with comparisons against both our
SATD+κ correction, and the κ = 0 correction. The SATD+κ

correction yields a several orders of magnitude improvement.
Note that the only reason it fails to be perfect is due to
constraining the pulses to a finite time interval. Moreover, even
when we include incoherent decay on the intermediate level

(b) (c)

(a)

FIG. 2. SATD+κ correction for STIRAP-style state transfer to
a waveguide based on the optimal STIRAP pulses described in the
text. We take κ to be equal to the adiabatic gap G0, a regime in which
dissipative errors are large. (a) Asymptotic fidelity limt→∞ F (t) as a
function of protocol speed ν for the uncorrected STIRAP protocol
(light blue top line), the SATD protocol (green middle line), and
the SATD+κ protocol (thick red bottom line). The incoherent decay
rate of the middle |B〉 level is either � = 0 (solid curves) or � =
10−3κ (diamonds whose positions correspond to those of the solid
lines). For � = 0, the fidelity error of the SATD+κ protocol is only
limited by our truncation of the pulses: The initial and final time have
been chosen such that G1(ti) = G2(tf ) = 10−3G0. Inset: Shape of the
emitted temporal mode in the waveguide when using the corrected
pulse sequence [same labeling as in (b)]. (b), (c) Time dependence of
uncorrected and corrected pulse amplitudes G1(t)/G0 and G2(t)/G0

during the protocol.

|B〉 [by adding a non-Hermitian term −i(�/2)|B〉〈B| to Ĥ1(t)]
at a rate � = 10−3G0 (diamonds), the SATD+κ correction still
yields a several orders of magnitude improvement. Figures 2(b)
and 2(c) show the form of the corrected pulse sequences, while
the inset of Fig. 2(a) shows the final outgoing temporal mode
when using the SATD+κ correction.

Accelerated STIRAP using a single control field. Adiabatic
state transfer to a waveguide is also possible in systems where
G2(t) = g is a fixed constant, and only G1(t) is controllable
[e.g., Fig. 1(b)] [31,32]. The SATD+κ approach for correcting
errors is no longer viable, as it requires both G1(t) and G2(t)
to be time dependent. Nonetheless, by using an alternate form
of dressing, we can still obtain a perfectly corrected protocol
in this more constrained setting.

When G2 = g is constant, the uncorrected adiabatic transfer
protocol here involves slowly ramping G1(t) up from zero until
it is � g at a time t ∼ tmid, so that the adiabatic dark state is
just |C〉. One then waits for a time ∼t0 > 1/κ for the state to
decay to the waveguide, and then ramps G1(t) back down to
zero [31,32]. A simple pulse shape that accomplishes this is
cf. Fig. 3(b)

G1(t) = Gmax

2
(tanh[νt] − tanh[ν(t − t0)]). (17)

(b) (c)

(a)

FIG. 3. STA correction for constrained STIRAP-style state trans-
fer, where G2(t) = g at all times. Corrections are based on the
adiabatic control pulse given in Eq. (17); we set g = 6κ , and
Gmax = 30κ . (a) Fidelity error at the end of the protocol as a function
of protocol speed ν for the uncorrected and corrected protocols. The
correction yields ∼6 orders of magnitude improvement for a wide
range of protocol speeds. The fidelity error of the corrected protocol
is only limited by our truncation of the control pulses [initial and final
time have been chosen such that G1(ti) = G1(tf ) = 10−3g], and the
finite amplitude Gmax of the pulse at intermediate time. (b) Evolution
of the control field G1(t) during the protocol, without (solid line) and
with (dashed and dashed-dotted lines) correction; the legend indicates
the value of protocol speed ν. (c) Shape of the emitted temporal mode
in the waveguide when using the corrected pulse (the same quantity
has been represented in the inset for the noncorrected pulse); the
curves are for different values of ν [same labeling as in (b)].
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The rate ν here sets both the rate of the initial ramp and the
time tmid, and t0 sets the delay between the turn-on and turn-off
phases. This pulse would give a perfect transfer in the limit
Gmax � ν,κ,g.

Our goal is to make the above protocol perfect even
when nonadiabatic and dissipative effects are important, i.e.,
when ν/Gmax,κ/Gmax are finite. We start by insisting that
our correction does not modify the amplitude G2(t) = g

[i.e. G2,cor(t) = g], which implies [cf. Eq. (9)] gx(t) sin θ (t) +
gz(t) cos θ (t) = 0. Using this constraint in Eqs. (10) and (11)
results in a differential equation for the dressing amplitude
μ(t),

μ̇(t) sin θ (t) sin μ(t) = θ̇ (t) cos θ (t) cos μ(t) − g sin μ(t)

+κ

2
sin θ (t) cos μ(t)[1 − sin2 θ (t) cos2 μ(t)]. (18)

Finding a pulse that corrects for nonadiabatic and dissipa-
tive errors thus requires solving Eq. (18) with the boundary
condition μ(ti) = 0. This, however, is not enough: We also
require that the dressing strength μ(t) vanish in the middle of
the protocol (i.e., t ∼ tmid), so that the dressed dark state is just
|C〉 and can decay fully into the waveguide. A priori, there is
no guarantee that, in general, the solution of Eq. (18) [with
μ(ti) = 0] fulfills this condition.

Serendipitously, for the uncorrected pulse sequence in
Eq. (17), we find via an explicit numerical integration of
Eq. (18) that the dressing μ(t) does indeed almost completely
turn off in the middle of the protocol as desired [43]. We
use Eqs. (18) and (9) to find the corrected pulse G1,cor(t)
on the interval (−∞,t0/2) [43]. For t > t0/2, the transfer is
effectively complete, and it does not matter how we turn off the
pulse i.e., there is no need to correct [G1(t)]. We thus have the
pulse turn off exactly the same way as the uncorrected pulse,
i.e., G1,cor(t) = AG1(t) (where the constant A is chosen to
ensure continuity).

Figure 3 shows corrected pulses and fidelity improvements
resulting from this approach. We use finite initial and final
times, chosen so that G1(ti) = G1(tf ) = 10−3g, and also pick
the delay time t0 = −2ti + 5/ν to scale with 1/ν; the result
is that the total pulse duration scales inversely with the speed
parameter ν. Figure 3(a) demonstrates an impressive six orders
of magnitude suppression of the fidelity error in regimes
where both adiabatic and dissipative errors contribute equally.
Note that for extremely fast pulses ν � κ , both corrected and
uncorrected protocols are limited by there not being enough
time for the state to decay to the waveguide. Figure 3(b)
demonstrates that the correction to the pulses is extremely
simple, corresponding to a simple “wiggle” being added during
the turn-on phase.

Finally, our correction also has the benefit of resulting in ex-
tremely simple and smooth temporal mode shapes. Figure 3(c)
shows the temporal mode shapes resulting from the corrected
protocol, while the inset shows the mode shapes obtained in
the original, uncorrected protocol. The fast oscillations here
(which are absent when one uses the correction) would make
subsequent “catch” operations extremely difficult.

Conclusions. We have presented a general strategy for
using STA techniques to accelerate adiabatic processes for
systems which include an infinite-dimensional continuum.
Focusing on the problem of adiabatic state transfer between a
discrete system and a waveguide, our technique allows one to
both accelerate standard STIRAP-style adiabatic approaches
and completely counteract dissipative errors generated by the
coupling to the continuum. The application of this method on
two experimentally relevant situations shows an improvement
of the fidelity by several orders of magnitude, even when
the intermediate level is subject to damping. In the future,
this technique could be generalized to describe more general
many-body systems, where part of the system could be
modeled as an effective continuum.
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