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All entangled pure quantum states violate the bilocality inequality
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The nature of quantum correlations in networks featuring independent sources of entanglement remains
poorly understood. Here, focusing on the simplest network of entanglement swapping, we start a systematic
characterization of the set of quantum states leading to violation of the so-called “bilocality” inequality. First, we
show that all possible pairs of entangled pure states can violate the inequality. Next, we derive a general criterion
for violation for arbitrary pairs of mixed two-qubit states. Notably, this reveals a strong connection between the
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality and the bilocality inequality, namely, that any entangled
state violating CHSH also violates the bilocality inequality. We conclude with a list of open questions.
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Introduction. Quantum nonlocality, in the sense of violation
of a Bell inequality, was considered as a mere curiosity—when
not entirely ignored—during several decades after Bell’s
seminal work [1]. Things changed dramatically in the early
1990s when Ekert showed that nonlocality can be exploited
to establish cryptographic keys between two remote observers
[2]. How could one ignore something useful for cryptography,
especially in our information-based society? Moreover, also in
the early 1990s, experiments showed that the violation of Bell
inequalities can be demonstrated over several kilometers using
special optical fibers [3] and even outside the controlled labo-
ratory environment using standard telecom fibers [4]. This led
to rapid developments, both conceptually and for applications.
Today, Bell inequality violation is routinely used in order to
demonstrate the presence of entanglement in some physical
systems. This demonstrates quantumness beyond any doubt.

In the context of applications, quantum nonlocality led to
the development of the field of device-independent quantum
information processing [5], a way of processing information
requiring no assumption about the details of the physical
implementation; not even the dimension of the Hilbert space in
which the quantum systems are represented. The measurement
statistics suffice to guarantee security for generating, e.g., cryp-
tographic keys [6], or random numbers [7,8]. It is impressive
that NIST has already made available online a beta version of a
randomness beacon that will soon be offered to the public [9].

In the conceptual context, novel developments in quantum
nonlocality have been inspired by experimental work on quan-
tum networks. In such networks, there is not just one source
of entanglement (the resource exploited for Bell inequal-
ity violation), but several sources distributing entanglement
between different nodes, which can perform joint quantum
measurements [10]. This leads to strong correlations across
the entire network. The understanding of such correlations is
highly desirable, although still very limited at the moment.

The simplest example of a joint quantum measurement
is the so-called Bell state measurement (BSM), a central
ingredient in quantum teleportation [11] and in entanglement
swapping [12]. Formally, the BSM is represented by its four
eigenvectors, namely, the Bell states:

|φ±〉 = 1√
2

(|0,0〉 ± |1,1〉), (1)

|ψ±〉 = 1√
2

(|0,1〉 ± |1,0〉), (2)

hence referred to as a joint (or entangled) measurement.
Since all Bell states are maximally entangled, their marginals
are given by the maximally mixed state. Consequently, when
one performs a BSM on independent qubits, all four results
are equally likely, i.e., 25% probability for each.

Figure 1 illustrates the simplest quantum network, with
only three observers and two sources. This is the scenario we
consider in this Rapid Communication. In the standard analysis
of this scenario, i.e., following Bell locality, one would contrast
the correlations achievable with quantum resources, e.g., two
sources of entangled pairs and the BSM in the middle, with
classical resources, i.e., all three parties share some common
local hidden variable (LHV). Note that “local hidden variable”
is the old terminology, going back to Einstein et al. [13]
and Bell [1]. Nowadays one refers to shared randomness,
a terminology closer to cryptography, although technically
synonymous. Hence, all three parties—named Alice, Bob, and
Charlie—would share a common classical random variable.

However, looking at Fig. 1, it is arguably much more natural
to contrast quantum correlations with classical correlations
achievable via two independent sources of shared randomness.
More precisely, Alice and Bob would share some variable
λ (originating from the source between them), while Bob
and Charlie would share another variable μ (originating
from the second source). Importantly the variables λ and μ

should be uncorrelated, as the two sources are independent.
This independence assumption is very natural, given that the
quantum network of Fig. 1 features two fully independent
sources of entanglement. There is thus no reason to assume that
λ and μ are correlated. This very natural assumption changes
everything.

This new scenario has been studied under the name of
2-locality (2- because of the two sources) or merely bilocal-
ity. More formally, 2-local correlations are characterized as
follows. Consider that Alice receives measurement setting (or
input) x, while Bob gets input y, and Charlie z. Upon receiving
their inputs, each party should provide a measurement result
(an output), denoted A for Alice, B for Bob, and C for Charlie.
In this context, the observed statistics is said to be 2-local
when

p(ABC|xyz)

=
∫

dλ dμ q1(λ)q2(μ)p(A|xλ) p(B|yλμ) p(C|zμ),
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FIG. 1. Scenario of bilocality, the network we consider in this
work. In the quantum setting, two independent sources distribute
entangled states, ρAB and ρBC , between three distant observers—
Alice, Bob, and Charlie. In order to compare the resulting quantum
correlations to classical ones, we discuss 2-local correlations obtained
by two independent sources of shared classical random variables, λ

and μ. For the bilocality inequality we consider, Alice and Charlie
perform two dichotomic measurements, while Bob performs a fixed
measurement with four possible outcomes. In the quantum setting,
Bob’s measurement is taken to be the Bell state measurement.

where λ and μ are the independent shared random variables
distributed according to the densities q1(λ) and q2(μ), re-
spectively. The set of 2-local correlations (i.e., the set of all
correlations of the above form) is nonconvex [14], rendering
its analysis challenging. In particular, in order to efficiently
characterize the 2-local set, nonlinear Bell inequalities are
required. Note that this is in stark contrast to the set of
Bell-local (or 1-local) correlations which is convex and can
thus be fully characterized by linear Bell inequalities [5].

In Refs. [14,15], first nonlinear inequalities that allow one
to efficiently capture 2-local correlations (better than any linear
inequality) were derived. Here we focus on an inequality
presented in [15], which we will refer to as the bilocality
inequality (for simplicity). Consider that Alice and Charlie
receive binary inputs, x = 0,1 and z = 0,1, and must give
binary outputs, denoted Ax = ±1 and Cz = ±1, respectively.
The middle party Bob always performs the same measurement
(hence receives no input y) with four possible outcomes, as,
e.g., the BSM. Denote Bob’s outcome by two bits B0 = ±1
and B1 = ±1. The bilocality inequality reads

Sbiloc ≡
√

|I | +
√

|J | � 2, (3)

where

I ≡ 〈(A0 + A1)B0(C0 + C1)〉, (4)

J ≡ 〈(A0 − A1)B1(C0 − C1)〉. (5)

The bracket 〈·〉 denotes the expectation value of many
experimental runs.

Interestingly, this inequality can be violated by certain
quantum correlations [15], which would have to be consid-
ered local in the usual Bell approach (i.e., when all three
parties could have common shared randomness). In particular,
consider the case where Alice-Bob, as well as Bob-Charlie,
share a noisy Bell state (with visibility V ), a so-called Werner
state, of the form ρ = V |φ+〉〈φ+| + (1 − V )14 . Conditioned
on one outcome of Bob’s BSM, the state shared by Alice and
Charlie is again a Werner state, but with lower visibility V 2.
The bilocality inequality can be violated whenever V 2 > 1/2.
This is in strong contrast with the usual Bell approach, where
in order to detect quantum nonlocality, one would require a
visibility V > 1/

√
2 using the Clauser-Horne-Shimony-Holt

(CHSH) [16] Bell inequality,1 while for visibilities up to
V � 0.682 the Werner state admits a LHV model [18] and
can thus not violate any Bell inequality.2

The above results demonstrated the relevance of the
2-locality approach for detecting quantum correlations in
networks. This triggered further research. On the theory
side, novel nonlinear inequalities were derived and more
sophisticated networks were considered (see, e.g., [19–27]).
On the experimental side, violations of the bilocality inequality
were demonstrated [28,29]. However, the extent of quantum
correlations in networks remains poorly understood. This is
precisely the goal of the present work, where we start a
systematic characterization of the class of quantum states
leading to violation of the bilocality inequality (3).

All pairs of pure entangled states. We start our analysis by
considering that both sources emit pure entangled states. De-
note |ψAB〉 = c0|00〉 + c1|11〉 and |φBC〉 = q0|00〉 + q1|11〉
the two normalized (two-qubit) pure states shared by Alice
and Bob and by Bob and Charlie, respectively, written in
the Schmidt basis, with real and positive coefficients cj

and qj . Note that if these Schmidt bases would differ from
the computational basis in which the BSM (1) is written,
then it would suffice to add local unitary rotations on each
qubit to recover the case we discuss here. Define c = 2c0c1

and q = 2q0q1; |ψAB〉 (|φBC〉) are entangled whenever c > 0
(q > 0). Note that we can restrict to two-qubit entangled states
here. If the states are of larger dimension, Alice, Bob, and
Charlie can first project them onto qubit subspaces, hence our
setting is fully general for the case of two pure states [30].

Let Alice’s inputs correspond to projective measurements
in the Z-X plane of the Bloch sphere. Thus each measurement
can be characterized by one angle; in fact, it is straightforward
to see that optimal settings are given by angles ±α symmetric
with respect to the Z axis. The observable corresponding to
the first input reads �a · �σ , where �a = [sin(α),0, cos(α)] and
�σ = (σx,σy,σz) denotes the vector of Pauli matrices. Similarly
for Charlie, we have angles ±γ . Bob performs the usual BSM.
For all x,z = 0,1 one gets

〈AxB0Cz〉 = 〈[cos(α)σz + (−1)x sin(α)σx] ⊗ (σz ⊗ σz)

⊗[cos(γ )σz + (−1)z sin(γ )σx]〉ψAB⊗φBC

= cos(α) cos(γ ). (6)

Hence I = 4 cos(α) cos(γ ). A similar calculation gives J =
4 sin(α) sin(γ )cq.

Maximizing expression (3) with respect to α and γ leads to

cos(α) = cos(γ ) = 1√
1 + cq

(7)

1Note that one could do marginally better (V � 0.705) by using an
inequality introduced by Vértesi [17].

2Notice that this does not allow one to reveal the nonlocality of
a Werner state ρ with V � 1/

√
2 by distributing two copies of

ρ in the considered network and violate the bilocality inequality
(see discussion in the Conclusions) However, it does constitute
a significant advantage as compared to entanglement swapping
experiments based on the CHSH Bell inequality.
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and the maximum takes the value

Smax
biloc =

√
4 cos(α) cos(γ ) +

√
4 sin(α) sin(γ )cq

= 2
√

1 + cq . (8)

Accordingly, for all possible pairs of entangled pure states, i.e.,
when c > 0 and q > 0, we get violation the standard bilocality
inequality (3) and thus nonbilocal correlations.

Note that if |ψAB〉 = |φBC〉, then the optimal settings α and
γ for bilocality are the same as the optimal settings for the
CHSH inequality. Furthermore, Smax

biloc takes the same value as
the maximum CHSH value for |ψAB〉 [30].

Interestingly, if the states differ, then Alice’s optimal
settings depend on the state |φBC〉 shared by Bob and Charlie,
and similarly Charlie’s optimal settings depend on |ψAB〉, as
can be seen from Eq. (7).

Note that if one would now consider noisy states of
the form VAB |ψAB〉〈ψAB | + (1 − VAB)1/4 and similarly for
VBC |φBC〉〈φBC | + (1 − VBC)1/4, then one can characterize
the critical visibilities (V biloc

AB and V biloc
BC ), i.e., the minimum

visibilities for which violation of the bilocality inequality is
still possible, which are in general related. More precisely,
one finds that the product of the critical visibilities (for
bilocality) is larger than the product of the visibilities for Bell
locality (i.e., 1-locality): V biloc

AB V biloc
BC = 1

1+cq
� V loc

ABV loc
BC =√

1
1+c2

√
1

1+q2 , with equality holding only when c = q, i.e., when
the two states are equal, |ψAB〉 = |φBC〉.

Criterion for arbitrary pairs of mixed states. We now move
to mixed states, and start our analysis with the case of two-qubit
density matrices. Let

ρAB = 1

4

⎛
⎝1 + �mA · �σ ⊗ 1 + 1 ⊗ �mB · �σ +

∑
ij

tAB
ij σi ⊗ σj

⎞
⎠

be the state shared by Alice and Bob, expressed in the Pauli
basis; here the vector �mA ( �mB) represents the Bloch vector of
Alice’s (Bob’s) reduced state, while tAB

ij (with i,j ∈ {x,y,z})
is the correlation matrix. Similarly we express ρBC , the state
shared by Bob and Charlie, in the Pauli basis.

Alice’s settings are represented by Bloch vectors �a and �a′,
and similarly for Charlie �c and �c ′

. Assume Bob performs a
BSM in a well chosen basis to be defined below. The quantity
I in Eq. (4) can be expressed as follows:

I = Tr[(�a + �a′) · �σ ⊗ σz ⊗ σz ⊗ (�c + �c ′
) · �σ ρAB ⊗ ρBC]

= Tr[(�a + �a′) · �σ ⊗ σz ρAB] Tr[σz ⊗ (�c + �c ′
) · �σ ρBC]

=
∑

i

(ai + a′
i)t

AB
iz

∑
k

tBC
3k (ck + c′

k). (9)

Using the polar decomposition, the correlation matrix can be
written as tAB = UABRAB , where UAB is a unitary matrix and
RAB =

√
tAB† tAB � 0. Denote ξ1 � ξ2 � ξ3 � 0 the three

non-negative eigenvalues of RAB . Similarly denote ζ1 � ζ2 �
ζ3 � 0 the non-negative eigenvalues of the corresponding
matrix RBC .

This allows us to characterize Bob’s BSM. Specifically,
the Bell states [as given in Eq. (1)] has been defined such
that the Z and X Bloch directions (on the first subsystem,

connected to Alice) are given by the eigenvectors of the matrix
RAB corresponding to the two largest eigenvalues, ξ1 and ξ2,
respectively. Similarly we use RBC for aligning the second
subsystem of Bob, connected to Charlie. Note that the Z and
X axes Bob uses with Alice may differ from those he uses
with Charlie, i.e., Bob may have to apply different unitaries to
the two qubits he shares with Alice and with Charlie before
performing a standard BSM.

Next our goal is to maximize Sbiloc with respect to
the Bloch vectors �a, �a′, �c, and �c ′

. It is clear that they
should lie within the two-dimensional subspace spanned
by the two eigenvectors with largest eigenvalues: �a =
(sin α,0, cos α), �a′ = (sin α′,0, cos α′), �c = (sin γ,0, cos γ ),
and �c′ = (sin γ ′,0, cos γ ′). The maximum is easily found by
imposing ∂αS = 0, ∂α′S = 0, ∂γ S = 0, and ∂γ ′S = 0. One
finds α′ = −α, γ ′ = −γ and

cos α = cos γ =
√

ξ1ζ1

ξ1ζ1 + ξ2ζ2
, (10)

and the maximal value of the left-hand side of the bilocality
inequality

Smax
biloc = 2

√
ξ1ζ1 + ξ2ζ2. (11)

Consequently, a pair of states ρAB and ρBC can violate the
bilocality inequality (3) if and only if ξ1ζ1 + ξ2ζ2 > 1. Note
that for the case of two pure states considered previously,
ξ1 = ζ1 = 1, ξ2 = 2c0c1 = c, and ζ2 = 2q0q1 = q; hence (11)
reduces to (8), as it should.

The above criterion is analogous to the Horodecki criterion
for violation of the CHSH Bell inequality [31]. In fact, there is
a direct connection between the two criteria. According to the
Horodecki criterion the maximal CHSH value for ρAB is given
by Smax

AB = 2
√
ξ 2

1 + ξ 2
2 = 2‖�ξ‖ where �ξ = (ξ1,ξ2). Similarly,

for ρBC we have Smax
BC = 2

√
ζ 2

1 + ζ 2
2 = 2‖�ζ‖ with �ζ = (ζ1,ζ2).

From Eq. (11) it follows that

Smax
biloc = 2

√
�ξ · �ζ � 2

√
‖�ξ‖ ‖�ζ‖ =

√
Smax

AB Smax
BC . (12)

Hence, violation of the bilocality inequality implies that either
ρAB or ρBC (or both) must violate CHSH. Moreover, when the
two states are the same, i.e., ρAB = ρBC = ρ, the criterion of
Eq. (11) reduces to the Horodecki criterion. This is easily seen
from Eq. (12), where the inequality becomes an equality when
the vectors �ξ and �ζ are the same. Therefore, CHSH violation
implies violation of the bilocality inequality in the sense
that

ρ violates CHSH → ρ ⊗ ρ violates Sbiloc. (13)

Note that under the assumption that Bob performs the BSM, the
reverse link also holds. In this case activation of nonlocality
is thus impossible for two-qubit entangled states using the
bilocality inequality (see discussion below). Note also that the
connection (13) holds true for arbitrary bipartite mixed states
ρ, not only for two-qubit states [33].

Conclusion. In quantum networks involving several inde-
pendent sources of entangled states, it is natural to contrast the
obtained quantum correlations with “classical” correlations
that can be realized using independent sources of shared
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randomness between the observers. Indeed, this picture is
arguably a natural generalization to networks of John Bell’s
original intuition [1,32]. In the simplest case, i.e., with
two independent sources as in entanglement swapping, we
analyzed the standard bilocality inequality and proved that
all pairs of entangled pure states can violate it, in analogy to
the case of the CHSH-Bell inequality which can be violated by
any pure entangled state. Moving to mixed entangled states, we
then derived a general criterion for violation of the bilocality
inequality, providing a natural extension of the Horodecki
criterion for violation of CHSH. In particular, this reveals a
strong connection between CHSH and the bilocality inequality,
namely, that any entangled state violating CHSH can also be
used to demonstrate violation of the bilocality inequality.

While the results presented in this Rapid Communication
were obtained analytically, we conclude with a list of open
questions that we could so far tackle only numerically:

(1) Here we assumed that Bob performs a BSM, defined
in local basis depending on the shared entangled states. One
may expect that this is always optimal, which is confirmed
numerically for any pair of pure states. However, numerical
evidence suggests that there are cases, in which one or both
states are mixed, for which no BSM is optimal. So far, we
could not find any structure in the optimal joint measurements
and leave it for future work.

(2) The bilocality inequality (3) used here assumes a
scenario in which Bob has no choice of input and four possible
outcomes. However, an inequality formally identical to (3) is
also valid for the scenario in which Bob has a choice between

two inputs with binary outcomes: it suffices to label B0 and
B1 the outcomes corresponding to the two inputs, respectively.
The bilocal bound of the inequality remains the same (because
classically Bob could always compute and output both the
value of B0 and of B1). However, quantum mechanically, Bob’s
two joint measurements may be incompatible, leading possibly
to larger violations. We could confirm this possibility, although
only numerically so far.

(3) It would be interesting to generalize the present results to
the case of more sophisticated networks, such as star networks
[21] with an arbitrary number of branches.

(4) A central open question is the possibility to activate the
nonlocality of certain entangled quantum states—admitting a
LHV model in the usual Bell scenario—by placing several
copies of them in a network. While such effect is possible
even when considering the standard Bell approach [34] (see
also Ref. [35]), intuition suggests that the notion of N

locality should be very useful in this context. However, no
examples have been reported so far. Here, we have proven that
activation is impossible for the bilocality inequality when Bob
performs the BSM. We also performed intensive numerical
search considering more general measurements for Bob. The
results suggest that activation is impossible for the bilocality
inequality. A formal proof of this statement would be desirable.
A counterexample would be even more interesting.

Acknowledgments. This work was supported by the Swiss
National Science Foundation (SNSF 200021-149109, Starting
grant DIAQ, and QSIT), and the European Research Council
(ERC-AG MEC).

[1] J. S. Bell, Physics 1, 195 (1964).
[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] P. R. Tapster, J. G. Rarity, and P. C. M. Owens, Phys. Rev. Lett.

73, 1923 (1994).
[4] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett.

81, 3563 (1998).
[5] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,

Rev. Mod. Phys. 86, 419 (2014).
[6] A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V.

Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[7] R. Colbeck, Ph.D. thesis, University of Cambridge, 2007.
[8] S. Pironio et al., Nature (London) 464, 1021 (2010).
[9] See https://www.nist.gov/programs-projects/nist-randomness-

beacon.
[10] H. J. Kimble, Nature (London) 453, 1023 (2008).
[11] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and

W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
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