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We present a technique for hyperentangled Bell-state analysis that only relies on linear optics and is assisted by
auxiliary entangled states. This technique can be used to implement hyperdense coding with an experimentally
realizable two-photon state hyperentangled in polarization and two longitudinal-momentum degrees of freedom.
The 16 hyperentangled states in the first two degrees of freedom are classified into 12 groups with the help of
the third degree of freedom. This allows the transmission of 3.58 bits/photon via our hyperdense coding scheme.
We also generalize our technique to n-qubit hyperentangled Bell-state analysis assisted by additional auxiliary
entangled states. We show that given n degrees of freedom, the 4n hyperentangled Bell states can be separated via
linear optics into xk = 2n+k+1 − 22k groups with the help of k (k � n) ancillary entangled states. When k = n, all
4n hyperentangled states can be distinguished. Our results are useful for quantum information processing based
on hyperentanglement.
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I. INTRODUCTION

Quantum entanglement is a counterintuitive phenomenon
and a key quantum resource that enables computation and
communication unimaginable in the classical world. It has
extensive applications in quantum information processing,
including quantum teleportation [1], quantum dense coding
[2,3], entanglement swapping [4], quantum repeaters [5],
and other such tasks. In quantum dense coding, a two-qubit
entangled Bell state is used to transmit two bits of classical
information by sending just one qubit. Furthermore, particles
entangled in multiple dimensions or multiple degrees of
freedom (DOFs) can achieve higher information transmission
rates. The so-called hyperentangled state [6–8], which is
simultaneously entangled in more than one DOF, has attracted
much attention recently, not only because it can improve both
channel capacity and security, but also due to its use for
conventional Bell-state analysis (BSA).

In many quantum information processing protocols, en-
tangled state analysis is an important part of the protocol.
For example, the discrimination of the four Bell states is
essential in quantum teleportation, quantum dense coding,
and entanglement swapping. However, although these states
are mutually orthogonal and should be unambiguously dis-
tinguishable, they are difficult to differentiate with current
technology [9–13]. The Bell states can only be separated
into three groups via linear optics and only two of the four
states can be identified. The problem is even more challenging
for multipartite entangled states, multidimensional entangled
states, and hyperentangled states. Complete BSA can be
accomplished by resorting to additional resources, such as
nonlinear interactions or an enlarged Hilbert space [14–19].
Similarly, hyperentangled Bell-state analysis (HBSA) can also
be achieved with the help of nonlinear interactions [20–24].
However, complete HBSA is impossible with linear optics
alone. It has been shown that 16 two-DOF hyperentangled

*xihanlicqu@gmail.com

Bell states can be grouped into seven classes [25], with which
the classical information sent in hyperdense coding can be
up to 2.81 bits/photon [26]. Moreover, for states entangled in
n DOFs, at most 2n+1 − 1 groups out of 4n hyperentangled
Bell states can be distinguished by linear evolution and local
projective measurements [27]. In these two schemes, each
group contains more than one state when n is larger than one.
In other words, none of these states can be unambiguously
identified. Therefore, this hyperentangled Bell-state analysis
scheme is not useful for tasks such as quantum teleportation.

In this Rapid Communication, we present a method for
HBSA that uses auxiliary entangled states and can be imple-
mented with linear optics, avoiding nonlinear interactions. The
ancillary entangled states are encoded in additional DOFs of
the two originally entangled photons. We apply our method
to propose a practical quantum hyperdense coding scheme
using a two-photon six-qubit hyperentangled state that has
been experimentally realized. The two photons are entangled
in the polarization and two longitudinal-momentum DOFs at
the same time. We show that the 16 hyperentangled states
in the first and second DOFs can be divided into 12 groups
assisted by the entanglement in the third DOF. In this case,
3.58 bits of information can be transmitted by sending one
photon. Moreover, eight of the 16 states can be unambiguously
identified with our protocol. We also discuss HBSA assisted
by auxiliary entanglement more generally. We find that for
n-qubitlike DOFs, the 4n hyperentangled Bell states can be
grouped into xk = 2n+k+1 − 22k classes with the help of k

auxiliary entangled states. Thus, when k = n, complete HBSA
can be achieved. Our results are useful for current quantum
information processing schemes based on hyperentangled Bell
states, and also provide guidelines and different avenues for
designing future tasks.

II. HYPERDENSE CODING VIA LINEAR OPTICS

In 2009, a six-qubit hyperentangled state was realized by
entangling two photons in three DOFs—the polarization DOF
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and two longitudinal momentum DOFs [8]. Here, we use this
experimentally available hyperentangled state to implement a
hyperdense coding scheme based on our HBSA technique. A
two-photon six-qubit hyperentangled Bell state can be written
as

|ϒ〉AB = 1√
2

(|H 〉A|H 〉B + |V 〉A|V 〉B)

⊗ 1√
2

(|I 〉A|I 〉B + |E〉A|E〉B)

⊗ 1√
2

(|l〉A|r〉B + |r〉A|l〉B). (1)

A and B represent the two hyperentangled photons. H and
V are the horizontal and vertical polarization states. I (l) and
E(r) are the bases of the first (second) linear momentum,
refering to “internal (left)” and “external (right)” states,
respectively. Here, we have adopted the notation in Ref. [8]
for simplicity. The four Bell states in the polarization DOF are

|�±〉 ≡ 1√
2

(|HH 〉 ± |V V 〉)AB,

|�±〉 ≡ 1√
2

(|HV 〉 ± |V H 〉)AB, (2)

and the four Bell states in the first momentum DOF are

|φ±〉 ≡ 1√
2

(|II 〉 ± |EE〉)AB,

|ψ±〉 ≡ 1√
2

(|IE〉 ± |EI 〉)AB. (3)

In our hyperdense coding scheme, only the first and second
DOFs are utilized to carry information. The third DOF is set
to a fixed entangled state |ϕ+〉 = 1√

2
(|lr〉 + |rl〉)AB , which

assists the HBSA in the first and second DOFs.
Our hyperdense coding protocol can be accomplished via

the following steps:
(1) The receiver Bob prepares a hyperentangled state

|ϒ〉AB , and then sends the photon A to the sender Alice through
a quantum channel.

(2) After receiving the photon A, Alice performs one of
the 16 unitary operations Uij = σi ⊗ σ ′

j (i,j = 0,1,2,3) on
the photon A. Here, σi is one of the four operations on the
polarization state,

σ0 = |H 〉〈H | + |V 〉〈V |, σ1 = |H 〉〈H | − |V 〉〈V |,
σ2 = |V 〉〈H | + |H 〉〈V |, σ3 = |V 〉〈H | − |H 〉〈V |, (4)

and σ ′
j is one of the following operations on the first

longitudinal-momentum DOF,

σ ′
0 = |I 〉〈I | + |E〉〈E|, σ ′

1 = |I 〉〈I | − |E〉〈E|,
σ ′

2 = |E〉〈I | + |I 〉〈E|, σ ′
3 = |E〉〈I | − |I 〉〈E|. (5)

These operations can be easily accomplished by linear optics.
Then Alice sends A back to Bob.

(3) Bob performs HBSA on the two photons to read Alice’s
information encoded by her operations. His setup is shown in
Fig. 1. The polarizing beam splitter (PBS) at 0◦ transmits hori-
zontal polarization and reflects vertical polarization. The 50:50
beam splitters (BSs) convert incident spatial modes as A →

FIG. 1. Schematic of the setup for HBSA of two DOFs when
photons are entangled in three DOF.

(A + B)/
√

2,B → (A − B)/
√

2. Here, we use A(B) to rep-
resent the corresponding channel photon A(B) goes through.
Finally, the photons are measured in the diagonal basis of
the polarization DOF. The PBS orientated at 45◦ transmits
|+〉 = (|H 〉 + |V 〉)/√2 and reflects |−〉 = (|H 〉 − |V 〉)/√2.
For example, the state �+ ⊗ φ+ ⊗ ϕ+ evolves as follows,

(�+ ⊗ φ+ ⊗ ϕ+)AB

= 1

2
√

2
[(|HV 〉 + |V H 〉) ⊗ (|II 〉 + |EE〉)

⊗(|lr〉 + |rl〉)]AB

PBS−−→
0◦

1

2
√

2
(|HV 〉 + |V H 〉)

⊗(|I lAI lB〉 + |IrAIrB〉 + |ElAElB〉 + |ErAErB〉)
BS−→ 1

2
√

2
|HV 〉 ⊗ (|I lAI lA〉 − |I lBI lB〉

+|IrAIrA〉 − |IrBIrB〉 + |ElAElA〉
−|ElBElB〉 + |ErAErA〉 − |ErBErB〉)

PBS−−→
0◦

1

2
√

2
|HV 〉 ⊗ (|BlCl〉 − |ClBl〉 + |DlAl〉

−|AlDl〉 + |BrCr〉 − |CrBr〉
+|DrAr〉 − |ArDr〉)

PBS−−→
45◦

1

2
√

2
(|B−

l C+
l 〉 − |B+

l C−
l 〉 + |B−

r C+
r 〉

−|B+
r C−

r 〉 + |D−
l A+

l 〉 − |D+
l A−

l 〉
+|D−

r A+
r 〉 − |D+

r A−
r 〉). (6)

This is the fifth group in Table I, which shows the relations
between Alice’s operations and Bob’s detections. Here, the
16 states are divided into 12 distinct classes according to the
detector outcomes. Here, the subscript “+” indicates the port
associated with transmission through the PBS and “−” the port
with reflection. Four of the classes contain two states each, and
all eight other classes each contains exactly one state. Thus,
with our protocol, this hyperentangled state can be used for
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TABLE I. Detection outcome table. The 16 hyperentangled Bell
states are detected using the state |ϕ+〉 of the third DOF as an ancilla.
“+” and “−” represent two detectors of each output port, respectively.

Uij State Detector outcomes

1 σ2 ⊗ σ ′
3 �+ ⊗ ψ− A+

r A+
r ,A+

l A+
l ,B+

r B+
r ,B+

l B+
l

σ3 ⊗ σ ′
2 �− ⊗ ψ+ C+

r C+
r ,C+

l C+
l ,D+

r D+
r ,D+

l D+
l

A−
r A−

r ,A−
l A−

l ,B−
r B−

r ,B−
l B−

l

C−
r C−

r ,C−
l C−

l ,D−
r D−

r ,D−
l D−

l

2 σ0 ⊗ σ ′
0 �+ ⊗ φ+ A+

r A−
l ,A−

r A+
l ,B+

r B−
l ,B−

r B+
l

σ1 ⊗ σ ′
1 �− ⊗ φ− C+

r C−
l ,C−

r C+
l ,D+

r D−
l ,D−

r D+
l

3 σ1 ⊗ σ ′
0 �− ⊗ φ+ A+

r A+
l ,A−

r A−
l ,B+

r B+
l ,B−

r B−
l

σ0 ⊗ σ ′
1 �+ ⊗ φ− C+

r C+
l ,C−

r C−
l ,D+

r D+
l ,D−

r D−
l

4 σ3 ⊗ σ ′
3 �− ⊗ ψ− A+

r B−
r ,A−

r B+
r ,C+

r D−
r ,C−

r D+
r

σ2 ⊗ σ ′
2 �+ ⊗ ψ+ A+

l B−
l ,A−

l B+
l ,C+

l D−
l ,C−

l D+
l

5 σ2 ⊗ σ ′
0 �+ ⊗ φ+ A+

r D−
r ,A−

r D+
r ,C+

r B−
r ,C−

r B+
r

A+
l D−

l ,A−
l D+

l ,C+
l B−

l ,C−
l B+

l

6 σ0 ⊗ σ ′
3 �+ ⊗ ψ− A+

r D+
l ,A−

r D−
l ,C+

r B+
l ,C−

r B−
l

A+
l D+

r ,A−
l D−

r ,C+
l B+

r ,C−
l B−

r

7 σ2 ⊗ σ ′
1 �+ ⊗ φ− A+

r D+
r ,A−

r D−
r ,C+

r B+
r ,C−

r B−
r

A+
l D+

l ,A−
l D−

l ,C+
l B+

l ,C−
l B−

l

8 σ1 ⊗ σ ′
3 �− ⊗ ψ− A+

r D−
l ,A−

r D+
l ,C+

r B−
l ,C−

r B+
l

A+
l D−

r ,A−
l D+

r ,C+
l B−

r ,C−
l B+

r

9 σ3 ⊗ σ ′
0 �− ⊗ φ+ A+

r C+
r ,A−

r C−
r ,B+

r D+
r ,B−

r D−
r

A+
l C+

l ,A−
l C−

l ,B+
l D+

l ,B−
l D−

l

10 σ0 ⊗ σ ′
2 �+ ⊗ ψ+ A+

r C−
l ,A−

r C+
l ,B+

r D−
l ,B−

r D+
l

A+
l C−

r ,A−
l C+

r ,B+
l D−

r ,B−
l D+

r

11 σ3 ⊗ σ ′
1 �− ⊗ φ− A+

r C−
r ,A−

r C+
r ,B+

r D−
r ,B−

r D+
r

A+
l C−

l ,A−
l C+

l ,B+
l D−

l ,B−
l D+

l

12 σ1 ⊗ σ ′
2 �− ⊗ ψ+ A+

r C+
l ,A−

r C−
l ,B+

r D+
l ,B−

r D−
l

A+
l C+

r ,A−
l C−

r ,B+
l D+

r ,B−
l D−

r

hyperdense coding to transmit log2 12 = 3.58 bits of classical
information by sending one photon. As shown in Table I,
photon-number resolving detectors [28] are required to detect
the hyperentangled state in the first group. Otherwise, the
classical information per photon decreases to log2 11 = 3.45
bits. Here, we have used current experimentally available
hyperentangled states to demonstrate the principle of our
hyperdense coding protocol. Similar schemes can be designed
with other kinds of hyperentangled states as well.

III. HYPERENTANGLED BELL-STATE ANALYSIS
ASSISTED BY AUXILIARY ENTANGLEMENT

We have demonstrated the analysis of two-DOF hyper-
entangled Bell states with the help of an auxiliary known
entangled state. It is natural, therefore, to ask to what extent
additional auxiliary entangled states can help in the HBSA
of n-DOF hyperentangled Bell states and how many auxiliary
entangled states are required to realize the full HBSA. We first
review the entangled state analysis and then investigate the
principle of HBSA assisted by auxiliary entanglement.

To distinguish the four 2-qubit Bell states is to identify
two bits of information—the parity information represented
by “�” or “�” and the phase information denoted by “±”
in Eqs. (2) and (3). Generally, we have two tools to get
this information. The first one is projective measurement.

More specifically, two-photon product measurements in the
computational basis can read the parity bit while measure-
ments in the diagonal basis can get the phase information.
However, these two bits of information cannot be obtained
simultaneously. This makes complete BSA impossible with
one copy of the state, but possible with two copies [25,27].
The other tool is the beam splitter, which interferes photons
and distinguishes the antisymmetric state such as the singlet
state |ψ−〉 from the symmetric ones based on their symmetry
property. Combining these two methods, four Bell states can be
grouped into three classes, based on which log2 3 ≈ 1.58 bits
classical information could be transmitted via dense coding.

In 2003, Walborn et al. proposed a complete polarization
BSA scheme without resorting to beam splitters as described
above [15]. Instead, an additional spatial DOF was utilized.
The parity information of the polarization entangled states
was copied to the phase information of the spatial states by
performing a controlled-NOT (CNOT) gate between these two
DOFs of the same photon.

|�±〉|ψ+〉 CNOT−−→ |�±〉|ψ+〉,
|�±〉|ψ+〉 CNOT−−→ |�±〉|φ+〉. (7)

Although the parity and phase information of Bell states in
one DOF cannot be read at the same time, different DOFs can
be measured simultaneously. Projective measurements of the
polarization state in the diagonal basis and of the spatial mode
in the computational basis allow discrimination of the four
polarization Bell states.

The phase information of the polarization state can also
be transferred to the spatial DOF in an equivalent way. As we
know, the CNOT gate is difficult to accomplish between photons
since a stable interaction at the single particle level is beyond
current experimental capabilities [29]. However, a CNOT gate
between different DOFs of the same photon is easy to execute
with linear optics, such as PBS, BS, and so on. This provides a
way to faithfully transfer information between different DOFs
[30] and realize complete BSA with one extra entangled DOF.
For Bell states in one DOF, a single auxiliary entangled state
can help to realize full BSA. However, when the number of
DOFs n � 2, the symmetry property should also be utilized to
optimize distinguishing efficiency.

The generalized n-DOF hyperentangled Bell state can be
viewed as the tensor product of Bell states of each DOF,∏n

i |	〉i , where the subscript i denotes the ith DOF, and
|	〉 can be one of the four Bell states of each DOF (	 ∈
{|φ+〉,|φ−〉,|ψ+〉,|ψ−〉}). For n two-state variables, there are
4n mutually orthogonal hyperentangled states. The principle
of HBSA is the same as that of BSA. We can use projec-
tive measurements to read parity or phase information and
use beam splitters to distinguish antisymmetric states from
symmetric ones. In our hyperdense coding scheme, the parity
information of the polarization DOF was transferred to the
momentum DOF through the effect of PBSs, which increased
the number of distinct groups from x0(2) = 7 to 12. For
simplicity, we read the parity information of each DOF with
projective measurements and transfer the phase information
to the parity information of the auxiliary entangled states. By
measuring each DOF in the computational basis to read the
parity information, 4n states can be classified into 2n groups.
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States in one group have the same order of |ψ〉 and |φ〉, but
different phase “±.” Therefore, each group has 2n states. As
the singlet state |ψ−〉 is antisymmetric while the triplet states
are symmetric, 2n − 1 groups can be further divided into two
according to the parity of the number of |ψ−〉 states in these n

DOFs. There is a special group in which all DOFs are in the |φ〉
state, which cannot be further segmented based on symmetry.
To sum up, with linear optics, 4n states can be separated into
x0 groups,

x0(n) = (2n − 1) ∗ 2 + 1 = 2n+1 − 1. (8)

Here, one group is composed of 2n different states (|φ±〉⊗n)
and the other 2n+1 − 2 groups each have 2n−1 states [27].

Auxiliary entanglement can enhance the distinguishability
of states in HBSA. We now deduce step by step the number
of distinct groups that are possible using k additional known
entangled states. Based on the structure of the groups we
can obtain from linear optics, the purpose of additional
entanglement is to extract the phase information of each
DOF of the hyperentangled Bell state, via computational
basis measurements on the ancilla. Suppose for n-DOF hy-
perentangled Bell states, one additional entangled state |ψ+〉1′

is introduced. Then the joint (n + 1)-DOF state of the two
photons is

∏n
i |	〉i ⊗ |ψ+〉1′ (	 ∈ {|φ+〉,|φ−〉,|ψ+〉,|ψ−〉}).

We then copy the phase information of the first DOF |	〉1 to the
parity of the auxiliary entangled state, which can be read out by
projective measurements of the auxiliary DOF in the computa-
tional basis. We know the Bell states of the first DOF have two
different possible phases in (2n+1 − 3) of the groups obtained
using linear optics. Each of these groups can be divided into
two groups using the measurement outcome of the auxiliary
entangled state, i.e., odd (even) parity of the additional DOF
stands for the “+” (“−”) phase of the first DOF. However,
there are two groups in which the first DOF is in the states
|ψ+〉1 or |ψ−〉1. The 2n−1 states in these two groups can be
written as |ψ+〉1 ⊗ ∏n

i=2 |φ±〉i or |ψ−〉1 ⊗ ∏n
i=2 |φ±〉i , which

cannot be further segmented with the help of the additional
entanglement. To sum up, with one extra entangled state, there
are x1(n) = 2n+2 − 4 distinguishable groups. For example, we
get x1(2) = 12 groups in our hyperdense coding scheme.

Better results can be obtained by increasing the number
of additional entangled states. Each time we increase the
number of auxiliary entangled states by one, more groups
can be obtained by subdividing the existing groups. Suppose
there are k auxiliary entangled states. Then the overall
state is

∏n
i=1 |	〉i ⊗ ∏k

i ′=1 |ψ+〉i ′ . We use the i ′th additional
entanglement to copy the phase information of the ith DOF
to be distinguished, with which groups can be further divided.
The ability for subdividing is based on the structure of groups
without any auxiliary. If the second auxiliary entangled state
|ψ+〉2′ is introduced, there are 2n+2 − 12 groups that each can
be divided into two groups based on the phase information
of the second DOF while there are eight groups that cannot
be subdivided. In these groups, the second DOF is in |ψ+〉
or |ψ−〉 state while the third, fourth, . . . , nth DOFs are all
in the |φ±〉 states. Similarly, with k additional entangled
states, more groups can be achieved on the basis of the k − 1
distinguishability. The groups that cannot be further divided
are those with the kth DOF in the |ψ+〉 or |ψ−〉 state and the

(k + 1)th, (k + 2)th, . . . , nth DOFs all in the |φ±〉 state. The
number of those groups is yk ,

yk = 2k
(
C0

k−1 + +C1
k−1 + · · · + Ck−1

k−1

)
. (9)

Therefore, with k additional entangled states, the number of
distinguishable groups we obtain is

xk = 2(xk−1 − yk) + yk

= 2xk−1 − 2k
(
C0

k−1 + C1
k−1 + · · · + Ck−1

k−1

)

= 2xk−1 − 22k−1 (k = 1,2,3, . . . ,n). (10)

Since x0(n) = 2n+1 − 1, we obtain xk(n) = 2n+k+1 − 22k. This
means that with k entangled auxiliaries, 2n+k+1 − 22k groups
out of 4n states can be distinguished. Moreover, it shows that
full HBSA requires k = n additional auxiliary entangled states
since xn = 4n.

IV. DISCUSSION AND SUMMARY

In this Rapid Communication, we have described a method
for HBSA based on linear optics and ancilla entanglement, and
have used our method to propose a hyperdense coding scheme
using a two-photon six-qubit hyperentangled state. Without
resorting to nonlinear interactions, our scheme achieves a
3.58 bits/photon classical information transmission rate, which
outperforms the best schemes using linear optics. The key
component of our hyperdense coding protocol is the HBSA.
The hyperentangled Bell states in the first two DOFs are dis-
tinguished with the help of the known auxiliary entanglement
in the third DOF. In our scheme, 16 states are separated into
12 groups, which is more than the seven groups created in
previous schemes. Moreover, eight of the 12 groups only have
one state, which means these eight hyperentangled states are
unambiguously identified. Although our HBSA scheme cannot
perfectly implement quantum teleportation, it may be used in a
postselective way by probabilistically entangling the auxiliary
DOF of the two photons before performing the HBSA.
Previous protocols have divided the 64 hyperentangled Bell
states in all the three DOFs into 15 groups [27]. Although this
can increase the information transmission rate in hyperdense
coding, it requires the sender to be capable of performing 64
unitary operations, which is much more than the 16 operations
required in our present scheme.

We have analyzed the distinguishability of HBSA assisted
by auxiliary entanglement for the general case of n DOF.
The difficulty of performing complete BSA and HBSA lies
in the inability to read both the parity and phase information
at the same time. Therefore, additional resources such as
nonlinear interactions or enlarged Hilbert spaces are utilized
to improve the distinguishability. Although complete HBSA
can be realized with the help of nonlinear effects via the
use of coherent states [20] or a quantum dot cavity [21,22],
these nonlinear interactions are actually too weak to realize
with current technology. Our scheme also utilizes auxiliary
resources to extract more information. However, no additional
photons, coherent states, quantum dots, or other nonlinear
interactions are required. Moreover, our hyperdense coding
scheme can be implemented with hyperentangled states that
can be generated with current technology. Two-qubit gates
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between different DOFs can be implemented with only simple
linear optics, which makes our scheme simpler to implement.

In summary, we have proposed a HBSA protocol assisted by
auxiliary entanglement and have derived a formula to calculate
the number of distinct groups of hyperentangled states distin-
guishable with the help of k additional entangled states. For
states hyperentangled in n DOF, complete HBSA is achievable
when k = n. Our scheme only requires linear optics, which
makes it more practical and efficient for applications such as
quantum hyperdense coding to expand the channel capacity,

and for other quantum information processing protocols
requiring hyperentangled Bell-state analysis.
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