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Quantum illumination (QI) is an entanglement-enhanced sensing system whose performance advantage over a
comparable classical system survives its usage in an entanglement-breaking scenario plagued by loss and noise.
In particular, QI’s error-probability exponent for discriminating between equally likely hypotheses of target
absence or presence is 6 dB higher than that of the optimum classical system using the same transmitted power.
This performance advantage, however, presumes that the target return, when present, has known amplitude and
phase, a situation that seldom occurs in light detection and ranging (lidar) applications. At lidar wavelengths,
most target surfaces are sufficiently rough that their returns are speckled, i.e., they have Rayleigh-distributed
amplitudes and uniformly distributed phases. QI’s optical parametric amplifier receiver—which affords a 3 dB
better-than-classical error-probability exponent for a return with known amplitude and phase—fails to offer any
performance gain for Rayleigh-fading targets. We show that the sum-frequency generation receiver [Zhuang
et al., Phys. Rev. Lett. 118, 040801 (2017)]—whose error-probability exponent for a nonfading target achieves
QI’s full 6 dB advantage over optimum classical operation—outperforms the classical system for Rayleigh-fading
targets. In this case, QI’s advantage is subexponential: its error probability is lower than the classical system’s
by a factor of 1/ ln(Mκ̄NS/NB ), when Mκ̄NS/NB � 1, with M � 1 being the QI transmitter’s time-bandwidth
product, NS � 1 its brightness, κ̄ the target return’s average intensity, and NB the background light’s brightness.
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Introduction. Quantum illumination (QI) [1–9] uses en-
tanglement to outperform the optimum classical-illumination
(CI) system for detecting the presence of a weakly reflect-
ing target that is embedded in a very noisy background,
despite that environment’s destroying the initial entangle-
ment [10]. With optimum quantum reception, QI’s error-
probability exponent—set by the quantum Chernoff bound
(QCB) [13]—is 6 dB higher [4] than that of the optimum
CI system, i.e., a coherent-state transmitter and a homodyne
receiver. Until recently, the sole structured receiver for QI
that outperformed CI—Guha and Erkmen’s optical parametric
amplifier (OPA) receiver [6]—offered only a 3 dB increase in
error-probability exponent. In Ref. [14], we showed that the
sum-frequency generation (SFG) receiver’s error-probability
exponent reached QI’s QCB. Moreover, augmenting that
receiver with feedforward (FF) operations yielded the FF-
SFG receiver [14], whose performance, for a low-brightness
transmitter, matched QI’s Helstrom limit for both the target-
detection error probability and the Neyman-Pearson criterion’s
receiver operating characteristic (ROC) [15].

Prior QI performance analyses [4,6,14,15] have all assumed
that the target return has known amplitude and phase, some-
thing that seldom occurs in light detection and ranging (lidar)
applications. At lidar wavelengths, most target surfaces are
sufficiently rough that their returns are speckled, i.e., they have
Rayleigh-distributed amplitudes and uniformly distributed
phases [16–19]. It is crucial, therefore, to show that QI
maintains a target-detection performance advantage over CI
for a target return with random amplitude and phase.

In this Rapid Communication, we compare QI and CI
target detection for Rayleigh-fading targets in the flat-fading
limit, when the complex-field envelope of the target return
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from a single transmitted pulse suffers multiplication by a
time-independent Rayleigh-distributed random amplitude and
a time-independent uniformly distributed random phase shift.
We show that QI with OPA reception fails to offer any perfor-
mance advantage over CI in this case. QI with SFG reception
does provide an advantage over CI: when Mκ̄NS/NB � 1, its
error probability is a factor of 1/ ln(Mκ̄NS/NB) lower than
that of optimum CI, which transmits a coherent state and uses
heterodyne reception. Here, M � 1 is the QI transmitter’s
time-bandwidth product, NS is its brightness, κ̄ is the target
return’s average intensity, and NB is the background light’s
brightness.

QI target detection. In QI, the transmitter illuminates the
region of interest with a single-spatial-mode, T -s-long pulse
of signal light produced by pulse carving the continuous-wave
output of a spontaneous parametric downconverter (SPDC).
The SPDC source is taken to have a W -Hz-bandwidth, flat-
spectrum phase-matching function with W � 1/T . The re-
sulting signal pulse is maximally entangled with a correspond-
ing single-spatial-mode, T -s-long pulse of idler light that the
transmitter retains for subsequent joint measurement with the
light returned from the region of interest. The M = T W � 1
signal-idler mode pairs that comprise the transmitted signal
and retained idler pulses are thus in independent, identically
distributed (iid), two-mode squeezed-vacuum states with
average photon number NS � 1 in each signal and idler
mode. Let {âSm

,âIm
} be the photon-annihilation operators

for the transmitter’s M signal and idler modes, and {âRm
}

the photon-annihilation operators of the M modes returned
from the region of interest. The target-detection hypothesis
test is to determine whether h = 0 (target absent) or h = 1
(target present) is true when âRm

= âBm
, for h = 0, and

âRm
= √

κ eiφâSm
+ √

1 − κ âBm
, for h = 1. Here, the {âBm

}
are photon-annihilation operators for iid background-noise
modes that are in the thermal state with average photon number
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NB � 1 when h = 0 and in the thermal state with average
photon number NB/(1 − κ) when h = 1 [20]; κ > 0 is the
target-return’s reflectivity; and φ is the target-return’s phase.

Previous theoretical work on QI target detection [4,6,9,14]
has assumed known κ , φ = 0 [21], and lossless idler storage.
For equally likely target absence or presence, QI with optimum
quantum reception—realizable with FF-SFG [14]—has error
probability Pr(e)opt � e−MκNS/NB /2, QI with OPA reception
has error probability Pr(e)OPA � e−MκNS/2NB /2, and optimum
CI has error probability Pr(e)CI � e−MκNS/4NB /2.

Lidar targets are almost always speckle targets, viz.,
√

κ

and φ are statistically independent random variables whose
respective probability density functions (pdfs) are f√

κ (x) =
2xe−x2/κ̄/κ̄ , for x > 0, and fφ(y) = 1/2π , for 0 � y � 2π ,
where κ̄ is the target return’s average intensity. These statistics
invalidate all of the error-probability expressions from the pre-
ceding paragraph. Worse, as will soon be seen, they preclude
any QI receiver from obtaining a single-pulse error probability
that decreases exponentially with increasing Mκ̄NS/NB . For
that demonstration we will employ the QCB, an exponentially
tight upper bound on the error probability of optimum quantum
reception for multiple-copy quantum state discrimination [13].

The QCB applied to QI with Rayleigh fading. Conditioned
on knowledge of h,

√
κ , and φ, the {âRm

,âIm
} mode pairs at

the QI receiver are in the state ρ̂h(
√

κ,φ) = ⊗M
m=1ρ̂

(m)
h (

√
κ,φ),

with ρ̂
(m)
h (

√
κ,φ) being the two-mode, zero-mean, Gaussian

state whose Wigner covariance matrix is

�h = 1

4

[
(2NB + 1)I 2CpRh

2CpRh (2NS + 1)I

]
, (1)

where NB � 1 � NS has been used. In this covariance matrix
I is the 2×2 identity matrix, and Rh = Re[eiφ(Z − iX)]δh1,
where δhk is the Kronecker delta function, and Z and X are
2×2 Pauli matrices. It follows that the signature of target
presence is the nonzero phase-sensitive cross correlation,
Cp = √

κNS(NS + 1), between the returned signal and the
retained idler modes.

Erroneous target-detection decisions can be either false-
alarm errors, when target presence is declared but no target
is present, or miss errors, when target absence is declared but
a target is present. For a given target-detection system, the
conditional probabilities for these errors to occur are the false-
alarm probability PF , and the miss probability PM = 1 − PD ,
where PD is the detection probability, i.e., the probability
that target presence is declared when a target is present.
Almost all QI target-detection analyses [4,6,9,14] have been
Bayesian: assign prior probabilities, {πh}, to h = 0 and h = 1,
and minimize the error probability, Pr(e) = π0PF + π1PM ,
typically for equiprobable hypotheses, π0 = π1 = 1/2. Owing
to the difficulty of accurately assigning priors to target absence
and presence, a better approach to optimizing target-detection
performance is to apply the Neyman-Pearson performance
criterion: maximize PD subject to a constraint on PF . Only
recently has this criterion been applied to QI target detection
[15], and that work assumed knowledge of the target return’s
amplitude and phase. In this Rapid Communication, we will
consider both performance criteria—minimizing Pr(e) and
maximizing PD for a given PF —for our Rayleigh-fading QI
scenario.

In the Bayesian approach, the minimum error probability
for QI target detection is set by the Helstrom limit [22] for
discriminating between the unconditional h = 0 and h = 1
states,

ˆ̄ρh =
∫

dx

∫
dy f√

κ (x)fφ(y)ρ̂h(x,y). (2)

This limit’s calculation requires diagonalizing π1 ˆ̄ρ1 − π0 ˆ̄ρ0,
so it is intractable for QI with Rayleigh fading, because ˆ̄ρ1 is
not an M-fold product state. Nevertheless, applying the QCB
will yield an informative result.

Let Dπ0 (ρ̂0(x,y),ρ̂1(x,y)) denote the Helstrom limit for
discriminating between ρ̂0(x,y) and ρ̂1(x,y) that occur
with priors π0 and π1, and let ξQCB(ρ̂0(x,y),ρ̂1(x,y)) ≡
− limM→∞ ln[Dπ0 (ρ̂0(x,y),ρ̂1(x,y))]/M be the QCB on its
error-probability exponent. Then, using the Helstrom limit’s
being concave in quantum states (see Lemma 1 in the
Appendix), we can show (see Lemma 2 in the Appendix) that
the Helstrom limit’s error-probability exponent for QI target
detection, ξQI ≡ − limM→∞ ln[Dπ0 ( ˆ̄ρ0, ˆ̄ρ1)]/M , vanishes, i.e.,
ξQI = 0, for all π0π1 
= 0. Having ξQI = 0 implies that opti-
mum quantum reception for QI target detection with Rayleigh
fading has an error probability that decreases subexponentially
with the number of signal-idler mode pairs that are employed.
This subexponential error-probability behavior applies to all
QI receivers, including the FF-SFG, SFG, and OPA receivers.
Because OPA receivers are relatively easy to build [8]—as op-
posed to the far more complicated SFG and FF-SFG receivers
[14]—one might hope that QI with OPA reception would offer
a performance advantage over optimum CI for the Rayleigh-
fading scenario. We next show that such is not the case.

OPA reception for QI with Rayleigh fading. It is difficult
to get an analytic error-probability approximation for QI
with OPA reception in the Rayleigh-fading scenario, so
we will content ourselves with finding its signal-to-noise
ratio (SNR) and comparing that result to the SNR for the
optimum Rayleigh-fading CI system. The OPA receiver’s
essence is converting QI’s phase-sensitive cross-correlation
signature of target presence to an average photon-number
signature that can be sensed with direct detection. In par-
ticular, the OPA receiver measures N̂ ≡ ∑M

m=1 â
†
mâm, where

âm = √
G âIm

+ √
G − 1 â

†
Rm

is the idler-port output of a
low-gain [max(NS/NB,NS/κN2

B) � G − 1 ∼ √
NS/NB � 1]

OPA. Hence, we define its SNR to be SNROPA ≡
{(∑1

j=0(−1)j 〈N̂〉j )/[
∑1

j=0

√
Varj (N̂)]}2, where 〈N̂〉j and

Varj (N̂) for j = 0,1 are the conditional means and conditional
variances of the N̂ measurement given h = j .

For known κ and φ = 0, we get 〈N̂〉1 − 〈N̂〉0 ≈
2M

√
G(G − 1)κNS(NS + 1). Combining this result with

Varj (N̂) ≈ 〈N̂〉j for the N̂ measurement’s conditional vari-
ances gives SNROPA ≈ MκNS/NB when NS � 1, κ � 1
is known, φ = 0, and NB � 1. In the Rayleigh-fading
case, the uniformly distributed random phase destroys the
phase-sensitive cross-correlation signature in 〈N̂〉1, leading to
〈N̂〉1 − 〈N̂〉0 = M(G − 1)κ̄NS , and it adds 2M2(G − 1)κ̄NS

to Var1(N̂), hence giving us

SNROPA ≈ M(G − 1)(κ̄NS)2/NB

(1 + √
1 + 2Mκ̄NS/NB)2

, (3)
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â
(k)
Rm

â
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FIG. 1. Schematic representation of the SFG receiver’s kth stage,
showing only the mth mode pair, although all M mode pairs are
processed simultaneously. The mth mode pair of the returned light
(â(k)

Rm
) and the retained idler (â(k)

Im
) at the input to the kth stage is

transformed into the corresponding mode pair at that stage’s output
by means of SFG. Photon-counting measurements are made on the
single-mode sum-frequency output (b̂(k)) and the auxiliary output
modes ({â(k)

Em
: 1 � m � M}). The SFG receiver’s decision as to target

absence or presence is based on the total of all the photon-counting
measurements, i.e., NT ≡ ∑K

k=1(N (k)
b + N

(k)
E ), where N

(k)
b is the

outcome of the b̂(k)†b̂(k) measurement, and N
(k)
E is the outcome of

the
∑M

m=1 â
(k)†
Em

â
(k)
Em

measurement.

which is much smaller than Mκ̄NS/NB , the SNROPA for a
known κ = κ̄ and φ = 0 [23].

Optimum CI for Rayleigh fading does matched fil-
tering of its heterodyne detector’s output followed by
square-law envelope detection that yields an output, R,
which is exponentially distributed under both h = 0
and h = 1 [24]. The SNR for this system, SNRCI ≡
{(∑1

j=0(−1)j 〈R〉j )/[
∑1

j=0

√
Varj (R)]}2, satisfies

SNRCI = [(Mκ̄NS/2NB)/(1 + Mκ̄NS/2NB)]2, (4)

which is orders of magnitude greater than SNROPA for
Rayleigh fading in the interesting Mκ̄NS/NB � 1 operating
regime.

SFG reception for QI with Rayleigh fading. The SFG
receiver [14] uses a succession of K SFG stages. At the
input to each such stage a beam splitter taps off a small
fraction of the light returned from the region of interest to
undergo SFG with the retained idler light. The returned-
light output from that SFG process is then recombined with
the portion remaining from that stage’s input beam splitter
and applied, along with the retained-idler output, to the
next stage. Photon-counting measurements are performed
on the SFG’s sum-frequency output and on the auxiliary
output from the return-light beam splitter at the output of
each SFG stage. These measurements are used to decide
on target absence or presence. Figure 1 shows a schematic

representation of the SFG receiver’s kth stage (for more details,
see Ref. [14]).

For known κ and φ = 0, SFG reception’s error probability
achieves the QCB. The FF-SFG receiver [14] augments
the SFG receiver with pre-SFG and post-SFG squeezers,
whose parameters are chosen in accordance with a Bayesian
update rule that is controlled by feedforward information from
the prior stages. FF-SFG reception reaches the Helstrom limit
for QI target detection—in both the Bayesian and Neyman-
Pearson settings—for known κ and φ = 0 [14,15]. Because
its feedforward operations exploit φ = 0, FF-SFG reception
ceases to function effectively when φ is uniformly distributed.
SFG reception, which eschews the use of feedforward,
does cope with random amplitude and phase, as we now
show.

When h = 0, the SFG receiver’s total photon count—i.e.,
NT ≡ ∑K

k=1(N (k)
b + N

(k)
E ) from Fig. 1—is the sum of M iid

Bose-Einstein random variables, and has mean value N0 �
−NS ln(ε)/2 for NS � 1. When h = 1, and conditioned on
the values of κ and φ, the statistics of the SFG receiver’s total
photon count equal those for direct detection of the coherent
state |√(1 − ε)MκNS/NB eiφ〉 embedded in a weak thermal-
noise background of average photon number N0 � 1. In these
expressions, ε � 1 is chosen to obtain good performance
(see [14] for details). When MκNS/NB � N0, the thermal
contribution to the h = 1 statistics can be neglected. Then, av-
eraging the h = 1 conditional state over the

√
κ and φ statistics

results in a thermal state with average photon number N1 =
(1 − ε)Mκ̄NS/NB , implying that the SFG receiver has reduced
Rayleigh-fading QI target detection to discriminating between
two thermal states, σ̂0 = ∑∞

n=0[Nn
0 /(N0 + 1)(n+1)] |n〉 〈n| and

σ̂1 = ∑∞
n=0[Nn

1 /(N1 + 1)(n+1)] |n〉 〈n|, using photon-counting
measurements. SFG reception’s minimum error-probability
decision, h̃ = 0 or 1, is therefore h̃ = argmaxh πh[Nn

h/(Nh +
1)(n+1)], where n is the observed photon count.

The preceding rule can be implemented as a threshold
test: h̃ = 1 if and only if n > nt , where the threshold
nt satisfies π0N

nt

0 /(N0 + 1)(nt+1) � π1N
nt

1 /(N1 + 1)(nt+1) and
π0N

nt+1
0 /(N0 + 1)(nt+2) < π1N

nt+1
1 /(N1 + 1)(nt+2). SFG re-

ception’s ROC—its PD versus PF behavior—can now be ob-
tained analytically. For integer nt , we have P SFG

F = [N0/(N0 +
1)]nt+1 and P SFG

D = [N1/(N1 + 1)]nt+1. ROC points interme-
diate between those generated with integer thresholds are then
obtained from randomized tests [25].

The Bayesian approach’s error probability is easily found
once its decision rule’s threshold nt is determined. Evaluating
the false-alarm and detection probabilities for that threshold
value, SFG reception’s error probability then follows from
Pr(e)SFG = π0P

SFG
F + π1(1 − P SFG

D ). For NS → 0 with ε � 1,
we find that nt = 0 and hence

Pr(e)SFG � Pr(e)NS→0
SFG ≡ π1/(1 + Mκ̄NS/NB). (5)

This result’s algebraic scaling with M is consistent with
our earlier finding that optimum quantum reception for
Rayleigh-fading QI target detection has an error probability
that decreases subexponentially with increasing M .

QI versus CI for Rayleigh fading. We are now prepared to
demonstrate that QI target detection with SFG reception enjoys
a significant performance advantage over CI target detection
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FIG. 2. QI and CI ROCs for Rayleigh-fading target detection with
κ̄ = 0.01, NB = 20, and ε = 0.01. (a) NS = 10−4 and M = 108.5.
(b) NS = 10−2 and M = 106.5.

in the Rayleigh-fading scenario. We start with the Neyman-
Pearson criterion, for which we already have the ROC for QI
with SFG reception. The ROC for CI target detection with
a coherent-state transmitter and heterodyne detection is [24]
P CI

D = (P CI
F )

1/(1+Mκ̄NS/NB )
. Figure 2 compares two QI and CI

ROCs. Similar to what was assumed in Refs. [4,14], we took
κ̄ = 0.01, NB = 20, and ε = 0.01 for both comparisons. In
one case we assumed NS = 10−4 and M = 108.5, while in the
other we chose NS = 10−2 and M = 106.5. Figure 2 shows
that QI target detection with SFG reception has a much higher
detection probability than optimum CI target detection at low
false-alarm probabilities.

Turning now to the Bayesian approach, we again have the
QI result in hand, and we find optimum CI’s error probability
from Pr(e)CI = minP CI

F
[π0P

CI
F + π1(1 − P CI

D )]. Figure 3 plots
Pr(e)SFG and Pr(e)CI versus log10(M) for equally likely target
absence or presence assuming κ̄ = 0.01, NB = 20, and ε =
0.01 for NS = 10−4 and NS = 10−2. Here we see that QI
target detection with SFG reception offers a significantly lower
error probability than optimum CI target detection. Indeed, for
MNS � 1 we obtain the asymptotic result

Pr(e)CI � π1 ln(Mκ̄NS/NB)

Mκ̄NS/NB

+ O

(
1

MNS

)
, (6)

FIG. 3. QI and CI error probabilities for Rayleigh-fading target
detection with π0 = π1 = 1/2, κ̄ = 0.01, NB = 20, and ε = 0.01.
(a) NS = 10−4. (b) NS = 10−2. The slope discontinuity in Pr(e)SFG for
NS = 10−2 is due to its receiver’s photon-number threshold increasing
from nt = 0 to nt = 1 at that point.

which is a factor of ln(Mκ̄NS/NB) higher than the correspond-
ing result for Pr(e)NS→0

SFG when Mκ̄NS/NB � 1. Moreover,
Fig. 3(a) shows that NS = 10−4 is small enough to ensure
Pr(e)SFG ≈ Pr(e)NS→0

SFG for the parameter values employed
therein. At high enough M values, however, the effect of
background noise in the SFG process becomes significant and
Pr(e)SFG begins to deviate from the ideal NS → 0 result. The
onset of this deviation occurs at lower M values when NS =
10−2, as seen in Fig. 3(b), because the background-noise effect
on the SFG process is proportional to NS [14]. Nevertheless,
QI’s advantage over CI persists. We also see that QI target
detection’s robustness to noise is worse for Rayleigh fading
than what our previous results [14] showed for known κ .
This reduced robustness arises from noise having a greater
impact on Rayleigh-fading error probability—because κ � κ̄

can occur—as opposed to its effect in a nonfading environment
with κ = κ̄ .

Conclusions. QI target detection is remarkable because it
uses entanglement to outperform CI despite environmental
loss and noise’s destroying that entanglement. Previously,
both theory and experiment have demonstrated QI’s having
an advantage over CI, but only for a target return with
known amplitude and known phase. Yet lidar targets are
generally speckle targets, so their target returns have Rayleigh-
distributed amplitudes and uniformly distributed phases. We
have shown that SFG reception affords a target-detection
performance advantage over optimum CI for this scenario, but
its magnitude is much smaller than what QI provides for the
nonfading situation. Nevertheless, our result brings QI target
detection closer to practical application, although two major
problems remain to be solved: implementing near-lossless
idler-storage and near-unity efficiency SFG for low-brightness,
broadband light.

Two final points now deserve mention. First, although we
have limited our treatment to the Rayleigh-fading scenario, the
SFG receiver’s immunity to a uniformly distributed random
phase means that it will also be effective against other fading
distributions, e.g., the Rician fading that models a target return
with both specular and diffuse components [24,26]. Finally,
because NB � 1 most naturally occurs at microwave, rather
than optical, wavelengths [9], SFG reception’s applicability
to a variety of flat-fading scenarios makes it relevant for
microwave as well as optical QI.
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Claude E. Shannon Research Assistantship. Z.Z. and J.H.S.
acknowledge support from Air Force Office of Scientific
Research Grant No. FA9550-14-1-0052.

Appendix. Here we prove the two lemmas that were used
earlier.

Lemma 1 (Concavity of the Helstrom limit). Con-
sider the problem of discriminating between states σ̂0 =∫

dx fX (x)ρ̂0(x) and σ̂1 = ∫
dx fX (x)ρ̂1(x), where X is a

random vector, that occur with prior probabilities π0 and π1.
The Helstrom limit for this binary state-discrimination task
satisfies Dπ0 (σ̂0,σ̂1) �

∫
dx fX (x)Dπ0 (ρ̂0(x),ρ̂1(x)).

Proof. Let M̂0 and M̂1 = Î − M̂0 be the Helstrom-limit pos-
itive operator-valued measurement for discriminating between
σ̂0 and σ̂1 when those states’ prior probabilities are π0 and π1.
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Then we have that

Dπ0 (σ̂0,σ̂1) = π0tr(M̂1σ̂0) + π1tr(M̂0σ̂1)

=
∫

dx fX (x){π0tr[M̂1ρ̂0(x)] + π1tr[M̂0ρ̂1(x)]}

�
∫

dx fX (x)Dπ0 (ρ̂0(x),ρ̂1(x)),

and the proof is complete. �
Lemma 2 (Error-probability exponent for QI with Rayleigh

fading). For h = 0,1, let ρ̂h(
√

κ,φ) = ⊗M
m=1ρ̂

(m)
h (

√
κ,φ),

where ρ̂
(m)
h (

√
κ,φ) is the two-mode, zero-mean, Gaussian state

whose Wigner covariance matrix is given by Eq. (1), and
let ˆ̄ρh be the unconditional density operators obtained by
averaging ρ̂h(

√
κ,φ) over Rayleigh and uniform probability

density functions for
√

κ and φ, respectively. Then, for all
π0π1 
= 0 we have ξQI ≡ − limM→∞ ln[Dπ0 ( ˆ̄ρ0, ˆ̄ρ1)]/M = 0.

Proof. Because κ � 1 is required for a passive target,
i.e., one that only reflects, the Rayleigh pdf is really an
approximation to f√

κ (x) = 2xe−x2/κ̄/κ̄(1 − e−1/κ̄ ) for 0 �
x � 1 that is very accurate in QI target detection’s κ̄ � 1
scenario. For proving Lemma 2, however, we need to employ
the truncated pdf, so that Lemma 1 and the QCB’s exponential
tightness for M-copy state discrimination gives us

Dπ0 ( ˆ̄ρ0, ˆ̄ρ1) �
∫ 1

0
dx

∫ 2π

0
dy

2xe−x2/κ̄

2πκ̄(1 − e−1/κ̄ )
Dπ0 (ρ̂0(x,y),ρ̂1(x,y))

�
∫ 1

0
dx

∫ 2π

0
dy

2xe−x2/κ̄

2πκ̄(1 − e−1/κ̄ )
Cx,y(M)e−MξQCB(ρ̂0(x,y),ρ̂1(x,y)),

where the subunity prefactor, Cx,y(M), is an algebraic function
of M . Specifically, for all 0 � x � 1 and 0 � y � 2π , we have
limM→∞ ln[Cx,y(M)]/M = 0. It follows that for every ε > 0
there is a finite Mε(x,y) such that Cx,y(M) � e−εM for all
M > Mε(x,y). �

Because � ≡ {0 � x � 1,0 � y � 2π} is a compact re-
gion, there is a finite M�

ε = max(x,y)∈� Mε(x,y). So, for all
M > M�

ε we have

Dπ0 ( ˆ̄ρ0, ˆ̄ρ1) � e−εM

∫ 1

0
dx

∫ 2π

0
dy

2xe−x2/κ̄

2πκ̄(1 − e−1/κ̄ )

× e−MξQCB(ρ̂0(x,y),ρ̂1(x,y)).

But min(x,y)∈� ξQCB(ρ̂0(x,y),ρ̂1(x,y)) occurs at x = 0, where
ξQCB(ρ̂0(0,y),ρ̂1(0,y)) = 0, because ˆ̄ρ0 = ˆ̄ρ1 when the target

return’s intensity vanishes. Thus, for any 0 < ε′ < 1 we
can define �ε′ = {(√κ,φ) : ξQCB(ρ̂0(x,y),ρ̂1(x,y)) � ε′}, and
then weaken our previous lower bound on the Helstrom limit to

Dπ0 ( ˆ̄ρ0, ˆ̄ρ1) � e−(ε+ε′)M Pr[(
√

κ,φ) ∈ �ε′] > 0,

where the last inequality follows from π0π1 
= 0.
Applying this bound to the error-probability exponent then

leads to

ξQI(σ̂0,σ̂1) ≡ − lim
M→∞

ln[Dπ0 ( ˆ̄ρ0, ˆ̄ρ1)]/M � ε + ε′.

Because this upper bound holds for all ε,ε′ > 0, by continuity
our proof is now complete.
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