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Single-photon transport through a waveguide coupling to a quadratic optomechanical system
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We study the coherent transport of a single photon, which propagates in a one-dimensional waveguide and
is scattered by a quadratic optomechanical system. Our approach, which is based on the Lippmann-Schwinger
equation, gives an analytical solution to describe the single-photon transmission and reflection properties. We
analyze the transport spectra and find they are not only related to the optomechanical system’s energy-level
structure, but also dependent on the optomechanical system’s inherent parameters. For the existence of atomic
degrees of freedom, we get a Rabi-splitting-like or an electromagnetically induced transparency (EIT)-like
spectrum, depending on the atom-cavity coupling strength. Here, we focus on the single-photon strong-coupling
regime so that single-quantum effects could be seen.
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I. INTRODUCTION

Single photons are considered as one of the most suitable
carriers of quantum information due to the relative low deco-
herence over a long distance in the waveguide. It is important
to control and manipulate the single-photon transport in
quantum communication and quantum computation. In recent
years, the single-photon transport properties controlled by
interaction with the local coupled two- or multilevel system in
a one-dimensional (1D) waveguide have been extensively in-
vestigated both theoretically [1–6] and experimentally [7–10].
It is found that a photon with frequency resonant with a coupled
two-level atom can be reflected with high probability. Indeed,
94% extinction of the transmitted photon has been observed
experimentally in the circuit QED system [11]. Compared to a
two-level system, a multilevel system provides more control-
lable parameters and more options for photons to transmit or
reflect. Nowadays, a controllable photon transport system can
be realized in different ways, such as a 1D superconducting
transmission line coupled to a single artificial atom [11],
surface plasmons confined on a conducting nanowire coupled
to a single two-level emitter [12], or a photonic nanowire with
an embedded quantum dot [13].

Recently, cavity optomechanics, which is the study of
coherent coupling between electromagnetic and mechanical
degrees of freedom, has been a burgeoning field [14–17]. There
have been a number of theoretical proposals and experimental
realizations probing the optomechanical coupling property
[18,19]. Most of the studies focus on the linear optomechanical
coupling (LOC), which means that the interaction is propor-
tional to the displacement of the mechanical oscillator. These
LOC interactions have been used for many aspects, such as
entanglement between microwave fields and the mechanical
oscillator [20], optomechanically induced transparency [21],
and optomechanical normal-mode splitting [22]. The nonlinear
effects in multimode optomechanical systems with LOC
are also explored [23,24]. However, the interaction with
quadratic optomechanical coupling has been demonstrated
[25–27]. In these systems, a micromechanical membrane or
ultracold atoms are introduced. Though the currently attain-
able quadratic coupling strength between the optomechanical
membrane and the cavity field is weak, much attention has

been paid to this area. And, recently, some methods have been
proposed to increase the interaction or to seek other possible
realization of quadratic optomechanics [28–30] which provide
a possibility to observe the quantum characteristics of the
quadratic strong-coupling system. Also, various phenomena
based on the quadratic optomechanical coupling, such as pho-
ton blockade [31], macroscopic tunneling in optomechanical
double-well potential [32], and two-phonon cooling of the
mechanical oscillator [33] have been proposed.

Typically, in most quantum optomechanical devices, the
cavity is direct or side coupled to a waveguide [19]. Thus, in
the single-photon regime, optomechanical systems, rather than
traditional quantum emitters [2,3], may enable us to control
single-photon propagation in the waveguide. Moreover, the
single-photon transport spectra can be used to probe the
optomechanical system’s inherent parameters and characterize
its energy-level structure.

Motivated by the advances in the quadratic optomechanical
system, in this paper, we investigate theoretically the single-
photon transport in a 1D waveguide coupled to a local
quadratic optomechanical system which is coupled by a two-
level atom, as shown in Fig. 1. Such quadratic optomechanical
systems have been studied in recent papers [34,35]. Here,
we employ a full quantum mechanical approach, which is
based on the Lippmann-Schwinger equation, to study the
transmission and reflection properties of a photon propagating
in the waveguide. An analytical solution to the transport spectra
is derived. We analyze the connection between the spectral
features and the system’s energy-level structure, and present
how the spectra characterize the single-photon strong-coupling
regime. The conditions for the sideband peaks to be visible
are clarified. For the existence of atomic degrees of freedom,
we get a Rabi-splitting-like or an electromagnetically induced
transparency (EIT)-like spectrum, depending on the atom-
cavity coupling strength. In our treatment, it is assumed that
the system works in a single-photon strong-coupling regime,
where multiple phonons are involved in the scattering. So,
single-quantum effects could be seen in this regime.

The paper is organized as follows. In Sec. II, we introduce
the model of single-photon transport and give the calculation
method and the solutions to the model. In Sec. III, we study the
single-photon transport properties when the optomechanical
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FIG. 1. The schematic diagram of the transport model. A 1D
waveguide is side coupled by the hybrid atom-optomechanical system
and the single photon propagates along the arrow direction in the
waveguide.

system contains no atom and a two-level atom. Finally, we
summarize the single-photon transport and give the conclu-
sions in Sec. IV.

II. HAMILTONIAN AND SOLUTIONS

A. The model and Hamiltonian

As shown in Fig. 1, the system we consider contains
a 1D waveguide and a quadratic optomechanical system
which is coupled by a two-level atom. Usually, the hybrid
atom-optomechanical system can be either side coupled or
direct coupled to a waveguide. In this paper, we consider
the side-coupled case, as shown in Fig. 1, for the transport
coefficient of the direct-coupled case, which can be straight-
forwardly obtained by mapping the reflection amplitude of
the side-coupled case into the transmission amplitude of the
direct-coupled case [3]. The optomechanical system is formed
by a single-mode cavity and a thin dielectric membrane with
mass M . The membrane and the cavity field are coupled to
each other via radiation pressure. When the membrane is
located at a node of the intracavity standing wave, the cavity
field can quadratically couple to the mechanical motion of
the membrane. In this case, the cavity field frequency ωa(q)
can be approximated to the second order of the membrane’s
displacement q: ωa(q) = ωa + γ q2 with γ = 1

2
∂2ωa (q)

∂q2 |q=0.

Let a†(a) be the creation (annihilation) operator of the cavity
field; then the Hamiltonian of the optomechanical system can
be written as (with h̄ = 1)

Hopc = ωa(q)

(
a†a + 1

2

)
+ p2

2M
+ 1

2
M�2

Mq2, (1)

where p is the membrane’s momentum and �M is the
vibration frequency of the membrane. By introducing the
mechanical creation (annihilation) operator b† (b) and writ-

ing q =
√

1
2MωM

(b† + b), p = i

√
MωM

2 (b† − b) with ωM =√
�2

M + γ /M , the Hamiltonian becomes [25]

Hopc = ωaa
†a + ωMb†b + g0a

†a(b† + b)2, (2)

where g0 = γ

2MωM
is the quadratic optomechanical coupling

strength between the cavity field and the membrane. Let us
denote the Fock state |i〉a as the state of the cavity field
and the Fock state |n〉b as the state of the membrane; then

the eigenequation of the Hamiltonian Hopc can be derived as
[36,37]

Hopc|i〉a|m̃(i)〉b = (ωai + mωMi + δi)|i〉a|m̃(i)〉b. (3)

Here, ωMi = ωM

√
1 + 4g0i

ωM
is the i-photon coupled resonant

frequency of the membrane and δi = 1
2 (ωMi − ωM ) is the

frequency shift. |m̃(i)〉b is the one-photon squeezed phonon
number state of the membrane and is defined by

|m̃(i)〉b = Sb(ηi)|m〉b, (4)

where Sb(ηi) = exp [ ηi

2 (b2 − b+2)] is a squeezing operator
with the squeezing factor ηi = 1

4 ln (1 + 4g0i

ωM
). One can see

that the membrane has a different energy-level structure when
the cavity contains different number of photons.

The two-level atom is characterized by a ground state |g〉
and an excited state |e〉. Here, we set the ground energy to be
zero as reference and let � be the energy of the excited state.
The Hamiltonian of the whole system can be written as

H = H0 + V

and

H0 =
∫

dkωkc
†
kck + �|e〉〈e| + ωaa

†a

+ωMb†b + g0a
†a(b† + b)2, (5)

V = λ(aσ+ + σ−a+) +
∫

dkJ (cka
† + ac

†
k), (6)

where ck (c†k) is the annihilation (creation) operator for the
kth-mode electromagnetic field with frequency ωk in the
waveguide and ωk = vg|k|. Here, vg is the group velocity of
light. σ+ = |e〉〈g| (σ− = |g〉〈e|) is the atomic raising (lower-
ing) operator. λ is the coupling strength between the cavity
field and the atom. The second term in Eq. (6) represents the
coupling between the waveguide and the atom-optomechanical
system, and J is the coupling strength. The cavity-waveguide
decay rate can be defined as 
 = 2πJ 2

vg
[4]. In our treatment,

it is assumed that the majority of the decayed light from the
cavity is guided into the waveguide modes [38,39], i.e., strong
coupling exists between the cavity and the waveguide. Thus the
decay rate κ of the cavity into channels except the waveguide is
negligible. In addition, the dissipation rate γM of the membrane
is assumed to be much smaller than 
, λ, g0, so we neglect the
membrane’s dissipation process.

B. The Lippmann-Schwinger equation and
scattering amplitudes

Let us assume that the membrane is initially in the number
state |n0〉b when a single photon with energy ωk is incident
from the left of the 1D waveguide, and take the input state as
c
†
k| � 0〉|n0〉b. Here, | � 0〉 = |0〉k|0〉a|g〉 is the vacuum state which

indicates that there is zero photon in both the waveguide and
the cavity and that the atom is in the ground state |g〉. Then the
scattering state |ψ (+)

kn0
〉 is given by the Lippmann-Schwinger

equation [40,41] as∣∣ψ (+)
kn0

〉 = c
†
k|� 0〉|n0〉b + 1

ωk,n0 − H0 + i0+ V
∣∣ψ (+)

kn0

〉
, (7)
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where ωk,n0 = ωk + n0ωM represents the energy of the inci-
dent state of the system.

Since the excitation number N = ∫
dkc

†
kck + a†a + |e〉〈e|

is conserved in this system, the eigenstate with N = 1 can be
written as∣∣ψ (+)

kn0

〉 =
∑

n

∫
dpup(n)c†p|� 0〉|n〉b +

∑
n

αk(n)a†|� 0〉|ñ(1)〉b

+
∑

n

βk(n)σ+|� 0〉|n〉b. (8)

For simplicity, the one-photon squeezed phonon number
state |ñ(1)〉b is denoted as |ñ〉b in the following. These squeezed
number states in Eq. (8) satisfy the orthogonality 〈m̃|b|ñ〉b =
δm,n, and the completeness

∑∞
n=0 |ñ〉b〈ñ|b = I . Besides, the

overlap between the harmonic-oscillator number state |m〉b and
the squeezed number state |ñ〉b is determined by the relation
[31,42]

〈m|b|ñ〉b =
√

m!n!

(cosh η1)n+1/2

Floor[ m
2 ]∑

l′=0

Floor[ n
2 ]∑

l=0

(−1)l
′

l!l′!

×
(

1
2 tanh η1

)l+l′

(n − 2l)!
(cosh η1)2lδm−2l′,n−2l , (9)

where the function Floor[x] means the greatest integer less
than or equal to x. It is noted that the Kronecker δ function
δm−2l′,n−2l in Eq. (9) requires that m and n should have the
same parity, i.e., being odd or even, otherwise 〈m|b|ñ〉b = 0.

By substituting Eq. (7) into Eq. (8), one can obtain

up(m) = δ(p − k)δm,n0 + J
∑
n′

〈m|b|ñ′〉bαk(n′)

× 1

ωk,n0 − ωp − mωM + i0+ , (10)

αk(m)

= J 〈m̃|b|n0〉b
ωk,n0 − (ωa + mωM1 + δ1) − λ2

ωk,n0 −�−mωM
+ i


, (11)

with 
 = 2πJ 2

vg
.

For calculating the single-photon transport coefficient, we
rewrite the scattering state in real space as∣∣ψ (+)

kn0

〉 =
∑

n

∫ +∞

−∞
dxu(x,n)c†(x)|� 0〉|n〉b

+
∑

n

αk(n)a†|� 0〉|ñ(1)〉b

+
∑

n

βk(n)σ+|� 0〉|n〉b, (12)

where

c†(x) =
∫ +∞

−∞
dp

e−ixp

√
2π

c†p, (13)

u(x,n) =
∫

dp
eixp

√
2π

up(n). (14)

By combining Eqs. (10) and (14), one can get the photon
wave function u(x,n). In fact, to study the transport problem,
we only need to know the wave function in the limit |x| → ∞
[40],

u(x,n) =
{

eikx√
2π

δn,n0 + e−iknx√
2π

rn(k), x → −∞
eiknx√

2π
tn(k), x → +∞,

(15)

where kn > 0 and satisfy the relation vgkn = ωk,n0 − nωM .
rn (tn) is the reflection (transmission) amplitude,

rn(k) = −2πiJ

vg

∑
n′

〈n|b|ñ′〉bαk(n′), (16)

tn(k) = δnn0 − 2πiJ

vg

∑
n′

〈n|b
∣∣ñ′〉

b
αk

(
n′). (17)

The single-photon scattering process can be formulated
as follows. The hybrid atom-optomechanical system initially
prepared in the state |� 0〉|n0〉b absorbs the incident photon with
frequency ωk , and emits an outgoing photon with frequency
ωkn

when the state of the atom-optomechanical system is
changed to |� 0〉|n〉b. The frequency of the outgoing photon
meets the relation vgkn = ωk,n0 − nωM , which is consistent
with the law of energy conservation. Note that the photon
is scattered into a mixed state because of the contribution
of the phonon state with n �= n0. Each pure-state component
corresponds to a phonon Fock state. For the nth pure-state
component, the transmittance is |tn|2 and the reflectance is
|rn|2. Thus, the total single-photon transmission and reflection
coefficients can be written as

T (k) =
∑

n

|tn(k)|2, R(k) =
∑

n

|rn(k)|2. (18)

Using Eqs. (11) and (16)–(18), we numerically calculate
the total single-photon transmission and reflection coefficients,
from which the probability current conservation relation, i.e.,
T (k) + R(k) = 1, is confirmed.

More generally, when the membrane is initially pre-
pared in a pure state

∑∞
n0=0 Cn0 |n0〉b or a mixed state∑∞

n0=0 Pn0 |n0〉b〈n0|b, the total transmission and reflection
coefficients are given, respectively, by

T (k) =
∞∑

n=0

∣∣∣∣∣∣
∞∑

n0=0

Cn0 tn0,n(k)

∣∣∣∣∣∣
2

,

R(k) =
∞∑

n=0

∣∣∣∣∣∣
∞∑

n0=0

Cn0rn0,n(k)

∣∣∣∣∣∣
2

, (19a)

T (k) =
∞∑

n=0

∞∑
n0=0

Pn0

∣∣tn0,n(k)
∣∣2

,

R(k) =
∞∑

n=0

∞∑
n0=0

Pn0

∣∣rn0,n(k)
∣∣2

. (19b)

For a thermal equilibrium state, Pn0 = n̄
n0
b /(n̄b + 1)n0+1,

where n̄b is the average phonon occupation number.
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III. SINGLE-PHOTON SCATTERING SPECTRA

A. Single-photon transport coefficient with no atom in the
optomechanical cavity

First, we investigate the case of no atom in the op-
tomechanical cavity. The transport results of this case can
be acquired by setting λ = 0 and � = 0 in the equations
above. It is known that the single-photon squeezing operator
Sb(η1) = exp [ η1

2 (b2 − b+2)], which is produced due to the
quadratic optomechanical coupling between the cavity field
and the membrane, causes the transitions between different
Fock states of the membrane. If we take the limit η1 → 0,
which means that the coupling strength g0 between the cavity
field and the membrane is absent, the squeezing operator
can be expanded to the lowest order, i.e., Sb(η1) 	 1. When
the membrane is initially prepared in an arbitrary Fock state
|n0〉b, the reflection coefficient in this limit case reduces to the
Lorentzian line shape that is the same as the case of the local
coupled quantum bit [1],

R(k) = 
2

(ωk − ωa)2 + 
2
, (20)

and the transmission coefficient reduces to

T (k) = (ωk − ωa)2

(ωk − ωa)2 + 
2
. (21)

It is clear that the probability current conservation relation
R(k) + T (k) = 1 holds. Note that Eqs. (20) and (21) have
nothing to do with the initial state of the membrane because
of the absence of the coupling between the cavity field and
membrane. Therefore, there is only one resonance which is
located at ωk = ωa . As the coupling strength g0 increases, the
scattering state of the incident photon can be more affected by
the state of the membrane. If we keep up the squeezing operator
to the first two orders, exp [ η1

2 (b2 − b+2)] 	 1 + η1

2 (b2 − b+2),
the optomechanical system may absorb the incident photon
and, meanwhile, the membrane gains two phonons, loses
two phonons (if n0 > 2), or remains in the original state.
Notice that the energy levels of the membrane have been
shifted and renormalized due to the radiation pressure when
the cavity contains a photon [see Eq. (3)]. As a result,
the outgoing photon is in a mixed state consisting of three
components, one of which has the resonance energy ωk =
ωa + n0ωM1 + δ1 − n0ωM ; the other two have the resonance
energy ωk = ωa + (n0 − 2)ωM1 + δ1 − n0ωM and ωk = ωa +
(n0 + 2)ωM1 + δ1 − n0ωM . As g0 becomes larger, more orders
of the squeezing operator come into effect. So the higher-order
phonon processes take place.

In Fig. 2, we plot the single-photon transmission and
reflection coefficients as functions of the incident photon
frequency ωk while the membrane is initially prepared in the
ground state |0〉b. It is observed in Fig. 2(a) that the reflection
peak, whose width is 
/ωM = 0.2, occurs at the resonant
point ωk/ωM = ωa/ωM = 2 and no phonon sideband peaks
can been seen. As the coupling strength g0 increases to be
comparable to the mechanical frequency ωM , as shown in
Figs. 2(b) and 2(c), we see that the location of the zeroth-order
(main) reflection peak (or transmission dip) has shifted from
ωa/ωM to (ωa + δ1)/ωM . This feature may be used as the
controllable quantum switch for the coherent transport of a

g M

M

a M

g M

M

g M

a M

g M

k M

FIG. 2. Single-photon transmission spectra and reflection spectra
with λ = 0 for various values of g0 and 
. The membrane’s initial
state is |0〉b. The parameter ωa/ωM = 2. (a)–(c) are plotted with

/ωM = 0.2, while (d) is plotted with 
/ωM = 1.5.

single photon [2] if the coupling strength could be changed in
quantum devices [43]. The location of the first-order peak is at
(ωa + 2ωM1 + δ1)/ωM . The spacing between the zeroth-order
and first-order peaks becomes bigger when g0 increases, which
is different from the linear case in which the spacing is
fixed at ωM [44]. By comparing Figs. 2(c) and 2(d), we
see that even though the system works in the single-photon
strong-coupling regime, there are no sideband peaks in the
spectrum when the value of 
/ωM changes from 0.2 to 1.5.
We found that in the case of 
 > ωM , the phonon-sideband
evidence is negligible. Such a condition can be understood
by examining the height and width of these peaks in the
spectrum. To resolve a peak, the peak height should be much
higher than the tail of its neighboring one. When 
 > ωM ,
the zeroth-order peak becomes too wide and covers the
first-order peak. In this paper, we consider 
 < ωM as the
resolved-sideband condition. Thus, both the strong-coupling
condition and the resolved-sideband condition are required for
observing sideband peaks in the reflection spectra.

B. Single-photon transport coefficient with a two-level atom in
the optomechanical cavity

We next consider the case in which the optomechanical
cavity is coupled by a two-level atom. To investigate the
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single-photon transmission and reflection properties, we first
calculate the eigenvalues and eigenstates of the hybrid atom-
optomechanical system. The system Hamiltonian is given by

H̃AO = H̃0 + H̃I , (22)

where

H̃0 = �|e〉〈e| + ωaa
+a + ωMb+b + g0a

+a(b+ + b)2,

(23)

H̃I = λ(a|e〉〈g| + |g〉〈e|a+). (24)

One can get the eigenstates and eigenvalues as

|m,+〉 = sin
θ

2
|g〉|1am̃b〉 + cos

θ

2
|e〉|0amb〉, (25)

which corresponds to the eigenenergy

Em,+ = Em,1 + Em,2

2
+ 1

2

√
(Em,1 − Em,2)2 + 4λ2, (26)

and

|m,−〉 = − cos
θ

2
|g〉|1am̃b〉 + sin

θ

2
|e〉|0amb〉, (27)

which corresponds to the eigenenergy

Em,− = Em,1 + Em,2

2
− 1

2

√
(Em,1 − Em,2)2 + 4λ2, (28)

where Em,1 = ωa + mωM1 + δ1 and Em,2 = � + mωM .
|e〉|0amb〉 is the eigenstate of H̃0 and represents that the cavity
contains no photon, the atom is in the excited state, and the
membrane is in the Fock state |m〉b. Similarly, |g〉|1am̃b〉
represents that the cavity contains a photon, the atom is in the
ground state, and the membrane is in the one-photon squeezed
Fock state |m̃〉b. The angle θ is given by tan θ = 2λ

Em,1−Em,2
.

One can see that the unperturbed eigenstates |g〉|1am̃b〉 and
|e〉|0amb〉 are modified (dressed) by the interaction between
atom and cavity field.

In Fig. 3, we plot the transmission and reflection spectra for
various values of g0 in the case of λ >> 
 while the membrane
is initially prepared in the ground state |0〉b. When g0 = 0, the
spectra show vacuum Rabi splitting [45], as shown in Fig. 3(a).
Figures 3(b) and 3(c) show how the mechanical oscillator
modifies the vacuum Rabi spectra with multiphonon processes
taking place in the strong-coupling regime. The locations of
the two zeroth-order peaks and two first-order peaks are at
ωk = E0,±, E2,±. As g0 becomes larger, higher-order sideband
peaks will appear with interval

√
(Em,1 − Em,2)2 + 4λ2 on the

right side of each main peak, corresponding to the energy
levels described in Eqs. (26) and (28). Note that only even
phonons can be gained or lost by the membrane due to the
presence of the squeezing operator. This can be seen from the
overlap between the harmonic-oscillator number state |m〉b
and the squeezed number state |ñ〉b in Eq. (9). Like the case
with λ = 0, we found that both the strong-coupling condition
and the resolved-sideband condition (
 < ωM ) are required
for observing sideband peaks in the Rabi splitting spectra.

As the atom-cavity coupling strength λ decreases and the
condition λ < 
 is satisfied, the spectra show to be analogous

g M

E ME M

g M

E ME M
E M

E M

g M

E ME ME M

E M

k M

FIG. 3. Single-photon transmission spectra and reflection spectra
in the case of λ >> 
 for various values of g0 with ωa/ωM =
�/ωM = 5, 
/ωM = 0.2, λ/ωM = 1.5. The membrane’s initial state
is |0〉b.

to that for electromagnetically induced transparency (EIT)
phenomena [46]. In Fig. 4, we plot the transport spectra
with λ = 0.1ωM and 
 = 0.2ωM . Typically, when g0 = 0,
the spectrum exhibits a standard EIT one with a narrow
transmission window. When entering the strong-coupling
regime g0 ∼ ωM , sideband peaks appear in the spectra. We
found that the two zeroth-order transmission dips (or reflection
peaks), corresponding to the energy levels E0,±, are symmetric
with respect to the location of ωk = (E0,+ + E0,−)/2 with
the condition ωa = � − δ1 rather than the atom-cavity tuning
condition ωa = � [47], as shown in Fig. 4(b). More gen-
erally, when ωa = � + 2n(ωM − ωM1) − δ1 (n = 0,1,2, . . .),
we have E2n,1 = E2n,2 = � + 2nωM . Namely, the eigenstates
|e〉|0a2nb〉 and |g〉|1a 2̃nb〉 of H̃0 are degenerate. This de-
generacy is perturbed by the weak atom-cavity interaction
H̃I , resulting in a pair of near-degenerate states |2n,−〉 and
|2n,+〉 with eigenenergies E2n,±. In Fig. 4(c), we show that
for the case of n = 1, the two first-order peaks exhibit EIT-like
phenomena and are symmetric with respect to the location of
ωk = (E2,+ + E2,−)/2. When a single-photon with frequency
ωk = (E2n,+ + E2n,−)/2 is injected, destructive quantum in-
terference occurs between the two possible transition channels
|g〉|0a0b〉 → |2n,−〉 and |g〉|0a0b〉 → |2n,+〉, resulting in a
complete transmission of the single photon. In Fig. 5, we plot
the transport spectra with the atom-cavity tuning ωa = �. One
sees that the presence of coupling g0 results in asymmetric
peaks.

Finally, we consider the case in which the membrane is
initially prepared in different states. If the initial state of the
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FIG. 4. Single-photon transmission spectra and reflection spectra
in the case of λ < 
 for various values of ωa and g0 with �/ωM =
5, 
/ωM = 0.2, λ/ωM = 0.1. The membrane’s initial state is |0〉b.

membrane is in odd-parity Fock states, only the odd-parity
sideband peaks can be seen, while only the even-parity side-
band peaks can be seen if the initial state is in even-parity Fock
states. In Fig. 6, we plot the reflection spectra when the initial
state of the membrane is in Fock state |1〉b, coherent state |α〉b,
and thermal state ρth

b . For the Fock state |1〉b in Fig. 6(a), the
two main (zeroth-order) peaks are related to the transitions
|g〉|0a1b〉 → |1,−〉 and |g〉|0a1b〉 → |1,+〉. The two first-
order peaks located at E3,−/ωM and E3,−/ωM correspond

g M g M

g M

k M

g M

k M

FIG. 5. Single-photon transmission spectra and reflection spectra
in the case of the atom-cavity tuning ωa = � and λ < 
 with various
values of g0. The parameters are ωa/ωM = �/ωM = 5, 
/ωM = 0.2,
λ/ωM = 0.1. The membrane’s initial state is |0〉b.

b

E M E M

E M

E M

E M

b

b

k M

FIG. 6. Single-photon reflection spectra for various initial state
of the membrane. (a) The membrane is initially prepared in the Fock
state |1〉b. (b) The membrane is initially in the coherent state |α〉b with
α = 1. (c) The membrane is initially in the thermal state ρth

b with
n̄ = 1. Other parameters are g0/ωM = 0.8, 
/ωM = 0.2, λ/ωM =
1.5, ωa/ωM = 5, �/ωM = 5.

to the transitions |g〉|0a1b〉 → |3,−〉 and |g〉|0a1b〉 → |3,+〉.
And the weak second-order peak, which is located at E5,−/ωM ,
is related to the transition |g〉|0a1b〉 → |5,−〉. The cases of
coherent state |α〉b and thermal state ρth

b are shown in Figs. 6(b)
and 6(c), where it is observed that both the odd- and even-parity
sideband peaks can be seen because the coherent state and
thermal state contain both odd- and even-parity Fock states.

IV. DISCUSSIONS AND CONCLUSIONS

For the multimode optomechanical system, in which two
optical modes are coupled to a single mechanical mode with
the coupling interaction being proportional to the displacement
of the mechanical oscillator, the quantum nonlinearities are en-
hanced when the mechanical frequencies are nearly resonant to
the optical level splitting [23]. Also, the nonclassical intensity
correlations in a driven, near-resonant optomechanical system
consisting of two optical modes and one mechanical mode are
explored [24]. In the quadratically coupled optomechanical
systems, the photon blockade is examined by evaluating the
second-order correlation function of the cavity photons [31].

Here, the system we consider comprises one optical mode,
one mechanical mode, and a 1D waveguide. The analytical
expressions for transmission and reflection spectra in this
system are obtained and investigated when a single photon
propagates in the one-dimensional waveguide and is scattered
by the optomechanical system.
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In this paper, we have studied the single-photon transport
in a 1D waveguide which is coupled to a quadratic optome-
chanical system in the strong-coupling regime, where multiple
phonons are involved in the scattering. A full quantum mechan-
ical approach based on the Lippmann-Schwinger equation was
employed to investigate the single-photon transmission and
reflection properties. We analyzed the connection between
the spectra and the system’s energy-level structure, since the

transport spectrum is not only related to the optomechanical
system’s energy-level structure, but also dependent on the
optomechanical system’s inherent parameters. One can read
out the information of the mechanical system from the
transport spectrum. In our treatment, we have assumed that the
optical decay rate is much larger than the mechanical decay
rate, so the optomechanical decoherence processes can safely
be ignored.
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