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Modeling the atomtronic analog of an optical polarizing beam splitter, a half-wave plate,
and a quarter-wave plate for phonons of the motional state of two trapped atoms
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In this paper we propose a scheme to model the phonon analog of optical elements, including a polarizing
beam splitter, a half-wave plate, and a quarter-wave plate, as well as an implementation of CNOT and Pauli gates,
by using two atoms confined in a two-dimensional plane. The internal states of the atoms are taken to be Rydberg
circular states. Using this model we can manipulate the motional state of the atom, with possible applications
in optomechanical integrated circuits for quantum information processing and quantum simulation. Towards
this aim, we consider two trapped atoms and let only one of them interact simultaneously with two circularly
polarized Laguerre-Gaussian beams.
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I. INTRODUCTION

Phonons can play a similar role to photons in quan-
tum optics and quantum information processing. They can
be used to encode information as qubits because of their
appealing properties such as low-propagation speed, which
provides us with new schemes for processing quantum
information, and their short wavelength, which allows us to
access regimes of atomic physics that cannot be reached
in photonic systems [1]. Numerous researchers are trying
to find ways of using phonons for quantum information
and computation and, more importantly, finding ways for
manipulating the quantum information that is carried by these
phonons [2–7].

Cold and trapped atoms are good candidates that provide the
possibility of using phonons (vibrational motion of the trapped
atoms) in quantum information and quantum optics. This
system has attracted more attention because of its appealing
properties such as long lifetimes (single atoms can remain
trapped for hours or days), long coherence times (ranging
from milliseconds to seconds), natural reproducibility [8],
high controllability, and large nonlinearity, which originate
from quantization of the motion [9]. Moreover, integrated
quantum atom chips have become the focus of current
research in atomtronics, which promises the miniaturization
(and therefore scaling) of optical quantum circuits [10]. One
important thing is to show how we can manipulate motional
states of the atoms, especially on quantum circuits. To achieve
this aim, we have to implement arbitrarily quantum gates
on motional states of the atoms. On the other hand, as
Barenco et al. showed in 1995, any unitary operation can
be decomposed into a sequence of single-qubit rotations
and two-qubit CNOT gates [11]. Thus, by implementation of
only these gates, we can realize arbitrary complex gates.
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The polarizing beam splitter (PBS), half-wave plate (HWP),
and quarter-wave plate (QWP) perform operations of the
two-qubit CNOT and single-qubit rotation gates. Wave plates
and PBS operations on a trapped atom chip have not been
implemented before, but they are needed for the realization
of universal quantum gates. This paper is an effort in that
regard.

Here, we propose a scheme for modeling the phonon analog
of optical elements including the PBS, HWP, and QWP in such
a way that the vibrational motion along the x and y axes plays
the role of the horizontal and vertical polarization, respectively.
To this end, we consider two atoms trapped in the x-y plane, the
internal states of the atoms of which are taken to be Rydberg
circular states. Two counterpropagating circularly polarized
Laguerre-Gaussian (LG) beams illuminate selectively only one
of the atoms. We show that external degrees of freedom of
the atoms can be decoupled from the internal degree of the
first atom by preparing the initial internal state of the first
atom in (|e〉 + |g〉)/√2 or (|e〉 + i|g〉)/√2, and adjusting the
frequency of the beams and trap. In this way we can model the
PBS, HWP, and QWP for the external degree of freedom of
the atoms.

One interesting feature of our scheme is the exploitation of
orbital angular momentum (OAM) modes of light. Actually
in our model the OAM modes lead to a nonlinearity, which is
needed for realizing the above-mentioned phonon analog of
optical elements.

In this paper we proceed as follows. In Sec. II, we first
determine evolution operators of polarization-sensitive analog
optical elements, including a PBS, a HWP, and a QWP. In
Sec. III, we develop a method for the realization of the PBS,
HWP, and QWP for phonons. In other words, we engineer a
Hamiltonian corresponding to the PBS, HWP, and QWP, by
using two atoms trapped in a two-dimensional plane, where
one of them interacts with two classical, circularly polarized
LG beams. In Sec. IV, we investigate the realization of Pauli
single-qubit gates and a two-qubit CNOT gate with the trapped
atom. Finally, we summarize our results and conclude with
Sec. V.
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FIG. 1. Schematic diagram of the PBS which transmits the
horizontal polarization and reflects the vertical polarization.

II. EVOLUTION OPERATORS OF POLARIZING
OPTICAL ELEMENTS

A. Polarizing beam splitter

A PBS can be used for translation of spatial qubits
into polarization qubits and is described by four degrees of
freedom. Two of them are related to the spatial modes, and the
other two are related to the polarization. In this optical element
the horizontally polarized light is always transmitted, while the
vertically polarized light is always reflected (Fig. 1.). Namely,
the transmission coefficient for the horizontal mode tH is 1 and
for the vertical mode tV is zero, and the reflection coefficient
for the horizontal mode rH is zero and for the vertical mode
rV is 1.

So the operation of the PBS may be described by the
following matrix [12]:⎡

⎢⎣
tH irH 0 0
irH tH 0 0
0 0 tV irV

0 0 irV tV

⎤
⎥⎦, (1)

which shows that the PBS can be described by a matrix that
is similar to the matrix of a CNOT gate [12]. Thus, mode
transformations of a PBS may be described in the following
form (Fig. 2):

âH → ĉH = âH , (2)

b̂H → d̂H = b̂H , (3)

âV → ĉV = ib̂V , (4)

b̂V → d̂V = iâV , (5)

where â and b̂ denote the input modes of the PBS and d̂

and ĉ denote the output modes of the PBS. In the following
we will determine the unitary operator corresponding to the
PBS. A general two-mode Hamiltonian, which can describe

FIG. 2. A schematic diagram of operation of the PBS.

the creation of a photon in mode a and the annihilation of a
photon in mode b, and vice versa, may be written as [13]

Hζ,ϕ = h̄ζ eiϕâ†b̂ + h̄ζ e−iϕ âb̂†. (6)

Under influence of this Hamiltonian the mode operator
transformations are

e
i
h̄
H t âe

−i
h̄

H t = cos(ζ t)â − ieiϕsin(ζ t)b̂,

e
i
h̄
H t b̂e

−i
h̄

H t = cos(ζ t)b̂ − ie−iϕsin(ζ t)â. (7)

If we set ζ t = π/2 and ϕ = 0, the unitary operator
corresponding to this Hamiltonian will be

U = e−i π
2 (â†b̂+âb̂†), (8)

which leads to the following transformations:

â → −ib̂, (9)

b̂ → −iâ. (10)

Therefore, the unitary operator corresponding to the PBS can
be written as

U = e−i π
2 (â†

V b̂V +âV b̂
†
V ). (11)

This evolution operator leads to the following transformations:

âH → âH , (12)

b̂H → b̂H , (13)

âV → −ib̂V , (14)

b̂V → −iâV , (15)

which are similar to the PBS transformations regardless of a
minus sign in the third and forth transformations (which has
no effect in our desired main result).

B. Wave plates

Another important optical instrument is the wave plate.
A wave plate is an optical device that alters the polarization
state of a light wave traveling through it. Two common types
of wave plates are the HWP and QWP. For linearly polarized
light, the HWP rotates the polarization vector through an angle
2θ , where θ is the angle which the optical axis of the material
makes with the horizontal axis. For elliptically polarized
light, the HWP inverts the light’s handedness [13]. The QWP
converts linearly polarized light into circularly polarized light
and vice versa. A QWP can be used to produce elliptical
polarization as well. In the following the unitary operators
corresponding to these two optical elements are computed.

1. Half-wave plate

The mode transformations of a HWP have the following
form [13]:

âH → cos(2θ )âH − isin(2θ )âV , (16)

âV → −isin(2θ )âH + cos(2θ )âV . (17)
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FIG. 3. The operation of a HWP on a linearly polarized field.
Axes parallel and perpendicular to the optical axis of the HWP are
indicated by F and S, respectively. A spatial rotation over an angle θ

of the wave plate induces a polarization rotation over an angle 2θ .

In the Bloch sphere, this corresponds to a rotation around
the x axis. The unitary operator corresponding to the HWP
transformation can be written as follows:

U = e2iθ(â†
V âH +âV â

†
H ). (18)

A rotation over an angle θ of the HWP results in a polarization
rotation over an angle 2θ (Fig. 3).

2. Quarter-wave plate

The mode transformations of the QWP when the optical
axis of the material is in the direction of the horizontal axis
have the following form:

âH → e−i π
4 âH , (19)

âV → e+i π
4 âV . (20)

Moreover, the Hamiltonian corresponding to the general
single-mode transformation may be written as [13]

Ĥ = h̄ϕâ†â. (21)

This Hamiltonian leads to the following Bogoliubov transfor-
mation:

â → e−iϕ â. (22)

Thus the unitary operator which describes a QWP is

U = ei π
4 [â†

V âV −â
†
H âH ]. (23)

In the following sections implementation of the phonon analog
of the PBS, HWP, and QWP for the motional state of the two
trapped atoms will be investigated.

III. REALIZATION OF PHONON ANALOGS OF PBS, HWP,
AND QWP FOR TWO TRAPPED ATOMS

Besides energy and linear momentum, photons carry spin
angular momentum (SAM) and orbital angular momentum.
SAM is associated with the polarization while OAM is
associated with the transverse amplitude and phase profile
of the beam. In this section, we use these degrees of freedom
(OAM and SAM) to model phonon analogs of PBS, HWP, and
QWP for the phonons.

FIG. 4. Interaction of two LG lights with one of the atoms
confined in a transverse plane perpendicular to the beams at the waist
of the beams.

Let us consider two atoms trapped in an anisotropic
three-dimensional harmonic trap which is described by
the potential U (ri) = 1/2m(ω2

xi
(xi − x0i

)2 + ω2
yi

(yi − y0i
)2 +

ω2
zz

2
i ), where m is the mass of the atoms and x0i

and y0i

are the minimum potential of the trapped atom i. The ωxi
,

ωyi
, and ωzi

are frequencies of the trap in the direction of x,
y, and z for the trapped atom i. We assume that the atoms
are tightly confined along the z axis (ωz � ωx,y) and neglect
the motion along this axis, and they oscillate around (x0i

,y0i
)

in the x-y plane. We can implement this kind of the trap
by generalizing the proposed trap in [14]. In this paper is
introduced a blue detuned optical trap by using Gaussian
beams propagating in the direction of z and giving traps in
the x-y plane for Rydberg atoms. Regarding the fact that blue
detuned traps provide the possibility of simultaneous trapping
of both ground and Rydberg excited states, they are interesting
for experiments using Rydberg atoms. We refer the reader to
[14] for further details about how trapping fields interact with
Rydberg excitation, temperature, and so on.

We introduce new coordinates as (X̂ = (x̂1 + x̂2)/2, Ŷ =
(ŷ1 + ŷ2)/2) and (x̂ = (x̂2 − x̂1)/2, ŷ = (ŷ2 − ŷ1)/2), which
shows the center of mass (CM) and breathing mode operators,
respectively. Now consider two classical LG beams with the
same amplitudes, polarizations (circular polarization), and
transverse profile, but with different frequencies. Thus, the
transverse electric field may be written as

E = U�(ρ,φ)(êx + iêy)(e−iω1t + e−iω2t ) + H.c., (24)

where U�(ρ,φ) is the transverse profile of LG beams which at
the beam waist w0 is given by

U�(ρ,φ) = ε�

(
ρ

w0

)|�|
exp

(
− ρ2

w2
0

+ i�φ

)
, (25)

where ρ and φ are the radial and angular polar coordinates.
The modes are characterized by an OAM equal to �h̄ along
the propagation axis. We let only one of the atoms, say the
first atom, be illuminated simultaneously by the two classical
lasers (Fig. 4). This is possible experimentally, because first
we choose the potential of the trap in such a way that the
equilibrium positions of the two atoms are spatially separated
and second we assumed the size of the CM mode wave function
is small in comparison to the radius of the LG beams. So if
the laser forms an appropriate angle with the plane in which
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the atoms are trapped, it can illuminate selectively only one
of the atoms without illuminating the other one. For example,
this can be achieved if we apply a beam with a waist size of
1.5 μm and a trap that can trap the atoms with spaces between
atoms of the order of millimeters [15].

The Hamiltonian of this system is given by

Ĥ = Ĥ0 + Ĥint, (26)

where

Ĥ0 = h̄ω0

2
σ̂z1 + h̄νxâ

†
x âx + h̄νy â

†
y ây

+ h̄μxb̂
†
x b̂x + h̄μyb̂

†
y b̂y (27)

and

Ĥint = −P̂1 · E, (28)

where σ̂zi
is the Pauli operator of the ith atom, ω0 is the

atomic frequency, μi(νi) is the frequency of the phonon in
direction i = x,y for the CM (breathing) mode, and âi(b̂i)
is the annihilation operator of the CM (breathing) mode in
direction i. P̂1 is the dipole moment of the first atom, which is
given by

P̂1 = 1
2e[(x̂1 + iŷ1)(ex − iey) + (x̂1 − iŷ1)(ex + iey)],

(29)

where ex and ey are the unit vectors along the x and y axis. We
assume the atoms to be in Rydberg circular electronic states.
Because of the fact that circular states have the maximum
value of the magnetic quantum number, m = l = n − 1, we
represent |n = m + 1,l = m,m〉 with |m〉 for simplicity and
we denote two levels of the atom with |m〉 and |m + 1〉. Thus,
the dipole moment in the internal circular atomic basis can be
written as

P̂1 = 1
2Pm

[
(ex + iey)σ̂m1 + (ex − iey)σ̂ †

m1

]
= 1

2Pm

[
(σ̂m1 + σ̂ †

m1
)ex + i(σ̂m1 − σ̂ †

m1
)ey

]
, (30)

where

e〈m|(x̂1 − iŷ1)|m + 1〉 = e〈m + 1|(x̂1 + iŷ1)|m〉 = Pm

(31)

and

σ̂m1 = |m〉〈m + 1|, σ̂ †
m1

= |m + 1〉〈m|. (32)

Here, σ̂m1 and σ̂
†
m1 are Pauli operators of the first atom.

By assuming that the size of the CM mode wave function
R0 is small compared with the radius of the LG beams w0, and
given the fact that the CM motion is quantized, the transverse
profile of the electric field at the beam waist and in the place
of the first atom, for � ∈ 0, ±1, ±2,..., can be written as [16]

U�(ρ̂,φ̂) = ε�

(
ρ̂

w0

)|�|
exp(ilφ̂) = ε�

w
|�|
0

(x̂1 ± iŷ1)|�|

= ε�

w
|�|
0

[(X̂ − x̂) ± i(Ŷ − ŷ)]|�|

= ε�

{[
ηxc

(â†
x + âx) − ηxb

(b̂†x + b̂x)
]

± i
[
ηyc

(â†
y + ây) − ηyb

(b̂†y + b̂y)
]}|�|

(33)

FIG. 5. Interaction of two LG beams with the same amplitudes,
transverse profile, and polarization (from the point of view of the
atom) with an atom trapped in two dimensions.

where ηxc
=

√
h̄/mμxw

2
0, ηyc

=
√

h̄/mμyw
2
0, ηxb

=√
h̄/mνxw

2
0, ηyb

=
√

h̄/mνyw
2
0. The interaction Hamiltonian

of this system, for � ∈ 0, ±1, ±2,..., is given by

Ĥint = − h̄

2
�m,�{[ηxc

(â†
x + âx) − ηxb

(b̂†x + b̂x)]

± i[ηyc
(â†

y + ây) − ηyb
(b̂†y + b̂y)]}|�|

× σ̂ †
m1

(e−iω1t + e−iω2t ) + H.c., (34)

where �m,� = 2Pmε�/h̄, which is assumed to be equal for
the two standing-wave lasers. We select two lasers with the
following frequencies:

ω1 = νy − μy + ω0, ω2 = −(νy − μy) + ω0. (35)

Under this condition, the Hamiltonian in the interaction picture
for � = 2 (Fig. 5), in the rotating-wave approximation, will be

Ĥint = ∓h̄�m,2ηyc
ηyb

(â†
y b̂y + ây b̂

†
y)(σ̂ †

m1
+ σ̂m1 ). (36)

The evolution operator corresponding to this Hamiltonian
is

U = exp[±i�m,2ηyc
ηyb

t(â†
y b̂y + ây b̂

†
y)(σ̂ †

m1
+ σ̂m1 )]. (37)

By preparing the initial internal state of the first atom in (|e〉 +
|g〉)/√2, the internal and external degrees of freedoms would
be decoupled. So dynamical evolution of the motional states
of the atoms is decoupled from the dynamical evolution of
internal states of the first atom. Moreover, the motional part
of the evolution operator is similar to the evolution operator
of the PBS, if we set �m,2ηyc

ηyb
t = π/2.

This condition can be achieved and is compatible with
experimental values found in the literature [17,18]. In more
detail, the internal levels of the atoms are taken to be Rydberg
circular states. These states are extremely long lived, with
lifetimes that scale as n5, which are of the order of 10−2 s for
n = 30, and the electric dipole moments are of the order of
10−27 C m [17]. The Lamb-Dicke parameter can be of the order
of 10−1 [18]. Therefore, a laser with an intensity of 1 Wm2,
corresponding to a power of 10−6 W, can satisfy the condition
�m,2ηyc

ηyb
t = π/2 for an interaction time 10−5 s. This shows

that not only the condition �m,2ηyc
ηyb

t = π/2 can be achieved
but also the interaction can be carried out before spontaneous
emission can occur.

It is worth noting that the operators âx and ây play the
analog role of âH and âV , respectively. In other words,
the phonons vibrating in the direction of the x (y) axis play
the role of the horizontal (vertical) component of polarization.
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In more detail, an optical PBS reflects vertical photons and
transmits horizontal photons, while under the effect of our
analog PBS the phonons of the CM mode and breathing mode
vibrating in the direction of the x axis will remain in the
same mode, but the phonons of the breathing mode vibrating
in the direction of the y axis will change to the CM mode
phonons vibrating in the direction of the y axis and vice
versa.

In another case, if we select two lasers with the following
frequencies,

ω1 = μx − μy + ω0, ω2 = −(μx − μy) + ω0, (38)

the Hamiltonian in the interaction picture for � = 2 will be

Ĥint = ∓ih̄�m,2ηyc
ηxc

(â†
x ây + âx â

†
y)(σ̂ †

m1
− σ̂m1 ). (39)

The evolution operator corresponding to this Hamiltonian
is

U = exp[±�m,2ηxc
ηyc

t(â†
x ây + âx â

†
y)(σ̂ †

m1
− σ̂m1 )]. (40)

In this case, by preparing the initial internal state of the
first atom in (|e〉 + i|g〉)/√2, the internal and external
degrees of freedoms would be decoupled. So dynamical
evolution of the motional states of the atoms and dynamical
evolution of the internal states of the first atom are decoupled.
Moreover, the motional part of this evolution operator is similar
to the evolution operator of a HWP; i.e., this interaction acts
as a HWP for CM phonons. Actually this HWP rotates the
direction of the vibration of the CM phonon, by 2θ , where,
θ = �m,2ηxc

ηyc
t/2, and can be controlled by adjusting the

Lamb-Dicke parameters ηxc
and ηyc

, the coupling strength
of the atom-light interaction, and the time of the interaction.
These features provide good possibilities for manipulating the
vibrational states of the atoms, which can find application in
quantum information processing and computing.

If we select two lasers with the following frequencies,

ω1 = νx − νy + ω0, ω2 = −(νx − νy) + ω0, (41)

the interaction will act as a HWP for the breathing phonons.
In the case that we select two lasers with the following
frequencies,

ω1 = ω2 	 ω0, (42)

and suppose μi 
 νi , the interaction Hamiltonian will be

Ĥint = −h̄�m,2
[
η2

xc
â†

x âx − η2
yc

â†
y ây

+ (
η2

xc
− η2

yc

)]
(σ̂ †

m1
+ σ̂m1 ). (43)

We can rewrite this Hamiltonian as

Ĥint = −h̄�m,2

[
η2

xc
− η2

yc

2
(â†

x âx + â†
y ây)

+ η2
xc

+ η2
yc

2
(â†

x âx − â†
y ây) + (

η2
xc

− η2
yc

)]
(σ̂ †

m1
+ σ̂m1 ).

(44)

The evolution operator corresponding to this Hamiltonian is

U = exp
[(

η2
xc

− η2
yc

)(
σ̂ †

m1
+ σ̂m1

)]

× exp

[
i�m,2

η2
xc

− η2
yc

2
t(â†

x âx + â†
y ây)

(
σ̂ †

m1
+ σ̂m1

)]

× exp

[
i�m,2

η2
xc

+ η2
yc

2
t(â†

x âx − â†
y ây)

(
σ̂ †

m1
+ σ̂m1

)]
.

(45)

As we see, if we prepare conditions under which �m,2(η2
xc

+
η2

yc
)t/2 = π/4 (this can be achieved corresponding to exper-

imental values that we mentioned earlier), and we prepare
the initial internal state of the first atom in (|e〉 + |g〉)/√2,
the system acts as a QWP on the CM mode, irrespective
of the phase of exp[i�m,2(η2

xc
− η2

yc
)(â†

x âx + â
†
y ây)t/2]. (Note

that the number of phonons N = â
†
x âx + â

†
y ây is a constant

of motion.) If μi � νi and �m,2(η2
xb

+ η2
yb

)t/2 = π/4 the
interaction acts as a QWP on the breathing phonons.

Therefore, only by adjusting the frequencies of the two LG
beams (with � = 2), and the trap, one can prepare conditions
such that the interaction acts as a PBS, HWP, and QWP for
vibrational phonons.

IV. REALIZATION OF NOT AND PAULI GATES

As Barenco et al. showed, any unitary operation can be
decomposed into a sequence of single-qubit rotations and two-
qubit CNOT gates [11]. In this section we show how one can
realize quantum CNOT and Pauli gates by using the interactions
that we have investigated here.

If we encode vibrating directions (x and y) of phonons as
states of the control qubit (|0〉c = |nx = 1,ny = 0〉 and |1〉c =
|nx = 0,ny = 1〉) and the type of the phonon mode (CM or
breathing) as states of the target qubit (|0〉t = |nCM = 1,nb =
0〉 and |1〉t = |nCM = 0,nb = 1〉), the four two-qubit input
states (|0,0〉L = |nc

x = 1,nb
x = 0,nc

y = 0,nb
y = 0〉, |0,1〉L =

|0,1,0,0〉, |1,0〉L = |0,0,1,0〉, |1,1〉L = |0,0,0,1〉) can be gen-
erated. In this case the PBS interaction Eq. (36) acts as a CNOT

gate on these qubits (Fig. 6). In the same way, single-qubit
gates such as the Pauli X gate and Pauli Z gate can be realized
by using HWP and QWP interactions.

Now, let us consider the preparing of the initial states and
readout of the final state. To prepare the initial state, we should
cool down the atoms to be prepared in their motional ground
states, then by illuminating a sequence of pulses with desired
frequencies on the atoms we can excite the motional state of
them in the breathing motion or CM motion in each of the x and
y directions. Regarding the readout process, the motional state
of the trapped atom could be measured in two steps: At first, the
external state of the atom should map into the internal state by
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|0,0>
L

|0,1>
L|1,0>

L

L

|0,0>
L

|0,1>
L

|1,1>
L

L

(a) (b)

FIG. 6. (a) Characterization of the two-qubit logical states.
(b) The effect of the PBS interaction (36) on the input two-qubit
states.

using a Jaynes-Cummings interaction, and then by performing
a measurement on the internal states one can determine the
probability distribution of the motional state [19]. It should
be noted that the decoherence processes cannot restrict the
operation of the above-mentioned gate considerably. The most
important decoherence effects in our system are spontaneous
emission of atoms, mechanical damping, and long-range
Rydberg interaction. As we mentioned before, the time scales
of operations of the CNOT and Pauli gates are smaller than
the lifetime of the considered Rydberg atoms. Thus, we can
be sure that during the interaction the spontaneous emission
does not occur. Moreover, mechanical damping is of the order
of several seconds, but we have estimated the duration of our
scheme to be of the order of microseconds, so the mechanical
damping can be neglected, too. On the other hand, long-range

dipole-dipole interaction between the two Rydberg atoms can
also be neglected, because it is proportional to (1/r)6 and P 4,
which r and p are the distance between the atoms and the dipole
moment of the atoms, respectively. The dipole moment of the
Rydberg atoms is proportional to a0n

2, in which a0 is the Bohr
radius and n is the principal quantum number. For our case the
distance between the atoms is of the order of millimeters and
n = 30, so dipole-dipole interaction is of the order of 10−1 Hz,
which when compared to coupling strength of the atom with
light (� ∼ 107 Hz) is negligible [20].

V. CONCLUSION

In this paper we propose a scheme for modeling the phonon
analog of the optical elements including the PBS, HWP, and
QWP, as well as an implementation of CNOT and Pauli gates,
by using two trapped atoms, one of which interacts with
two circularly polarized LG beams. This implementation can
find application in the manipulation of quantum states of the
phonons for realization of quantum information and quantum
computing goals in integrated atom-optical circuits.
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