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Quantum simulation of topologically protected states using directionally unbiased
linear-optical multiports
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It is shown that quantum walks on one-dimensional arrays of special linear-optical units allow the simulation
of discrete-time Hamiltonian systems with distinct topological phases. In particular, a slightly modified version
of the Su-Schrieffer-Heeger (SSH) system can be simulated, which exhibits states of nonzero winding number
and has topologically protected boundary states. In the large-system limit this approach uses quadratically fewer
resources to carry out quantum simulations than previous linear-optical approaches and can be readily generalized
to higher-dimensional systems. The basic optical units that implement this simulation consist of combinations of
optical multiports that allow photons to reverse direction.
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I. INTRODUCTION

The rapidly expanding research activity currently underway
on quantum computing [1–4] is ultimately an outgrowth of
Feynman’s observation that quantum systems are necessary
to efficiently simulate other quantum systems [5–7]. The goal
of quantum simulation is therefore to find simple quantum
systems that can accurately and efficiently simulate specific
properties of interest in more complex quantum physical
entities.

The behavior of a quantum system arises from interfer-
ence between multiple solutions of a linear wave equation.
This can be seen most clearly in Feynman’s path integral
formalism [8,9], where the observable output state is a
linear superposition of all allowed intermediate trajectories.
In a similar manner, linear-optical systems make use of
interference between light waves that arise as solutions to
the linear Helmholtz equation. For systems in which particle
number is conserved (electrons in a solid, for example), linear
optics would therefore seem to be a natural resource to exploit
in order to carry out quantum simulations. In particular,
photonic quantum walks [10,11] can produce the complex
interference patterns needed for such simulations. Because of
the relatively feeble interactions that photons have with their
surroundings, many of the complexities associated with other
physical implementations of quantum simulations are greatly
reduced in an optical setting. In addition, light is not only easy
to produce and detect, but it can be tailor-made with a high
degree of control over its frequency, polarization, and spatial
and temporal profiles. Further, quantum effects are readily
visible in optics; for example, photon pairs can be routinely
produced with high degrees of entanglement [12–14].

Systems with nontrivial topological behavior arise naturally
in the study of solids, as well as in other areas of physics. They
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lead to wave functions with nonzero Chern number or winding
number, to topologically protected edge or boundary states,
and to phase transitions between distinct topological states
(see [15–19] for reviews). Alongside theoretical work and
experimental implementation, quantum simulation of these
behaviors has also become an active area of current research.
For example, simulations have been carried out with ultracold
atoms, both in free space and confined to optical lattices
[20–26], as well as in photonic quantum walks [16,27–30].

The approaches used up to now for quantum simulations of
topologically nontrivial physical systems have substantial lim-
itations. For example, working with atoms requires extremely
low temperatures in order to avoid decoherence. This adds
numerous complications to the experiments and makes this
approach unlikely to be useful outside of research laboratories.
On the other hand, analogous simulations done with optical
quantum walks have their own complications. In particular,
they require a set of optical resources (beam splitters, mirrors,
etc.) that grows rapidly with the number of steps in the walk.

These factors strongly limit the ability to use the current
optical approaches for practical simulations on a large scale,
and so it is of interest to investigate novel schemes that may be
more easily scalable. Here we present a linear-optical strategy
whose resource requirements grow at a quadratically slower
rate than previous optical approaches. It is currently practical
to carry out a table-top version of this procedure, and in
the near future it should be plausible to implement it on
much larger scales by integrating all of the required optical
elements onto optical chips that can be fabricated in large
numbers and arranged into the desired configurations with
high stability. In contrast to the quadratic growth in previous
optical implementations, the resources required here scale only
linearly with number of steps. Furthermore, this scheme has
the advantage that the parameters of the underlying system
on which the walk occurs can be readily varied to produce a
variety of simulated behaviors.

In [31] a linear-optical method was proposed for using
photonic quantum walks to carry out quantum simulations of
topologically trivial nearest-neighbor Hamiltonians in the con-
text of one-dimensional discrete-time physical models. This
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was accomplished by means of chains of simple linear-optical
units. Different Hamiltonians could be simulated by varying
the arrangement of these units, or by varying their internal
parameters. By going from a one-dimensional chain to two-
or three-dimensional arrays, Hamiltonians exhibiting more
complicated band gap structures can also be implemented.

In the current paper, the simple periodic lattice of [31] is
replaced by a pair of two interlaced sublattices with different
parameters, leading to a substantial generalization in the
types of behaviors attainable. In particular, simulation of
topologically nontrivial Hamiltonians become possible, with
features such as nonzero winding number and topologically
protected boundary states.

The basic optical units utilized in this scheme are the
directionally unbiased optical multiports proposed in [32].
These devices can be thought of as scattering centers of the
type that have been discussed in the abstract context of optical
graph systems [33–36]. In a graph model, an incident photon
is constrained at each time step to scatter into one of a finite
number of modes. One of these modes is the time-reversed
version of the input mode, so it is necessary that the multiport
allows the photon to reverse direction and exit back out the
input port. Such reversible multiports can be constructed using
only linear optics and can be thought of as artificially created
optical “meta-atoms,” with lattices of them forming a type of
metamaterial. In this sense, the current paper is complementary
to work that seeks to produce topological behavior in dielectric
metamaterials [37].

The significant reduction in resources in the current
proposal compared to previous optical approaches is a direct
consequence of the fact that the input ports of the unbiased
multiport serve also as output ports. As a result, the flow
of photons can reverse direction and traverse the same unit
multiple times instead of needing additional units at each
time step. This is illustrated in Fig. 1: previous linear-optical
implementations involve a splitting of optical paths at each
step, causing the number of outputs and the number of beam
splitters, phase plates, etc., to increase with each step. Although
the overall flow of photons in time is toward the right, the
quantum walk is occurring in the transverse direction. If N

is the number of time steps, then the total resources grow
proportional to N2. Effectively, the standard approach requires
a two-dimensional network to carry out a one-dimensional
walk. However, with reversible units of the type used in the
current paper, the walk occurs in the longitudinal (horizontal)
direction, requiring only a single line with length of order N

to carry out a walk of N steps. The currently proposed method
also scales up to systems with more spatial or internal degrees
of freedom in a straightforward manner.

We briefly review directionally unbiased multiports and
topologically nontrivial discrete-time Hamiltonian systems in
Secs. II and III, respectively, before using the multiports to
demonstrate linear-optical simulation of topologically pro-
tected states in Sec. IV. We briefly discuss these results in
Sec. V.

II. DIRECTIONALLY UNBIASED MULTIPORTS

Ordinary beam splitters and their multiport generalizations
only allow one-way movement of photons; the light never
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FIG. 1. (a) In prior approaches to topological system simulation
with linear optics, the number of optical lines increases with each
step and the walk occurs in the transverse direction, requiring
quadratic increase of resources as the number of steps increases.
(b) The approach using directionally unbiased multiports only
requires motion along a single line to produce the same effect.
The quantum walk is in the longitudinal rather than the transverse
direction, and so only requires linear resource growth.

reverses direction inside. In [32], a generalized multiport
was proposed which allows such a reversal. Such a device,
called a directionally unbiased multiport, allows the experi-
mental implementation of scattering-based quantum walks on
graphs [34–36]. Examples of unbiased n-ports for n = 3 and
n = 4 are shown in Figs. 2(a) and 2(b). Only the three-port
version will be used in the following.

The directionally unbiased multiports are linear-optical
devices with the input and output ports attached to vertex
units of the form shown in the inset of Fig. 2(a). Each such
unit contains a beam splitter, mirror, and phase shifter. The
beam-splitter-to-mirror distance d

2 is half of the distance d

between the vertex units in the multiport. The phase shifter
provides control of the properties of the multiport, since
different choices of phase shift at the vertices affect how the
different photon paths through the device interfere with each
other.

If the unit is sufficiently small (quantitative estimates of the
required size and other parameter values may be found in [32])
then its action can be described by an n × n unitary transition
matrix Û whose rows and columns correspond to the input
and output states at the ports. If the internal phase shifts at
all three mirror units are equal, then an explicit form of the
unitary transition matrix Û can be found:

Û = eiθ

2 + ieiθ

⎛
⎝ 1 ie−iθ − 1 ie−iθ − 1

ie−iθ − 1 1 ie−iθ − 1
ie−iθ − 1 ie−iθ − 1 1

⎞
⎠, (1)
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FIG. 2. (a) The directionally unbiased three-port. (b) The direc-
tionally unbiased four-port. The rectangles after the beam splitters
in (a) and (b) represent the vertex mirror unit shown in the inset of
(a). This unit consists of a mirror and a phase-shifter. The distance
between each beam splitter and the adjacent mirror unit is half the
distance d between one beam splitter and the next.

where θ is the total phase shift at each mirror unit (including
both the mirror and the phase plate). The rows and columns
refer to the three ports A, B, C.

Two special cases of this result can be noted. First, if the
internal phase shifts at the vertices are set to θ = π

6 then the
exit probabilities at all three ports are equal, but at the cost
of having different phase factors for different transitions. The
case where all the exit probabilities are equal is referred to as
the strictly unbiased case [31].

A second notable special case of Eq. (1) is when θ = −π
2 .

This choice ensures that all of the photon paths entering and
exiting at any pair of ports will be in phase with each other [32].
The transition amplitude is then always pure imaginary
for every pair of input and output ports, which provides
simplifications when adding multiple transition amplitudes.
For this case, which will be the main focus here, the three-port
takes an input state |ψ0〉 to an output state |ψ〉 = Û |ψ0〉,
where

Û = − i

3

⎛
⎝ 1 −2 −2

−2 1 −2
−2 −2 1

⎞
⎠. (2)

The simulation system of Sec. IV will be built from units
described by Eq. (2).

III. WINDING NUMBERS AND TOPOLOGICALLY
PROTECTED STATES

A. Topological phases

The object of study here is a discrete time system, described
by a Hamiltonian Ĥ and a discrete-time evolution matrix Û =
e−iĤT that takes the system forward one time step T . (Here,
the units are chosen such that h̄ = 1.) For initial state |ψ(0)〉,
the state at time t = nT is

|ψ(nT )〉 = Ûn|ψ(0)〉. (3)

Wedging the matrix Û between a pair of desired initial
and final states gives the transition amplitude per time step
between those states. We define quasimomentum k on a
one-dimensional periodic lattice made from a sequence of
repeating unit cells. These cells are labeled by an integer m.
Since the position variable m is dimensionless and discrete,
the quasimomentum k will be as well. A single Brillouin zone
runs from 0 to 2π , and k is only conserved modulo 2π .

The Hamiltonian generates time evolution in some space
that may include both spatial and internal degrees of freedom.
As the momentum is varied over the width of a full Brillouin
zone, the parameters defining Ĥ will trace out a closed path
in the parameter space. Topological obstructions may prevent
some of these paths from being continuously deformed into
each other as the system parameters vary, leading to distinct
topological phases of the system. In this case, all quantities that
are constant on each equivalence class will be topologically
protected and stable under small perturbations. The distinct
phases are usually distinguished by integer-valued quantities
such as the winding number ν in one-dimensional lattice
systems or the Chern number in two dimensions.

When two one-dimensional systems with different topo-
logical phases are brought into contact, solutions can only
propagate from one region to the other if they change winding
number, which in turn only occurs if the band gap between
quasienergy levels vanishes at the boundary. The closing of
the gap therefore implies the existence of states that are
exponentially localized in the vicinity of the boundary [16,17],
and continuous variations of the system parameters in the two
bulk regions leave them intact. These boundary states have
been widely studied in recent years [38–41].

B. SSH model

An example of a Hamiltonian with topological states is
the Su-Schrieffer-Heeger (SSH) Hamiltonian [42], which is
used, for instance, to model the hopping of electrons along the
length of a polyacetylene chain, and which is closely related
to a structure appearing in quantum field theory models [43].

The SSH system is shown schematically in Fig. 3. There
is a set of lattice sites or cells (labeled by integer m), each of
which contains two subsites, denoted as a and b in the figure;
these two lattice subsites represent possible “internal” states
at cell m. There is some amplitude per unit time v to switch
between the two states within the same cell, and an amplitude
per time w to hop to the adjacent lattice sites. When the site
changes, the state also flips, and the amplitudes have to be
symmetric in the sense that they are the same (up to complex
conjugation) for hops to the left and to the right.
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FIG. 3. The SSH Hamiltonian describes motion of a particle
hopping on a chain of sites with two substates per site. v and w

are respectively the intracell and intercell hopping amplitudes per
unit time.

The Hamiltonian is of the form

Ĥ = v

N∑
m=1

(|m,b〉〈m,a| + |m,a〉〈m,b|)

+w

N−1∑
m=1

(|m + 1,a〉〈m,b| + |m,b〉〈m + 1,a|), (4)

where N is the number of cells in the chain. |m,a〉, for example,
denotes the state with a particle at site m in substate a.

At each fixed lattice site m or each fixed k, this Hamiltonian
is therefore a two-dimensional matrix and can be written
in terms of the identity matrix and the Pauli matrices; for
example, in momentum space one may write

Ĥ (k) = d0(k)I + d(k) · σ . (5)

This describes dynamics in a two-dimensional “internal”
subspace labeled by the two substates present at each lattice
site. Generically, the two energy levels are separated by a
k-dependent gap.

The insulator described by this Hamiltonian becomes a
conductor when the vector d(k) vanishes; at these points the
discrete energy levels meet and the energy gap between bands
vanishes. In the SSH model, d0 = dz = 0, so that the space
of possible d values collapses to the two-dimensional (dx,dy)
plane. This means that paths encircling the origin cannot be
contracted continuously to a point and have nonzero winding
number. The winding number is highly stable in the sense that
perturbations causing continuous variations of the parameters
cannot stimulate transitions between topological classes. The
SSH system therefore can support highly localized boundary
states at the interfaces between regions of different topological
phase. The appearance of such localized states will be used in
the next section as a signal to verify the existence of distinct
topological phases.

IV. SIMULATING THE MODIFIED SSH
HAMILTONIAN OPTICALLY

It was shown in Ref. [32] that the unbiased multiport
described by Eq. (2) provides a physical realization of the
abstract three-point scattering vertex used in several studies
of quantum walks on graphs [34–36]. We now take advantage
of that equivalence in order to apply some of those graph-
based results to a physically implementable optical system.
In particular, the basic building blocks of the system will be
the units shown on the left in Fig. 4, whose properties were

=

Three-ports

φφ

Physical version based
on unbiased three-ports

Abstract diamond graph

FIG. 4. The abstract diamond graph [34–36] consists of two
three-port scattering vertices connected on two edges, with a phase
shift between them (left). Since the scattering vertices can be
implemented physically by unbiased three-ports, the diamond graph
is equivalent to a pair of directionally unbiased three-ports arranged
as shown on the right.

studied in [34–36]. Each such diamond graph consists of a
pair of three-point scattering vertices connected at two edges,
with an additional phase shift on one connecting edge. The
remaining two edges provide input and output lines. Given the
equivalence between the scattering centers and the unbiased
three-ports, this system can be physically implemented by a
pair of unbiased three-ports, as shown on the right in Fig. 4,
with each graph edge corresponding to an allowed optical
path. It is assumed here that the multiports are very small
(effectively pointlike) compared to the distance d between
them.

To simulate SSH-like behavior, each a and b subsite in
Fig. 3 is formed from one such diamond graph, so each unit
cell contains four multiports and two phase shifters. The phase
shifts φa and φb in the two diamonds may be different from
each other; they are adjustable parameters that can be varied
independently.

Drawing the simulation system in the form of the abstract
diamond graphs, it then looks as shown in Fig. 5. The red
rectangles are phase plates, rotating the polarization by 90◦.
The time unit T is taken to be the time to go from one diamond
graph to the next, or equivalently from one phase plate to
another. Having a photon present in the areas labeled a and
b, bounded by the phase plates, represents the two substates
at each lattice site. If φa �= φb, the two triangle graphs inside
each cell will have different transmittances. Let Ta = |ta|2 and
Tb = |tb|2 then be the transmission probabilities corresponding
to the two graphs. In order to make it easy to measure which

a b
H V

φa φb
a b
H V

φa φb

FIG. 5. Simulating the SSH Hamiltonian with diamond graphs.
Each graph is made from two directionally unbiased three-ports, as
shown in Fig. 4, so that each cell (indicated by the dashed curves)
is made from four three-ports. The two diamond graphs at each site
may have different internal phase shifts, φa and φb. The red rectangles
are phase plates that rotate the polarization by 90◦, so photons in the
shaded areas have vertical polarization (state b), while the unshaded
regions have horizontal polarization (state a). The size of the diamond
graphs is exaggerated for clarity: they should be small compared to
the distance separating them.
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subsite the photon is in within a cell, the phase plates will
flip the polarization each time the substate changes. Here,
the polarization simply serves as a convenient bookkeeping
device to make experimental distinguishability of the a and b

states easier, and is not essential to the theoretical development.
Photons can be easily coupled in and out of the system by
means of optical switches and optical circulators as described
in more detail in [31].

There is one photon collision with a diamond graph per
unit time. At each encounter with one of these graphs, there
are amplitudes to either reflect back from it into the original
subsite, or to be transmitted through to an adjacent subcell. The
hopping amplitudes v and w are then given by the transmission
amplitudes of the diamond graphs. Without loss of generality,
an appropriate redefinition of states may always be used to
make the amplitudes real, in which case

〈m,a|m,b〉 = |ta|, (6)

〈m + 1,a|m,b〉 = 〈m,b|m + 1,a〉 = |tb|. (7)

Transitions in which the photon reflects off the diamond
graph and back into the same subcell give diagonal contribu-
tions to the Hamiltonian that simply shift all of the energies
up or down by the same amount; i.e., they define the zero
level of the energy. These terms can therefore be ignored for
current purposes. The remaining terms are those that take a
photon from one subcell to an adjacent subcell in a single
time step; in other words, terms of the form that appear in
the Hamiltonian of Eq. (4). The hopping amplitudes v and w

between subcells are given by the transmission coefficients of
the diamond graphs. Therefore, the Hamiltonian of interest is

Ĥ = |ta|
N∑

m=1

(|m,b〉〈m,a| + |m,a〉〈m,b|)

+ |tb|
N−1∑
m=1

(|m + 1,a〉〈m,b| + |m,b〉〈m + 1,a|), (8)

where the diamond graph transmission amplitudes for phase
shifts are [34–36]

tj (k) = 4(1 + e−iφj )(1 − e−i(φj +4k))

e−4ik(1 + e−iφj )2 − (3e−i(φj +4k) − 1)2
, (9)

where j = a,b.

A. Quasienergies and transmission amplitudes

It is convenient to work in quasimomentum space. Carrying
out the Fourier transform,

|k〉 = 1√
N

N∑
m=1

eimk|m〉, (10)

the momentum-space Hamiltonian is then a matrix in the a-b
internal space:

Ĥ = 1

N

∑
k

Ĥ (k) |k〉〈k|, (11)

where

Ĥ (k) =〈k|Ĥ |k〉 = 1

N

(
0 |ta| + |tb|e−ik

|ta| + |tb|eik 0

)
.

(12)
For each value of k, this has two eigenvalues

E±(k) = ±
√

|ta|2 + |tb|2 + 2|tatb| cos k. (13)

Plotting E versus k gives the analog of a band-gap diagram
with minimum band gap �. When v and w are independent of
k, as in the usual SSH case, then � = 2|v − w|, but notice
that in the present case v and w depend on momentum
via the k-dependent transmittances. In this sense, this is
not the true SSH model, but a slight variant of it, which
we might call the modified SSH (MSSH) model; this is
a continuous deformation of the usual SSH model and so
should have topologically identical behavior, as will be verified
below.

The nonvanishing coefficients of the Pauli matrices in
Eq. (5) are now

dx(k) = |ta(k)| + |tb(k)| cos k, (14)

dy(k) = |tb(k)| sin k. (15)

As k goes from 0 to 2π , d traces out paths labeled by their wind-
ing numbers ν about the origin. These winding numbers will
be functions of the hopping amplitudes: ν(v,w) = ν(|ta|,|tb|).
Since ta and tb vary only weakly with k, it is clear that the
loop traced out by d(k) encloses the origin and has nonzero
winding number if |tb| > |ta|.

B. Verifying topological behavior: Localized boundary states

Properties of the system in Fig. 5 can be numerically
simulated, and the results verify that the model constructed
here has behavior similar to that expected from the SSH model.
Figure 6 shows plots of the energy levels for different values
of the phase shifts φa and φb of the two graphs. When the
two phase shifts are equal, the band gap vanishes. As they
begin to differ, a gap opens up and becomes larger with
increasing |φa − φb|, reaching a maximum at |φa − φb| =
π , as Fig. 6 shows. The exact shapes of the curves are
slightly different than the pure SSH model (in particular, the
value of k that minimizes the gap clearly shifts horizontally
as the parameter changes), but the qualitative behavior is
identical.

Similarly, it is easy to show that different values of the
phase shifts allow solutions with both zero and nonzero
winding numbers to occur. Evaluation of Eqs. (9), (14),
and (15) for a range of φa and φb values readily shows
that varying these phases causes the path traced out by d
to shift horizontally and change radius, leading to transitions
between winding numbers 0 and 1. This indicates that different
phase values in the two diamond graphs lead to different
topological phases, distinguished by their winding numbers.
By attaching two chains of these graphs with different winding
numbers on each chain there should then arise localized,
topologically protected states at the boundaries between them
[15–17].
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FIG. 6. Energy bands for the system shown in Fig. 5. The band gap vanishes when the two phases are equal (a) and opens up when the two
phase values differ. The gap is still very small in (b), but grows as |φa − φb| increases (c), reaching its maximum size when |φa − φb| = π (d).

Figure 7 supports this analysis by showing specific con-
ditions under which topologically protected states can be
generated using a network of multiports. The plots compare
two numerical simulations of a single-photon quantum walk
on the MSSH model described above for 0 � t � 200 in units
of T . In each case an initially right-moving photon is injected
at subsite a of the m = 0 position coordinate at t = 0 (top row).
(The mechanism for physically inserting photon states into the
chain is described in detail in Ref. [31].) The left-hand column
shows the time evolution over a chain with two different
topologies attached to each other at m = 0. The right-hand
side shows time evolution over a chain with uniform topology.

Specifically, the left column of Fig. 7 uses subsite phase
shifts of φa = 1.5, φb = 2.5 for the portion to the left of
the origin (m � 0), giving a winding number ν �= 0 in that
region. To the right of the origin (m � 0), phase shifts of
φa = 3π/4, φb = 0 are used, giving ν = 0. The result is a
persistent probability of finding the photon at the boundary
between the two topologies, the signature of a topologically
protected edge state [16].

For comparison, the right column of Fig. 7 shows a quantum
walk over the MSSH model using no change in phase shifts:
φa = 0, φb = 0 for all m (positive and negative). As expected,
in this case evolution reduces to a standard quantum walk in
one dimension, exhibiting ballistic spreading of probability
over the coordinates.

Note that the right side of Fig. 7 is asymmetric. This is
because the value φa = φb that was used reduces the lattice
to a chain of three-ports with transition matrix of the form in
Eq. (2); this matrix has much smaller amplitude to reflect out

the input port than to transmit out the other two, resulting in
a strong bias of the photon to continue moving in its initial
direction. For other values of φa or φb [or for other values
of the internal vertex phase θ of Eq. (1)] this bias changes or
disappears.

It may also be pointed out that the diamond graphs have four
bound states [35] when φa − φb = 0, and none for φa − φb �= 0.
These bound states occur in all the diamond graphs at exactly
the parameter values φa = φb = 0 at which the energy gap
closes. This allows the controlled storage of photons: photons
can be stored in the graph or released as the value of φ is
changed.

V. CONCLUSIONS

Systems with distinct topological phases are of increasing
importance in condensed-matter physics and in quantum
computing. The ability to simulate their properties in a simple
manner is therefore of current interest, and the ability to
supply such simulations efficiently using only linear-optical
quantum systems would be a useful advance. Here, a method
for simulation of systems in the same topological class as the
SSH Hamiltonian was proposed that for large numbers of time
steps requires substantially fewer resources than the method
of [30].

In this paper the focus was on the use of only one-
dimensional chains of directionally unbiased optical three-
ports. However, this only scratches the surface of the pos-
sibilities to be examined, since the current approach can be
generalized to two- and three-dimensional arrays of n-ports
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FIG. 7. Comparison of MSSH quantum walk with topologically protected edge state (left) and MSSH quantum walk with normal ballistic
spreading (right) for 0 � t � 200. The two walks are simulated for the arrangement shown in Fig. 5. The topology on the left uses (φa =
1.5,φb = 2.5) when m � 0, giving a winding number ν �= 0; this joins up with a ν = 0 region having phase shifts of (φa = 3π/4,φb = 0) when
m � 0. The result is a localized state confined to the boundary of these topologies, indicated by the peak that arises at m = 0. In contrast, the
topology on the right uses φa = 0,φb = 0 for all m, leading to a ballistic quantum walk in one dimension.

with n > 3. The phase shifts at each vertex of the multiport
can also be varied, altering the multiport properties. Thus
a rich array of more sophisticated simulation types remains
as-yet unexplored, using the same general methods. These hold
promise to provide quantum simulation of a diverse range of
further phenomena.
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