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Simulation of an optomechanical quantum memory in the nonlinear regime
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Optomechanical systems cooled to the quantum level provide a promising mechanism for a high-fidelity
quantum memory that is faithful to a given temporal mode structure, and can be recovered synchronously. We
carry out full, probabilistic quantum simulation of a quantum optomechanical memory, including nonlinear
effects that are usually ignored. This is achieved using both the approximate truncated Wigner and the exact
positive P phase-space representations. By considering the nonlinear quantum optomechanical Hamiltonian,
our simulations allow us to probe the regime where the linearization approximation fails to hold. We show
evidence for large spectral overlap between the quantum signal and the transfer field in typical optomechanical
quantum memory experiments. Methods for eliminating this overlap to accurately recover the quantum signal are
discussed. This allows us to give a complete model for the quantum storage of a coherent state. We treat the mode
matching that is necessary to accurately retrieve the stored quantum state, by including the internal dynamics
of the mechanical system as well as the optical system. We also include the finite switching time of the control
transfer field. The fidelity for the storage of a coherent state is computed numerically using currently realistic
experimental parameters in the electromechanical case. We find the expected fidelity is lower than required
to demonstrate true quantum state transfers. Significant improvements in the quality factor of the cavity and
mechanical systems will, however, increase the fidelity beyond the quantum threshold.
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I. INTRODUCTION

A quantum memory is a device that stores quantum
states. Optomechanics is a good candidate for a quantum
memory: there are standard quantum optical techniques for
the generation of quantum states of light that can be shaped
temporally and spatially. These quantum states can be stored
in long-lived mechanical modes via a radiation pressure
interaction. A quantum memory has important applications in
proposed quantum internet systems [1–3], where a network of
nodes is connected by optical fibers. There are many other
proposed applications as well. Generally, optomechanical
nodes can transmit and receive optical quantum states, which
can be stored in mechanical oscillators at each node with low
dissipation. Advances in mechanical quantum ground-state
cooling techniques [4–7] further reduce the spurious effects
of thermal noise entering the optomechanical system.

Most experiments and theoretical analyses to date are based
on a linearized optomechanical Hamiltonian [8–10], the adi-
abatic approximation [8,11], or both. The linearized optome-
chanical interaction is sufficient to describe optomechanical
ground-state cooling [4–6], state transfer [11,12], and Einstein-
Podolsky-Rosen entanglement generation [8–10,13–15].
However, a nonlinear quantum interaction is needed for the
creation of highly nonclassical states for the mechanical mode
such as Fock states and Schrödinger’s cat states [16], and
generically all optomechanical systems have nonlinearities.
We will show that such nonlinearities have very significant
effects on spectral intensities in experiments, even in weak-
coupling regimes where these approximations are often used.

In this paper, we consider the nonlinear Hamiltonian
describing the radiation pressure interaction in optomechanical
systems. In particular, we analyze a two-pulse quantum state
transfer protocol using phase-space simulations in both the
approximate truncated Wigner [17,18] and exact positive P
[19] representations. These phase-space methods, without the
linearization approximation, allow us to study the quantum

optomechanical system in the nonlinear, strongly coupled
quantum regime, where a single photon can affect the mechani-
cal motion [16]. Our aim is to develop such a nonlinear model,
but specifically to determine the implication of nonlinearity
for quantum memory in regimes corresponding to current
experimental parameters.

One of our main results concerns the spectral overlap
between pump and signal fields. A detuned pump field
enhances the optomechanical coupling strength and facilitates
quantum state transfer between the optical and mechanical
modes. In a linearized theory, the optical mode amplitude is
separated into two components: a large steady-state amplitude
induced by the pump field and a smaller time-dependent
“signal” amplitude due to the quantum state. It is assumed that
the two different amplitudes are distinguishable. In particular,
they should be well separated in the frequency space.

Our nonlinear analysis indicates this is typically not the
case in current experiments. Using published experimental
parameters for phase-space simulations, we observe large
spectral content overlaps, in agreement with experimental
observations [20]. We address this issue by discussing methods
for eliminating this problem. We also obtain analytical results
using the linearized scheme, and compare them with nonlinear
phase-space simulation results. Our conclusion is that nonlin-
earity due to the intense pump field has to be taken into account.
This is especially so in the strong-coupling regime where the
effective optomechanical coupling strength is larger than the
optical cavity decay rate (g > γo).

An essential part of our analysis is to accurately treat mode
matching [21]. Mode matching is used to retrieve the quantum
state stored in the mechanics, where a temporal mode function,
mode matched to the output field mode function, is mixed
with the output field with a beam splitter. This approach
retains both the amplitude and phase of the quantum state
stored, in contrast to the more widely used approach where
the power spectra are recorded. Power spectral information
only contains the information of the intensity of quantum
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states stored, while the phase information is lost. Thus, a mode
matching approach is necessary for a quantum memory that
stores quantum superpositions.

In our treatment, we also model the preparation and transfer
control fields that create and transfer the quantum state
between the cavity and the mechanical mode. The fidelity for
the storage of a coherent state is then computed and compared
with the benchmark fidelity criterion for a quantum memory
[22]. We apply the nonlinear analysis to give a complete
model of the electromechanical experiment of Ref. [12]. We
are also able to include the effect of the finite switching
time of the transfer field, which cannot easily be done in
the linearized model. We point out that the optimal mode
matching pulse shape for best fidelity is different than a simple
exponential, owing to the effect of the internal dynamics of the
optomechanical system.

To summarize, we find that there are substantial differences
between the usual adiabatic linearized models and both of the
calculations obtained here that use a full nonlinear simulation.
This is mostly because assumed frequency separations within
realistic parameter ranges are not sufficient to fully separate
control and signal fields, as is often assumed analytically. The
physics involved is simple enough: signal fields have to be
relatively weak to be in the quantum regime, and can easily
be comparable to the frequency tails of a control field. This
requires more sophisticated techniques to separate the two.
Generally speaking, the exact positive P and the approximate
truncated Wigner methods give similar results for current
experimental parameters, although nonlinear effects can be
significant. This confirms that the truncated Wigner method
is accurate with these parameter values, although the exact
positive P method will be needed in highly nonlinear regimes.

The paper is organized as follows. Section II provides a brief
description of a generic quantum optomechanical system. We
consider a particular optomechanical state transfer protocol
and discuss that in detail. In Sec. III, stochastic differential
equations used to simulate the optomechanical state transfer
are presented. We then present our simulation results in Sec. V
and discuss some subtleties in an optomechanical state transfer
experiment due to the spectral overlap issue.

II. OPTOMECHANICAL MODEL

We describe a two-pulse optomechanical state transfer
protocol. In this paper, the state transfer protocol is used to
study optomechanical quantum memory of a coherent state.
However, this protocol can be applied to arbitrary quantum
states such as Schrödinger’s cat states. In this section, the
fundamental model is described.

A. Quantum optomechanical Hamiltonian and master equation

A typical quantum optomechanical system consists of a
Fabry-Perot cavity with one of the movable mirrors acting as a
mechanical oscillator (Fig. 1). Interactions between the cavity
and mechanical degrees of freedom are mediated through the
radiation pressure where photons impart momentum on the
mirror. External laser fields are coupled into the cavity in
various quantum information protocols. It is convenient to
transform into the rotating frame of the external laser field,

FIG. 1. A typical optomechanical system.

leading to the Hamiltonian [9]

H = h̄�a†a + h̄ωmb†b + h̄g0a
†a(b + b†)

− ih̄
√

2γext[ε(t)a − ε∗(t)a†], (1)

where a, b are the quantum annihilation operators for the
cavity field and mechanical oscillator modes respectively, and
� = ωc − ωd is the detuning between the cavity resonance
frequency ωc and the external laser carrier frequency ωd .
The first two terms correspond to the energy of the cavity
and mechanical oscillator at ωm, respectively. The third term
describes the interaction between the cavity and mechanical
oscillator due to radiation pressure and the last term describes
the coherent input ε(t), where γext is an external cavity decay
rate which determines the strength of coupling of the cavity
to the external input field.

In practice, the optomechanical system always interacts
with its environment, resulting in decoherence through damp-
ing and fluctuations. We model these effects with the standard
open system formalism using a density operator. Assuming
interactions with the environment to be Markovian, the master
equation for the open system is [23]

d

dt
ρ = − i

h̄
[H,ρ] +

∑
j

γj n̄j (2a
†
j ρaj − ajρa

†
j − ρaja

†
j )

+
∑

j

γj (n̄j + 1)(2ajρa
†
j − a

†
j ajρ − ρa

†
j aj ). (2)

The index j = 1, 2 ∼ o,m refers to the cavity and mechanical
modes, respectively, while γo and γm are the cavity decay rate
and mechanical dissipation rate, respectively, and n̄j are the av-
erage thermal occupation numbers from interactions with their
corresponding reservoirs. The decay rates are for amplitudes.

We distinguish two contributions to the cavity decay rate
that corresponds to different sources of losses, γo = γext + γint.
The external cavity decay rate γext comes from the cavity
field leaking out of the cavity—which determines the input
coupling by reciprocity—while the internal cavity decay rate
γint includes all other sources of dissipation in the cavity.

An equivalent set of quantum Langevin equations can be
derived from the master equation in Eq. (2). They give the
time evolution of the cavity and mechanical mode operators
[23]. In general, neither the master equation nor the quantum
Langevin equations can be solved analytically, and numerical
solutions are required.

B. Optomechanical state transfer protocol

An optomechanical quantum memory requires quantum
state transfers between the optical and mechanical system with
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FIG. 2. The two-pulse optomechanical state transfer protocol,
where ts is the storage time of the quantum state in the mechanical
mode.

minimal degradation and loss. The state transfer protocol in
this paper is based on the fact that a red-detuned control field
transfers quantum states between the cavity and mechanical
oscillator. Analyses on how a detuned field transfers quantum
states between the optical and mechanical modes can be found,
for example, in the review by Meystre [24].

We consider a particular state transfer protocol as shown in
Fig. 2, that involves two external field pulses, which we call the
preparation and transfer fields [12]. The preparation or signal
field generates the cavity quantum state that is to be stored in
the quantum memory and the transfer or control field facilitates
the quantum state transfer between the cavity and mechanical
modes. The preparation field has the same frequency as the
resonance frequency of the resonator ωc while the transfer
field has frequency ωd such that the detuning � between the
resonator and the transfer field frequency is the frequency of
the mechanical oscillator, i.e., � = ωc − ωd = ωm.

The optomechanical state transfer protocol consists of three
stages. The writing stage involves sending the quantum state
into the cavity and transferring it into the mechanical system.
During this stage, both the preparation and transfer fields are
applied. This simultaneously generates the cavity quantum
state and transfers it to the mechanical mode. After the quan-
tum state is completely transferred to the mechanical mode,
both fields are turned off in the storing stage. Due to the low
mechanical decay rate γm, the mechanical oscillator serves as
a good quantum memory. The stored quantum state will retain
its coherence on a time scale of 1/γm. Finally, a second transfer
field is applied in the readout stage. This transfers the quantum
state from the mechanical mode back into the cavity, which
will then leak out of the cavity and subsequently be detected.

Based on the Hamiltonian in Eq. (1), the optomechanical
quantum memory Hamiltonian is expressed as

H̃ = h̄ωma†a + h̄ωmb†b + h̄g0a
†a(b + b†)

− ih̄
√

2γext[ε(t)a − ε∗(t)a†], (3)

where we choose a rotating frame with � = ωm, and ε(t) =
εtrans(t) + εprep(t)e−iωmt . Here, εtrans(t) and εprep(t) correspond
to the transfer field and preparation field amplitudes, respec-
tively. We choose to transform into the rotating frame of the

transfer field, leaving the preparation field oscillating at the
resonance frequency of the mechanical oscillator ωm. We give
more details of the precise time dependence of control and
signal fields in later sections.

We note here that our simulations used an optimal mode-
matched pulse shape, calculated using the linearized equations
of motion [21]. We employed the same pulse shapes in all
simulations, both linear and nonlinear, for consistency. Recent
experiments [12] used a simplified version of this which,
although similar, is not quite optimal.

III. PHASE-SPACE METHODS

Both the master equation and quantum Langevin equations
described in Sec. II A are nonlinear operator equations.
Approximate results can be obtained in the single mode
optomechanical model using linearization [25]. However,
analytical solutions without any approximations do not appear
to exist. In addition to the nonlinear terms in the operator
equations, the Hilbert space grows exponentially with the
number of modes.

The effect of the large Hilbert space is that it makes these
equations extremely complex if one uses a standard, orthog-
onal number-state basis. Instead, phase-space methods trans-
form the master equation in Eq. (2) into a set of corresponding
c-number stochastic differential equations. The techniques
and algorithms required to solve these stochastic differential
equations numerically are well established [26–29].

In this paper, we use the approximate truncated Wigner
and exact positive P representations. Both the truncated
Wigner [17,18] and positive P representations [19] have
been employed in previous work on pulsed entanglement and
Einstein-Podolsky-Rosen steering in optomechanics [15].

Phase-space representations

Using operator identities for both the truncated Wigner
and positive P representations, we derive their corresponding
Fokker-Planck equations and equivalent sets of stochastic
differential equations, as follows.

1. Truncated Wigner representation

The Wigner representation provides a complete mapping of
the density matrix for the quantum system into a quasiproba-
bility W (α,β,αout). This is used to represent the output modes
as well as the internal modes of the system. We note that
the input modes are treated as external finite temperature
reservoirs, together with a coherent displacement term ε(t)
in the Hamiltonian, which models the effect of an additional
coherent driving field in the experiments.

The Wigner function W is not always a probability density,
as it can develop negative values. It also does not have
a positive-definite Fokker-Planck equation. Its equation of
motion has third-order derivatives. However, if the third-order
derivative terms are truncated, one can obtain an approximate,
positive-definite time-evolution equation for W .

This equation is equivalent to an ensemble of stochastic
differential equations, which can be readily simulated numeri-
cally. The resulting stochastic differential equations that dictate
the time evolutions of the optical mode α and mechanical mode
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β amplitudes are given, respectively, by

dα = {−[iωm + ig0(β + β∗) + γ0]α}dt + dαin,

dβ = {−[iωm + γm]β − ig0|α|2}dt + dβin, (4)

where the input field terms are

dαin =
√

2γextε(t)dt +
√

2γextdαin
ext +

√
2γintdαin

int

≡
√

2γextdαin
total +

√
2γintdαin

int, (5)

dβin =
√

2γmdβ in.

The external input field αin consists of a coherent input ε(t),
together with broadband quantum noise inputs associated with
the external and internal cavity reservoirs. These have thermal
Gaussian noises, with thermal occupation numbers n̄i for the
optical and acoustic reservoirs, which satisfy〈

dαin
i dαin∗

j

〉 = (
n̄i + 1

2

)
δij dt. (6)

The input into the cavity and the output from the cavity are
related by the well-known input-output relation [30]

αout(t) =
√

2γextα(t) − αin
total(t). (7)

Here αin
total(t) includes the coherent input field ε(t) and noises

entering the cavity αin
ext, but not noises due to internal cavity

losses. This formalism models a high-Q cavity, in which the
external inputs are almost entirely reflected, together with
some leakage at a rate γext from the cavity to the external field.

The integrated input and output mode amplitudes are
obtained by integrating these modes with their corresponding
temporal mode functions uin(t) and uout(t) as given below:

Ain =
∫ 0

−∞
u∗

in(τ )αin
total(τ ) dτ,

Aout =
∫ ∞

ts

u∗
out(τ )αout(τ ) dτ, (8)

where ts is storage time of the quantum state in the mechanical
mode.

This classical-like equation is only approximate. As well as
sampling errors from the use of stochastic equations, there is a
truncation of third-order derivative terms in the Wigner dynam-
ical equation, which are higher-order terms in an expansion in
inverse boson number. This can sometimes lead to incorrect
results [31], especially for weak fields [32] and third-order
correlations [33]. In addition, the phase-space representation
directly represents symmetrically ordered operators, while
measurements are usually for normal ordering.

2. Positive P representation

The positive P representation does not require the
approximation used in the truncated Wigner representation.
Hence, it is exact apart from a controllable sampling error,
provided boundary terms due to power-law distribution tails
are negligible [34]. There are techniques available to remove
these if necessary [35]. No evidence of large distribution tails
or boundary terms was found in the work reported here.

This method always has a positive distribution for any
quantum density matrix, but has twice the phase-space
dimension, so it has six independent complex variables,
P (α,α+,β,β+,αout,α

+
out). Since the number of independent

complex phase-space variables is increased due to this
dimension doubling approach, the corresponding stochastic
differential equations are, using standard differential identities
[15,19,36]

dα = {−[iωm + γ0 + ig0(β + β+)]α}dt + dαin,

dβ = {−[iωm + γm]β − ig0α
+α}dt + dβin,

dα+ = {[iωm − γ0 + ig0(β + β+)]α+}dt + dα+
in,

dβ+ = {[iωm − γm]β+ + ig0α
+α}dt + dβ+

in , (9)

where

dαin =
√

2γextε(t)dt +
√

2γextdαin
ext +

√
2γintdαin

int + dαg,

dβin =
√

2γmdβ in + dβg,

dα+
in =

√
2γextε

∗(t)dt +
√

2γextdαin∗
ext +

√
2γintdαin∗

int + dα+
g ,

dβ+
in =

√
2γmdβ in∗ + dβ+

g . (10)

In the positive P representation, there are independent noise
terms due to the nonlinear interaction between the different
modes. These are given by dαg, dα+

g , dβg , and dβ+
g and the

only nonzero correlations between them are

〈dαgdβg〉 = −ig0αdt,

〈dα+
g dβ+

g 〉 = ig0α
+dt. (11)

The thermal Gaussian noises are similar to those in the
truncated Wigner representation, except that they correspond
to normally ordered, not symmetrically ordered, fluctuations:〈

dαin
i dαin∗

j

〉 = n̄iδij dt. (12)

The integrated input and output mode amplitudes are identical
to those defined in Eq. (8). This approach gives a direct
representation of normally ordered operators.

IV. LINEARIZED QUANTUM MEMORY MODEL

The cavity amplitude can be expressed in terms of a set of
orthogonal temporal transverse modes. In this paper, we are
concerned with the storage of the coherent cavity amplitude in
one of these temporal modes. In order to optimize the
coupling between the preparation field and the cavity, the
preparation field containing the coherent state to be stored
in the optomechanical system has to temporally mode match
one of these orthogonal cavity temporal modes. Perfect mode
matching ensures that only the intended cavity mode will
remain in the cavity and other modes will either be reflected
or leak out of the cavity.

The optimal mode function for the preparation field within
the linearization approximation was first obtained by He et al.
[21,37]. These linearized calculations are instructive as they
provide a simple theoretical description of the subsequent
experimental demonstrations of coherent-state transfer [12].
In this section, we include linearized calculations similar to
those of He et al. [21], but taking into account internal cavity
losses. In their work, He et al. solved the stochastic differential
equations describing the time evolution of both the cavity a(t)
and mechanical modes b(t). Those equations are derived from
the effective interaction Hamiltonian

Hint = h̄g(ab† + a†b), (13)
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where g = g0

√
N is the effective coupling and N is the

intracavity photon number of the transfer field.
The interaction Hamiltonian in Eq. (13) requires the use

of linearization and rotating wave approximations. These
approximations are justified in many of the optomechanical
experiments to date, due to the weak bare coupling strength
g0, and an intense pump field is required to enhance the
optomechanical coupling strength. One of the objectives of
this paper is to analyze whether these approximations are valid
in optomechanical quantum memory experiments.

The corresponding linearized Heisenberg time evolution
equations

d

dt
a(t) = −γoa − igb +

√
2γexta

in
ext +

√
2γinta

in
int,

d

dt
b(t) = −γmb − iga +

√
2γmbin (14)

can be solved analytically. The general solution 	a(t) = ( a(t)
b(t) )

for the writing stage is

	a(t) =
∫ t

−∞
eκ+τ cosh(mτ )I 	ain(τ ) dτ

+
∫ t

−∞
eκ+τ sinh(mτ )

m

(
κ− ig

ig −κ−

)
	ain(τ ) dτ, (15)

where 	ain(t) = (
√

2γexta
in
ext + √

2γinta
in
int√

2γmbin ), κ+ = (γo + γm)/2,

κ− = (γo − γm)/2, and m =
√
κ2

− − g2. The preparation
field in the optomechanical state transfer protocol is
ain

ext = a0uin, where a0 is the initial mode-matched external
field operator the coherent amplitude of which we want to
store, and uin is the temporal external mode function yet to be
determined.

In particular, the stored mode in the mechanical system is
given by

b(0) =
√

2γext

∫ 0

−∞

ig

m
a0uin(τ )eκ+τ sinh(mτ ) dτ + noise.

(16)

From the mechanical mode amplitude solution above, it can
be shown that the optimal mode function is of the form

uin(t) = −2i

√
(κ+ + m)(κ+ − m)κ+

m
exp(κ+t)sinh(mt).

(17)

Solving Eq. (16) using the temporal input mode function uin(t)
that is given in Eq. (17), the stored mode operator is

b(0) =
√

2γextga0

2
√

(κ+ + m)(κ+ − m)κ+
+ noise. (18)

For the case where there are no internal cavity losses and
in the limit where the cavity decay rate is much larger than the
mechanical dissipation rate γo 
 γm, it is straightforward to
show that the stored mode operator will always be the external
operator a0, in addition to a noise term that includes all possible
noises:

b(0) = a0 + noise. (19)

Note that the optimal mode function is obtained from the
solutions of Eq. (14) and the mode function is optimal for
any arbitrary coupling strength g. In reality, the validity of the
linearized interaction Hamiltonian in Eq. (13) might not hold in
certain regimes where nonlinear effects cannot be neglected.
For those cases, the mode function in Eq. (17) will not be
the optimal one. Depending on the observables one wishes to
compute, other methods, such as functional optimization, can
be used to obtain the optimal mode function.

On the other hand, the transfer field only affects the steady
state of the cavity mode in the linearization analyses. In
nonlinear simulations, these intense transfer fields give rise to
transient behavior in the cavity mode amplitude when transfer
fields are switched on or off. They appear as huge spikes
in the cavity mode amplitude. Spectral analysis reveals that
the frequency contents of the transfer and preparation fields
overlap. Moreover, the finite transfer field switching time has
significant effects on the efficiency of the optomechanical state
transfer. This phenomenon cannot be easily studied in the
linearization scheme.

Next, we discuss the issue of the optomechanical state
transfer protocol duration. The duration of the writing stage
is determined by the temporal input mode function, which we
analyze in the following. The input mode function has the form
[e(κ++m)t − e(κ+−m)t ]�(−t) as in Eq. (17). In the limit where
γm � g � γo, it can be shown that κ+ + m ≈ γo, κ+ − m ≈
g2/γo and hence e(κ+−m)t�(−t) is the dominating term in
the temporal input mode function during the writing stage.
The duration of the writing stage has to be longer than
1/(κ+ − m). In the weak-coupling limit (g < γo), the pulse
duration depends on the ratio between g and γo and weaker
coupling strength g requires a longer writing stage.

In the strong-coupling limit (g > γo),m is a complex
number and the duration of the writing stage has to be
longer than 1/κ+. The storage time in the mechanical mode
is determined by the mechanical dissipation rate and it has
to be shorter than 1/γm. In this paper, the storage time is
restricted to be much smaller than the mechanical lifetime in
order to reduce the number of time steps in our simulations.
In the state transfer protocol treated here, the output mode is
a time-reversed version (around t = ts/2) of the input field,
where ts is storage time of the quantum state in the mechanical
mode. Hence, the readout stage duration is chosen as the same
as the writing stage. Other protocols are available where the
output mode is a symmetric function [37], and in such cases
the input and output modes are identical, which is more useful
for cascaded quantum logic operations.

Output fields

The output field from the cavity aout contains the signal
stored in a single mode, as well as other noises, in all
other independent modes. The output field obeys standard
input-output theory [30,38–40], which relates the output field
to the input and cavity fields. In order to detect and extract the
signal, the local oscillator mode in the homodyne detection
scheme has to be temporally mode matched to the mode
function of the signal. The schematic of the above-mentioned
approach is shown in Fig. 3. This extraction is possible
due to the orthogonality of these mode functions. Also, due
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FIG. 3. The transfer field contribution to the output field is
subtracted using the cancellation field. The resulting field is then
detected with a homodyne detection scheme.

to the time-reversal symmetry of the state transfer protocol
around t = ts/2, the output temporal mode function uout(t)
is related to the input temporal mode function uin(t) by
uout(t) = u∗

in(ts − t), so that

uout(t) = 2

√
(κ+ + m)(κ+ − m)κ+

m
exp[−κ+(t − ts)]

× sinh[m(T − t)]. (20)

The integrated output is obtained using

Aout =
∫ ∞

ts

u∗
out(t)aout(t) dt. (21)

The integrated output in the linearized approximation is
calculated to be

Aout = γext

2(κ+ + m)(κ+ − m)κ+

× (
g2e−γmts − γ 2

me−γots
)
Ain + noise, (22)

where Ain = ∫ 0
−∞ u∗

in(t)ain(t)dt is the integrated input.
The advantage of the output mode matching approach for

quantum state retrieval is that both the amplitude and phase
information of the quantum state are retained. This is crucial
for any claim of a working quantum memory.

It is more common, however, to record the output power
spectrum in experiments. This is mainly because output
power spectra allow the characterization of optomechanical
parameters. In the case of optomechanical state transfer,
integrating the power spectrum around the signal frequency
gives the intensity or energy of the state stored. This can then
be compared with the intensity or energy of the input state.
The state transfer efficiency is subsequently deduced from the
ratio of these two quantities. This method has the drawback of
lost information on the phase of the state stored. The quantum
nature of the stored state cannot be verified and the claim of a
memory device is at best a classical one.

In addition, we observed theoretically that there is overlap
in the spectral content between the transfer field and the
quantum signal that is retrieved, and this was also observed in
recent experiments [20]. This occurs even in the case where
the frequency separation between the preparation and transfer
field is many orders of magnitude apart, relative to the signal
bandwidth.

This observation leads to further complications in the
optomechanical state transfer protocol where, for example,
filtering of the transfer field spectral content is necessary. Extra
processing of the state is not ideal for a quantum memory as the
state is not ready to be used for further manipulations, which
is essential in quantum information and computational tasks.
Nevertheless, the study of optomechanical output spectra
is useful in understanding how different optomechanical
coupling strengths affect the corresponding cavity responses.

In this paper, we consider the procedure of removing the
transfer field amplitude in the output field with a cancellation
field. This has also been suggested by Akram et al. [41] by
mixing the output field with a local oscillator field using a
beam splitter. This procedure, achieved in quantum optics
experiments [42–44], is nothing but a displacement of the
phase-space cavity amplitude by the amplitude due to the
transfer field. The Gedanken experiment that corresponds to
this method is shown in Fig. 3. An output field containing
amplitudes from both the signal α and transfer field β is
mixed with a cancellation field Acancel in a beam splitter with
transmissivity η. The output port d in Fig. 3, obtained using
the standard beam splitter operation, is given by

d = √
η(α + β) −

√
1 − ηAcancel

= √
ηα + (

√
ηβ −

√
1 − ηAcancel). (23)

By setting the transmissivity η close to 1, the amplitude of the
cancellation field Acancel is adjusted accordingly to cancel out
the second term. It is straightforward to see that a cancellation
field Acancel that is much more intense than the transfer field
is necessary. Ideally, the cancellation field is split off from
the transfer field. This implies that the initial transfer field
has to be greatly amplified, which is not always possible. For
instance, in order to place the optomechanical system in the
strong-coupling regime, a very intense transfer field is needed
to enhance the optomechanical coupling. This renders an even
more intense cancellation field impractical. This scheme also
leads to losses in the signal α, but we treat this rather simple
protocol to allow a clear explanation of the issues involved.
Other schemes, like a balanced cancellation where the transfer
fields are subtracted while the signals are added, may be
feasible also.

The phase-space amplitude displacement described above
is implemented numerically by simulating the whole state
transfer protocol without the preparation field. The mean
output field from this simulation is then subtracted from the
output field of a full, nonlinear optomechanical state transfer
simulation.

V. NUMERICAL SIMULATION

Using the phase-space methods described in Sec. III,
it is possible to carry out the corresponding phase-space
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simulations using either normally ordered positive P methods
or symmetrically ordered truncated Wigner methods that
include a truncation approximation. While the first are more
precise, the second can be faster, depending on the random
sampling error that is required. We carry out both types
of calculation, and find that they give results that are the
same within sampling error, for these parameter values. We
present and discuss the results of our nonlinear phase-space
simulations.

A. Electromechanical experiment and parameters

We simulated the quantum memory protocol using elec-
tromechanical experiment parameters of Palomaki et al. [12].
The experiment demonstrated coherent-state transfer using
an electromechanical system, consisting of an LC resonator
where one of the plates of the capacitor is movable, behaving
like a mechanical oscillator. The resonance frequency of the
resonator is ωc/2π ≈ 7.5 GHz and the resonance frequency of
the mechanical oscillator is ωm/2π = 10.5 MHz. The decay
and dissipation rates for the resonator and mechanical oscilla-
tor are characterized by γo = γint + γext and γm, respectively.
The total decay rate of the resonator, γo/2π , is 170 kHz with
γext/2π = 137.5 kHz.

The mechanical dissipation rate γm is 2π × 17.5 Hz. The
interaction between the resonator and mechanical modes is
analogous to the interaction in cavity optomechanics due to
the radiation pressure. The coupling between the resonator
and mechanical mode is g0, which is 2π × 200 Hz in the
experiment. The enhanced coupling strength g is defined to
be g0

√
N , where N is the average number of photons in the

cavity. The electromechanical system is maintained at 25 μK,
which corresponds to an average thermal phonon number of
50. The constant transfer field amplitude εtrans is determined
from the steady-state solutions of the corresponding stochastic
differential equations. It is given by

εtrans =
√(

ω2
m + γ 2

o

)
N

2γext
, (24)

where N is the average number of photons in the cavity. The
coherent state sent into the electromechanical system has a
photon number expectation value of 35 and the storage time
in the mechanical oscillator is ts = 25 μs.

We assume both the resonator and mechanical oscillator to
be in their ground states initially. This is a good approximation
for a resonator in the gigahertz range as the average thermal
occupation number is essentially zero at the temperature of
order μK, as in the experiment. The mechanical ground state
is harder to achieve as it is more susceptible to thermal noise.
Besides, theoretical analyses [45,46] showed that, even in the
resolved sideband limit (ωm 
 γo), there is a nonzero lower
bound to the mean mechanical phonon number. However, a
mechanical ground state has been achieved in many different
experimental implementations of optomechanics. In particular,
recent experimental work demonstrated sideband cooling
beyond the quantum back-action limit using squeezed light [7].
This allows mechanical quantum ground states to be reached.

B. Numerical methods

All numerical simulations are carried out using xSPDE,
which is an open source software package written in MATLAB to
solve stochastic differential equations [47]. The numerical re-
sults were obtained using a fourth-order Runge-Kutta method
in the interaction picture [26,47], with 105 parallel trajectories
for both the truncated Wigner and positive P simulations.

We express all stochastic differential equations in dimen-
sionless form, by introducing a dimensionless time variable
τ = γot , where all parameters are relative to the cavity
amplitude decay rate, γo. This makes clear the regimes of
interest. For instance, �m = ωm/γo determines whether the
system is in the resolved sideband regime, which is important
for mechanical ground-state cooling [4–6]. The ratio G =
g/γo, on the other hand, determines whether the system is in the
strong-coupling regime [12,48]. All dimensionless parameters
are denoted by capital Greek letters of their corresponding
parameters given in Sec. V A, unless stated otherwise.

For instantaneous switching, as used in all the subsections
below except Secs. V E and V F, the plots are obtained by
first solving the dimensionless stochastic differential equations
given in Eq. (4) with a time-dependent input field E(τ ) as
follows:

E(τ ) =
⎧⎨
⎩

Etrans + Eprep(τ ), −τw � τ � 0
0, 0 � τ � τs

Etrans, τs � τ � τr

, (25)

where τw, τs , and τr = τw are the durations of the writing,
storing, and readout stages, respectively.

The transfer field amplitude Etrans =√
(�2

m + �2
o)N/(2�ext), and the preparation field amplitude

Eprep(τ ) = α0uin(τ ), with coherent-state amplitude
α0 = √

Nc, where Nc is the coherent photon number
that is input for storage. The temporal input mode function is
calculated as the optimal one, namely,

uin(τ ) = −2i

√
(K+ + M)(K+ − M)κ+

M
e(K+τ )

× sinh(Mτ )e−i�mτ . (26)

Here, K+ = (�o + �m)/2, κ− = (�o − �m)/2 and M =√
K2

− − G2. In most of the simulations, Nc = 35, as in recent
coherent-state transfer experiments; however, the effect of
storing different input photon numbers on the measurable
fidelity is explored in Sec. V F. It should be noted that recent
experiments did not use this optimal pulse shape.

In Sec. V E, dealing with finite switching time, a different
state transfer protocol is explored in which the transfer fields
are turned on and off continuously over a finite time duration.
This reduces the spectral width of the transfer field. It is
closer to what is actually used in an experiment, although
experimental transfer fields may have spectra that differ in
detail from the relatively simple models used here. Details of
this are given later.

The number of time steps differs for different coupling
strengths G, since the optomechanical state transfer protocol
duration varies with G. The step in dimensionless time dτ was
chosen to be 1/{10[�m + Im(M)]}, where M =

√
K2

− − G2 is
defined above. This choice of step in dimensionless time dτ

is much smaller than that stated in the sufficient sampling rate
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criterion in the Shannon sampling theorem [49]. Consequently,
the finite time-step error, which was calculated by repeating
calculations with a step size reduced by 50%, was much less
than the relative sampling error, which was typically at most
0.1%.

C. Power spectral densities

The output power spectral density is given by the expecta-
tion value:

S(�) = 2π

T
〈â†

out(�)âout(�)〉, (27)

which gives the average dimensionless intensity of the output
signal at the dimensionless frequency �, over a dimensionless
observation time T = τr − τs . The frequency domain mode
operator âout(�) is defined as the windowed Fourier transform
of the time domain mode operator âout(τ ), i.e.,

âout(�) = 1√
2π

∫ τr

τS

ei�τ âout(τ ) dτ, (28)

and the operator â†(�) is the Hermitian conjugate of the
operator â(�):

â
†
out(�) = 1√

2π

∫ T

0
e−i�τ â

†
out(τ ) dτ. (29)

The dimensionless output power spectral density is obtained
in the truncated Wigner representation using the relation

S(�) = 〈|αout(�)|2〉Wigner − 1
2 , (30)

where αout(�) is the Fourier transform of the output
field amplitude in the truncated Wigner representation
αout(τ ).

From nonlinear numerical simulations, without displace-
ment operations as described in Sec. II B, we observed
that the signal and carrier overlap in output spectra. This
means that filtering is required for signal extraction. We note
that this overlap occurs even when the transfer field and
preparation field frequencies are about 2π × 107 Hz apart.
This overlap is due to the intense transfer field that drives
the electromechanical system.

Figures 4 and 5 show the full, nonlinear output field spectra
for G = 0.5 and 2.0, respectively, in the truncated Wigner
representation. The output field power spectral densities
expressed in Eq. (30) are then computed.

We see in Figs. 4 and 5 that the signal content is situated on
top of a large amplitude due to the intense transfer field. Even
for G < 1, the output spectrum is radically different to what is
expected for a Lorentzian signal, owing to strong interference
between the spectral tails of the transfer field and the signal
itself, which has a very low amplitude by comparison. For G >

1, the output field spectra exhibit a double-peak feature known
as the optomechanical normal mode splitting. First observed
experimentally by Gröblacher et al. [50] and subsequently
with larger G by Teufel et al. [51], the optomechanical normal
mode splitting with the splitting set by 2G is a signature of
the strong-coupling regime. Note that the two peaks observed
in the output field spectrum are distinctively different from
the input spectrum expected for a coherent input, which
has a Lorentzian signal. Hence, we expect the fidelity of
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G = 0.5

FIG. 4. The output field power spectral density S(�) given
in Eq. (30) for G = 0.5 from the nonlinear truncated Wigner
simulations. The signal is on top of the transfer field frequency
content.

the output field with respect to the input field to be lower
in the strong-coupling regime than in the weak-coupling
regime.

There are a number of ways one can attempt to remove the
transfer field contribution in the output field that one detects. In
the experimental work by Andrews et al. [20], the frequency
content of the transfer field around the signal frequency is
notch filtered before sending it into the electromechanical
system. Another method, as described in Sec. II B, removes the
amplitude due to the transfer field in the time domain, using
a beam splitter in what is essentially a type of Mach-Zehnder
interferometer. Here we adopt the second approach in our
nonlinear simulations.

Figures 6(a) and 7(a) show the numerical results for the
output field spectra after the displacement operation in the

G

S

FIG. 5. The output field power spectral density S(�) given
in Eq. (30) for G = 2.0 from the nonlinear truncated Wigner
simulations. The signal is on top of the transfer field frequency
content.
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FIG. 6. The top figure corresponds to the displaced, output field
spectrum in a full, nonlinear truncated Wigner simulation while
the bottom figure shows the output field spectrum of a linearized
truncated Wigner simulation. The dimensionless signal frequency in
the nonlinear simulation is at � = �m as the system is in the rotating
frame of the transfer field, while the dimensionless signal frequency
in the linearized simulation is at �′ = 0. The number of samples
taken is 105.
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FIG. 7. The top figure corresponds to the displaced output field
spectrum in a full, nonlinear truncated Wigner simulation while the
bottom figure shows the output field spectrum of a linearized truncated
Wigner simulation. Axes labels are as for Fig. 6. The number of
samples taken is 105.

nonlinear truncated Wigner simulations. Also plotted are the
output field spectra obtained from the linearized truncated
Wigner simulations as shown in Figs. 6(b) and 7(b). These
plots are obtained by solving stochastic differential equations
as given in Eq. (14), in the dimensionless form with the

TABLE I. The efficiency of the state transfer protocol as defined in Eq. (34), for different coupling strengths G with instantaneous transfer
field switching. These values are obtained from positive P simulations.

G Integrated input, Ain Integrated output, Aout ζinstant ≡ |Aout|
|Ain|

0.50 5.9161 (4.7716 + 0.0971i) ± (0.0056 + 0.0063i) 0.8067 ± 0.0010
0.75 5.9161 (4.7697 + 0.1869i) ± (0.0052 + 0.0056i) 0.8068 ± 0.0009
1.00 5.9161 (4.7604 + 0.2890i) ± (0.0062 + 0.0071i) 0.8061 ± 0.0012
1.25 5.9161 (4.7458 + 0.4328i) ± (0.0067 + 0.0075i) 0.8055 ± 0.0011
1.50 5.9161 (4.7176 + 0.6097i) ± (0.0054 + 0.0062i) 0.8041 ± 0.0010
1.75 5.9161 (4.6612 + 0.8108i) ± (0.0095 + 0.0057i) 0.7997 ± 0.0017
2.00 5.9161 (4.5943 + 1.0495i) ± (0.0089 + 0.0119i) 0.7966 ± 0.0016
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TABLE II. The efficiency of the state transfer protocol as defined in Eq. (34), for different coupling strengths G with instantaneous transfer
field switching. These values are obtained from truncated Wigner simulations.

G Integrated input, Ain Integrated output, Aout ζinstant ≡ |Aout|
|Ain|

0.50 (5.9146 − 0.0025i) ± (0.0023 + 0.0025i) (4.7675 + 0.0939i) ± (0.0028 + 0.0022i) 0.8062 ± 0.0002
0.75 (5.9160 + 0.0010i) ± (0.0020 + 0.0021i) (4.7651 + 0.1768i) ± (0.0033 + 0.0026i) 0.8060 ± 0.0003
1.00 (5.9169 + 0.0006i) ± (0.0017 + 0.0024i) (4.7576 + 0.2896i) ± (0.0028 + 0.0030i) 0.8056 ± 0.0003
1.25 (5.9152 + 0.0007i) ± (0.0026 + 0.0016i) (4.7431 + 0.4349i) ± (0.0028 + 0.0021i) 0.8052 ± 0.0002
1.50 (5.9167 − 0.0008i) ± (0.0015 + 0.0027i) (4.7119 + 0.6098i) ± (0.0034 + 0.0034i) 0.8030 ± 0.0003
1.75 (5.9167 + 0.0013i) ± (0.0025 + 0.0018i) (4.6669 + 0.8135i) ± (0.0040 + 0.0029i) 0.8007 ± 0.0004
2.00 (5.9139 + 0.0003i) ± (0.0021 + 0.0023i) (4.5996 + 1.0445i) ± (0.0021 + 0.0034i) 0.7976 ± 0.0002

effective coupling strength

G(τ ) =
⎧⎨
⎩

G, −τw � τ � 0
0, 0 � τ � τs

G, τs � τ � τr

(31)

and the input field

E(τ ) =
{
Eprep(τ ), −τw � τ � 0
0, otherwise , (32)

where Eprep(τ ) = α0uin(τ ), with the coherent-state amplitude
α0 = √

35 and the temporal input mode function

uin(τ ) = −2i

√
(K+ + M)(K+ − M)κ+

M
e(K+τ )sinh(Mτ ).

(33)

The signal frequency in the linearized simulations is at
�′ = 0 while the signal frequency in the nonlinear simulations
is at � = �m since we transformed into the rotating frame
of the transfer field. The large quantitative differences found
indicate that even a highly idealized amplitude cancellation
protocol is insufficient to recover the linearized spectral
predictions, showing that nonlinear effects are important in
these experiments.

D. Integrated input and output modes using
temporal mode functions

Using the temporal mode functions introduced in Sec. II B,
the energy retrieved with respect to the energy stored can
be computed straightforwardly. However, due to the fact that
the stored cavity amplitude in a particular mode contains a
contribution from the transfer field, we remove this amplitude
via a displacement operation in the phase space as described
in Sec. II B. We integrate the input and output modes with
their corresponding temporal mode functions to pick out the
desired input and output signals. The efficiency of the protocol
is defined to be

ζinstant ≡ |Aout|
|Ain| . (34)

We obtain numerical results for the state transfer en-
ergy efficiencies for different coupling strengths using both
the truncated Wigner and positive P representations. The
numerical results are shown in Tables I and II. They are
obtained by solving the dimensionless form of stochastic
differential equations given in Eqs. (4) and (9) for the truncated
Wigner and positive P representations, respectively, with the

time-dependent input field E(τ ) as described in Eq. (25). The
integrated input is

Ain =
∫ 0

−∞
u∗

in(τ )
[
E(τ ) + αin

ext

]
dτ, (35)

where uin(τ ) is defined in Eq. (26) and αin
ext is thermal Gaussian

noise. The integrated output is given by

Aout =
∫ ∞

τs

u∗
out(τ )αout(τ ) dτ. (36)

Here, the temporal output mode function uout(τ ) = u∗
in(τs − τ )

and the dimensionless output field αout(τ ) is obtained from the
input-output relation as in Eq. (7).

These numerical results are compared with the analytical
result given in Eq. (22) in Fig. 8. The analytical results plotted
here give the first term in Eq. (22), ignoring the additional
noise term. The errors in the error bars in Fig. 8 include both
the sampling error and time-step error. The main source of
error is the sampling error.

It can be easily seen from the tables and figures that the two
types of numerical simulation generate very similar results up
to the numerical sampling error. The Wigner truncation error
is negligible for these calculations, even though the coherent
signal amplitude is not very large. However, the analytical
predictions using linearization give large errors for G > 1.
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FIG. 8. The efficiency of the state transfer protocol for different
coupling strengths G. The number of samples taken for both the
truncated Wigner and positive P simulations is 105. The error bars
denote the sampling errors in our phase-space simulations.
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TABLE III. The efficiency of the state transfer protocol as the ratio between the integrated output Aout and integrated input Ain. These are
computed for different coupling strengths G with finite transfer field switching time. These values are obtained from positive P simulations.

G Integrated input, Ain Integrated output, Aout ζfinite ≡ |Aout|
|Ain|

0.50 5.9161 (4.7561 + 0.1106i) ± (0.0053 + 0.0048i) 0.8041 ± 0.0008
0.75 5.9161 (4.7515 + 0.1951i) ± (0.0068 + 0.0077i) 0.8038 ± 0.0010
1.00 5.9161 (4.7124 + 0.2773i) ± (0.0047 + 0.0041i) 0.7979 ± 0.0008
1.25 5.9161 (4.6761 + 0.4056i) ± (0.0067 + 0.0056i) 0.7934 ± 0.0010
1.50 5.9161 (4.6300 + 0.5759i) ± (0.0058 + 0.0068i) 0.7886 ± 0.0010
1.75 5.9161 (4.5441 + 0.7632i) ± (0.0044 + 0.0074i) 0.7788 ± 0.0009
2.00 5.9161 (4.4531 + 0.9661i) ± (0.0079 + 0.0068i) 0.7702 ± 0.0013

E. Finite switching time

The state transfer protocol with minimal degradation
relies on having the optimal, enhanced coupling strength
G = g0

√
N/γo, where N is determined by the transfer field

amplitude as in Eq. (24). In practice, it takes time to switch the
transfer field to its required amplitude. Hence, the efficiency
of the state transfer protocol defined in Eq. (34) depends on
how fast the transfer field can be turned on and off. Within
the linearized approximation, the finite switching time of the
transfer field cannot be easily taken into account. A full,
nonlinear simulation then becomes both more accurate and
simpler to carry out. We run the same numerical simulations
as in Sec. V D, except that the transfer field is now time
dependent, to take into account the finite switching of the
field. In this paper, we model the finite transfer field switching
with a smoothing function as follows:

Etrans(τ ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Etrans cos2
[ (τ−τ1)

τ1+τw

π
2

]
, −τw � τ � τ1

Etrans, τ1 � τ � τ2

Etrans cos2
[ (τ2−τ )

τ2

π
2

]
, τ2 � τ � 0

0, 0 � τ � τs

Etrans cos2
[ (τr−τ )

τr−τ3

π
2

]
, τs � τ � τ3

Etrans, τ3 � τ � τr

. (37)

Here, Etrans(τ ) is the time-dependent transfer field and its
constant amplitude Etrans = √

(�2
m + �2

o)N/(2�ext). The di-
mensionless time τw is the length of the writing stage, τ1 is the
time when the writing stage transfer field is fully turned on, τ2

is the time when the writing stage transfer field starts to turn off,
τ3 is the time we start turning on the readout stage transfer field,
τ4 is when the readout stage transfer field is fully turned on, and
τr is the length of the readout stage. As described in Sec. II B,
the duration of the writing stage is the real part of 1/(K+ − M),

where K+ = (�o + �m)/2,K− = (�o − �m)/2, �m = γm/γo,
and M =

√
K2

− − G2.
We choose the switching time to be 1% of the duration

of the writing stage. The resulting efficiencies are shown in
Tables III and IV. The reduced efficiency in percentage relative
to the efficiency with instantaneous switching is defined as

ζreduced = ζfinite − ζinstant

ζinstant
× 100%, (38)

where ζfinite is the efficiency, taking the finite transfer field
switching into account. The results are plotted in Fig. 9.

F. Quantum fidelity

In this paper, we compute the quantum fidelity in the
truncated Wigner representation. We note that the quan-
tum fidelity computation in the positive P representation is
nontrivial as the sampling error can be very large [52]. It
was observed by Rosales-Zárate and Drummond [52] that
a generalized Gaussian phase-space representation is more
suited for computing the quantum fidelity exactly.

The quantum fidelity is defined as

F = Tr(ρiρf ), (39)

where ρi is the density operator of the stored quantum state
and ρf is the density operator of the retrieved quantum state.
The quantum fidelity in the truncated Wigner representation is
given by [53,54]

F = π

∫
Wi(α)Wf (α) d2α. (40)

Here, Wi(α) and Wf (α) are the corresponding Wigner func-
tions for ρi and ρf , respectively. In particular, for a coherent

TABLE IV. The efficiency of the state transfer protocol as the ratio between the integrated output Aout and integrated input Ain. These
are computed for different coupling strengths G with finite transfer field switching time. These values are obtained from truncated Wigner
simulations.

G Integrated input, Ain Integrated output, Aout ζfinite ≡ |Aout|
|Ain|

0.50 (5.9146 − 0.0025i) ± (0.0023 + 0.0025i) (4.7566 + 0.0957i) ± (0.0028 + 0.0022i) 0.8044 ± 0.0002
0.75 (5.9160 + 0.0010i) ± (0.0020 + 0.0021i) (4.7409 + 0.1781i) ± (0.0031 + 0.0026i) 0.8019 ± 0.0003
1.00 (5.9169 + 0.0006i) ± (0.0017 + 0.0024i) (4.7149 + 0.2860i) ± (0.0028 + 0.0030i) 0.7983 ± 0.0003
1.25 (5.9152 + 0.0007i) ± (0.0026 + 0.0016i) (4.6777 + 0.4226i) ± (0.0028 + 0.0022i) 0.7940 ± 0.0002
1.50 (5.9167 − 0.0008i) ± (0.0015 + 0.0027i) (4.6205 + 0.5837i) ± (0.0029 + 0.0034i) 0.7871 ± 0.0004
1.75 (5.9167 + 0.0013i) ± (0.0025 + 0.0018i) (4.5485 + 0.7684i) ± (0.0039 + 0.0026i) 0.7797 ± 0.0004
2.00 (5.9139 + 0.0003i) ± (0.0021 + 0.0023i) (4.4532 + 0.9747i) ± (0.0021 + 0.0035i) 0.7708 ± 0.0002
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FIG. 9. The reduced efficiency of the state transfer protocol due
to finite switching for different coupling strengths G. The number
of samples taken for both the truncated Wigner and positive P
simulations is 105. The error bars denote the sampling errors in our
phase-space simulations.

state |α0〉, the corresponding Wigner function is given by

W (α) = 2

π
exp(−2|α − α0|2). (41)

The quantum fidelity can then be computed using a Monte
Carlo method as follows:

F = π

∫
Wi(α)Wf (α) d2α ≈ π

Nsample

Nsample∑
j=1

Wi(αj )

= 2

Nsample

Nsample∑
j=1

exp(−2|αj − α0|2). (42)

The fidelity for different coupling strengths is tabulated in
Table V, for our canonical example of a 35 photon coherent
signal as described in previous sections, including transfer
field cancellation. The fidelity, taking into account the effect
of finite transfer field switching time, is shown in Table VI. The
results show a decrease in fidelity when the transfer field takes
a finite time to turn on and off, compared to the case where
transfer field is assumed to be switched instantaneously. This
is expected since the efficiency of the state transfer protocol
as defined in Eq. (34) is reduced in the case of finite transfer
field switching time.

TABLE V. The fidelity of the optomechanical state transfer
protocol with instantaneous transfer field switching. These values
are obtained from truncated Wigner simulations.

G Fidelity, F

0.50 0.2772 ± 0.0012
0.75 0.2702 ± 0.0015
1.00 0.2553 ± 0.0014
1.25 0.2276 ± 0.0013
1.50 0.1847 ± 0.0016
1.75 0.1325 ± 0.0014
2.00 0.0820 ± 0.0008

TABLE VI. The fidelity of the optomechanical state transfer
protocol with finite transfer field switching time as described in
Sec. V E. The fidelity is lower compared to the case of instantaneous
transfer field switching. These values are obtained from truncated
Wigner simulations.

G Fidelity, F

0.50 0.2716 ± 0.0013
0.75 0.2585 ± 0.0015
1.00 0.2359 ± 0.0012
1.25 0.2028 ± 0.0014
1.50 0.1578 ± 0.0012
1.75 0.1098 ± 0.0014
2.00 0.0665 ± 0.0006

Hammerer et al. [22] computed the minimum fidelity Fmin

required for a quantum memory and it is given by

F � (1 + Nc)

(2Nc + 1)
≡ Fmin, (43)

where Nc is the mean photon number of the quantum state one
wishes to store. The criterion in Eq. (43) provides a benchmark
for the quantum memory of a coherent state. Assuming that
both the input and output states are pure coherent states with
amplitudes α0 and ηα0, respectively, the quantum fidelity of
the coherent output state |ηα0〉 with respect to the coherent
input state |α0〉 is given by

Fpure = |〈ηα0|α0〉|2 = exp[−|α0(1 − η)|2]. (44)

Here η = 0.8088 is the overall amplitude storage efficiency,
giving an upper bound on possible fidelity, as quoted in the
experiment by Palomaki et al. [12].

As suggested by Eqs. (43) and (44), the state transfer
protocol fidelity and its minimum value required for a quantum
memory of a coherent state depend on the mean photon
number of the coherent state. We computed the fidelities F

for coherent states with mean photon number 1,5,15,25, and
35, for G = 0.5 with instantaneous transfer field switching.
They are carried out in the truncated Wigner representation.
These fidelities are then compared to Fmin and Fpure predicted
by Eqs. (43) and (44), respectively, as shown in Table VII.
From the table, we see that Fpure is quantitatively different from
fidelity F computed numerically. The discrepancies increase
with smaller mean photon numbers of the corresponding
coherent states. This is because a coherent state with small
mean photon number is more susceptible to noise from the
environment and hence the assumption that the output state is
a pure coherent state is invalid.

On the other hand, the fidelities for coherent states with
smaller mean photon numbers are increased to the point that
they do exceed Fmin. For these cases, a genuine quantum
optomechanical memory of a coherent state can be achieved.
For larger mean photon numbers the fidelity is reduced, since
the losses will lead to a substantial probability of an output state
with a different photon number, that is therefore orthogonal
to the input. In these cases, the predicted fidelity is lower
than that required by the criterion in Eq. (43). In order to
achieve quantum state transfer, the stored photon numbers of
the internal cavity losses and thermal noises on the mechanical
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TABLE VII. Fidelities for different number of photons. Here,
Nc is the mean photon number of the corresponding coherent state
one wishes to store. Fidelities F are obtained from truncated Wigner
simulations. These are compared with the corresponding fidelities
as given in Eq. (44) and also the minimum fidelities required for
claiming a quantum memory for a coherent state, as in Eq. (43).

Nc F Fpure Fmin

1 0.7694 ± 0.0027 0.9641 0.6667
5 0.6825 ± 0.0026 0.8329 0.5455
15 0.5055 ± 0.0019 0.5779 0.5161
25 0.3743 ± 0.0016 0.4009 0.5098
35 0.2772 ± 0.0012 0.2782 0.5070

oscillator have to be significantly reduced compared to a recent
experiment on coherent-state transfer.

VI. CONCLUSION

Full, nonlinear simulations of an optomechanical quantum
state transfer protocol were carried out, using both the
truncated Wigner and positive P representations. We observed
nonlinear effects and strong spectral tails due to the presence
of the red-detuned transfer field that is used to facilitate the

optomechanical state transfer. Further experimental operations
are needed to retrieve the states stored in a quantum mem-
ory. For experiments with stronger optomechanical coupling
strengths, even reaching the strong quantum coupling regime,
the nonlinearity of the system cannot be neglected and
linearization approximation breaks down. These nonlinear
optomechanical systems are best simulated in practice using
phase-space methods.

Most experiments to date infer state transfer efficiency from
the energy retrieved from a state transfer protocol. To achieve a
quantum memory, both the amplitude and phase information of
a quantum state have to be stored and retrieved. A more suitable
measure is the fidelity. The fidelity is computed numerically
here using realistic experimental parameters. The results are
lower than that required for true quantum state transfers for
large photon numbers. We show that either the use of coherent
inputs with smaller photon numbers or improvements in the
quality factor of the cavity and mechanical systems will,
however, increase the fidelity beyond the threshold required
for a quantum memory.
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