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Nonlinear optical susceptibility described with a spherical formalism applied
to coherent anti-Stokes Raman scattering
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We describe coherent Raman scattering in a complete spherical formalism allowing a better understanding
of the coherent Raman process with respect to its symmetry properties, which is especially helpful in polarized
coherent Raman microscopy. We describe how to build the coherent Raman tensor from spontaneous Raman
tensor for crystalline and disordered media. We introduce a distribution function for molecular bonds and show
how this distribution function results in a new macroscopic symmetry which can be very different from the
symmetry of vibrational modes. Finally, we explicitly show polarization configurations for coherent anti-Stokes
Raman scattering to probe specific vibration symmetries in crystalline samples and lipid layers.
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I. INTRODUCTION

Since several years, coherent anti-Stokes Raman scattering
(CARS) microscopy has attracted much interest because of
its capabilities for label free, three-dimensional, chemical
selective, and real-time imaging [1–3]. The growing interest
in nonlinear microscopy has also resulted in important ef-
forts towards polarization-resolved measurements to recover
orientation and symmetries of molecules in the focal volume
[4–8]. The CARS susceptibility tensor, which describes how
molecules will respond to various incoming field polarization
states, is a third-rank tensor and possesses a priori more
information than the first-rank susceptibility tensor associated
to spontaneous Raman. As a consequence, CARS tensor
together with the coherent nature of the CARS process have
the potential to provide additional valuable information about
sample chemical orientations and organizations. However,
it also results in a higher complexity and, together with
the contribution of the CARS nonresonant background, the
interpretation of CARS polarization measurements to retrieve
molecular information can be difficult [6,9–11].

The analysis of experimental results can be eased using
a different formalism. Instead of using Cartesian coordinates,
one can use the spherical formalism, known also as irreducible
formalism. The spherical formalism allows to describe a tensor
in a basis where its components remain unchanged under
rotation [12–15], providing a more suitable framework for an
investigation of symmetry properties. The spontaneous Raman
scattering tensors for the 32 crystallographic groups have
already been expressed as function of spherical components by
Gächter [16]. However, the link between the crystallographic
groups and the CARS tensor is still missing and has never
been discussed before in the spherical formalism framework.
Recently, we demonstrated experimental results on the direct
measurement of the spherical components of Raman and
CARS tensors using circular polarization for the excitation
and detection [17], providing new possibilities to recover
symmetry properties of molecular assemblies.

The objective of this work is to derive a spherical-based
formalism which describes CARS susceptibilities in a very
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general context. To achieve this, (1) the Cartesian tensor
is expressed as function of its spherical components, (2)
the spherical components of the CARS tensor are expressed
as a function of spontaneous Raman spherical components,
and (3) the orientation and the distribution of molecules
in the focal volume are taken into account to calculate
the macroscopic CARS susceptibility observed within the
focal volume. Finally, we explain how the spherical CARS
components can be directly measured using a specific set of
polarization states, and we experimentally demonstrate this on
crystal sample and disordered biological sample.

II. THEORY

A. Spherical components of third-rank tensor

We assume that the electronic dipole moments induced in
four-wave mixing processes can be written as

Ph = ε0γhijkEiEjEk, (1)

where P is the dipole moment, γ is the third-rank susceptibility
tensor with 81 components, E are the electric fields, and
h,i,j,k represent the Cartesian coordinates x,y,z. The im-
portant limitation of the Cartesian frame is the dependence of
the tensor components’ values on the direction axes, whereas
physical properties are intrinsic matter properties that are not
affected by rotations of the coordinate system. Therefore,
often the concept of rotational invariant is used to describe
the properties of matter, independently of the coordinate
system. This can be done by decomposing the γ tensor into
spherical parts. Any n-rank Cartesian tensor can be written
as the direct sum of spherical tensor, each labeled by an
order l (an integer equal or smaller than n + 1) and having
m = 2l + 1 independent components which transform under
rotation, whereas the order l remains unchanged. First, it is
necessary to establish a transformation between Cartesian and
spherical tensors. We derive the transformation for a third-rank
tensor in a similar way as it was done for a second-rank
tensor [12,18]. The components γ l

m, expressing the nonlinear
tensor in the spherical functions basis Y l

m, are connected to the
γhijk components, expressing the nonlinear tensor in Cartesian
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TABLE I. Unitary third-rank tensor as function of its Cartesian and spherical components.
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coordinates, according to the following relation:

γ l
m =

∑
hijk

C
l,m
hijkγhijk, (2)

where C
l,m
hijk is the transformation matrix between Cartesian

and spherical basis and is expressed explicitly in Table I.
Details on how C

l,m
hijk is calculated can be found in the

Appendix.
Conversely, the passage to the Cartesian form of the tensor

is possible by using the irreducible tensor basis C̄l
m

γ̄Cart =
∑
⊕

γ l
mC̄l

m. (3)

The spherical formalism allows to describe a nonlinear
tensor as a sum of spherical harmonics functions with useful
symmetry properties. Therefore, the symmetry-based analysis
of a four-wave mixing process is easier and allows to describe
the nonlinear tensor with fewer components than in Cartesian
coordinates.

B. CARS spherical components for crystallographic
point groups

Coherent anti-Stokes Raman scattering is a stimulated
Raman process as well as a nonlinear four-wave mixing
process. In the CARS process a photon, called pump, at ωp

and a photon called Stokes at ωs interact with a molecule
and excite a vibrational resonance at � = ωp − ωs . A photon,
called probe, at ωpr interacted with the excited vibration
resonance of the molecule generating a new blue-shifted
photon, called anti-Stokes at ωp + ωpr − ωs . Experimentally,
often degenerated CARS is performed where the pump and
probe frequencies are the same.

The CARS process is described by two Raman interactions,
one Stokes (excitation of Raman state) and one anti-Stokes
(probing of Raman state) [19,20]. Thus, the CARS tensor can
be described by a tensorial product of two Raman tensors, the

Stokes tensor ᾱs and the anti-Stokes tensor ᾱas :

γ̄CARS = ᾱs ⊗ ᾱas, (4)

where ⊗ represents the tensorial product. Whereas the
Cartesian calculation of the CARS tensor, from the Raman
tensor, is tedious [10], the calculation in the spherical basis
is straightforward. In the absence of one-photon resonance or
competitive two-photon process, the spherical components of
γ̄ are

γ l
m =

∑
l1,l2

(l1m1l2m2|lm)αl1
m1

αl2
m2

, (5)

where (l1m1l2m2|lm) are the Clebsch-Gordan coefficients
which impose the rules m = m1 + m2 and |l1 − l2| � l � l1 +
l2. Consequently, the spherical components of the γ CARS
tensor is the product of the spherical components of the Raman
tensor, weighted by the Clebsch-Gordan coefficient. The
Raman tensor in the spherical basis was already investigated
for each group of symmetry by Gächter [16] (see Table II).

The Raman and CARS susceptibilities for a given vibra-
tional mode, respectively ᾱ and γ̄ , are therefore described by
spherical components. In the most general case, each mode
of vibration is represented by an infinite number of spherical
components [21]. However, the first-rank tensor of Raman
susceptibility operates as truncation and its spherical compo-
nents can not exceed l � 2 and −l � m � l, whatever the
symmetry of the vibration modes. For instance, the symmetric
vibration A1g of the group Oh is, according to Gächter, made
by spherical components of order α0

0. According to the CARS
scheme, the tensorial product of two tensors of order 0, α0

0
leads to unique components of γ 0

0 . Similarly, the antisymmetric
vibration T2g possesses α2

2 spherical components which lead
to only one spherical component γ 4

4 (see Table II). Thus, the
prediction of spherical components of CARS tensor is direct
and easy using spherical formalism.
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TABLE II. Spherical components of the first- and third-rank
susceptibility tensors as function of two different point-group
symmetries. When a mode is degenerated, the different contribution
appears on different lines. The components in parentheses are inactive
using in-plane polarization fields.

Spherical components

Group Raman [16] Coherent Raman
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4
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1

)
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0
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1

) γ 4
4
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0,α

2
2
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0,α

2
0

γ 0
0 ,γ 2

0 ,γ 2
2 ,γ 4

2 ,γ 4
4

γ 0
0 ,γ 2

0 ,γ 4
0

B1

(
α1

0

)
,α2

2 γ 4
4

B2,B3

(
α1

1

)
,
(
α2

1

)
–

C. Macroscopic CARS susceptibility tensor

The macroscopic susceptibility tensor in the laboratory
frame χ̄ usually differs from the microscopic susceptibility
tensor γ̄ itself due to the collective orientation of the molecules
in the probed focal volume. In a crystal, the macroscopic
susceptibility tensor is similar to the microscopic molecular
tensor. In a more disordered media, one has to introduce an
angular distribution function, which represents the probability
to find a molecule pointing in a certain direction and there
is no direct link between the macroscopic and microscopic
susceptibility tensors as found in crystal [5]. To build the
macroscopic susceptibility tensor in the laboratory frame, one
has to convolve the microscopic susceptibility tensor by the
distribution function

χ = 1

(2π )2

∫ 2π

0

∫ π

0
f (θ,ϕ)

× γ (θ − θ0,ϕ − ϕ0) sin θ dθ dϕ, (6)

where θ0 and ϕ0 are the molecule angles in the microscopic
frame. The distribution function f (θ,ϕ) can be also described
as a series of spherical harmonics

f (θ,ϕ) =
∑
l,m

f l
mY l

m(θ,ϕ), (7)

where the coefficients f l
m are the components of the spherical

basis functions Y l
m(θ,ϕ). The spherical harmonic convolution

theorem tells that the spherical components of the convolution
product are simply the product of the same spherical compo-
nent of each term [22], thus,

χl
m = γ l

mf l
m. (8)

Therefore, the spherical component in the laboratory frame
is the product between the same order spherical components
of the microscopic CARS susceptibility and the molecular
distribution function (see Fig. 1). In the special case of a
crystal, the distribution function is a delta function δ(θ0,ϕ0)
which implies that all the f l

m are not vanishing. Then, the

FIG. 1. General process for the passage from microscopic tensor
to macroscopic tensor with the spherical formalism.

macroscopic tensor is equal to the microscopic tensor. On the
contrary, in a liquid solution the molecules show all possible
orientations and the distribution function contains only one
not vanishing term, the isotropic one f 0

0 , which filters the
microscopic susceptibility leading to the macroscopic one χ0

0
[12]. When the molecules are partially organized within the
focal volume, somewhat between a crystal and a liquid, the
distribution function does not possess all the orders, especially
the high orders, and Eq. (8) operates as a filtering process of
the molecular symmetry.

D. Measurement of spherical components
with circular polarization

To be consistent with the spherical description of the
susceptibility tensor χ̄ , we also describe the electric fields
involved in the CARS process as spherical harmonic functions.
All the polarization dependence in Eq. (1) can be collected in
a unique tensor F̄ defined by

p = ε0χ̄ · [ê∗
as ⊗ êp ⊗ ê∗

s ⊗ êpr ]

= ε0χ̄ · F̄ , (9)

where the subscripts êp, ê∗
s , êpr , ê∗

as refer to electric field
polarization of anti-Stokes, pump, Stokes, and probe beam
respectively, and the asterisk stands for the complex conjugate.
The electric field polarization expressed in the Cartesian frame
can be also expressed into the spherical formalism. A vector is
a rank-zero tensor and consequently can be decomposed onto
spherical components of l = 1. In the spherical basis, the left-
and right-handed circular polarization and linear z-polarization
states correspond to spherical components of the electric field
el=1
m=1, el=1

m=−1, and el=1
m=0, respectively [17,18]. Written in the

spherical basis, the spherical components of the tensor field
are

F̄mF
=

∑
l

kle∗1
mas

e1
mp

e∗1
ms

e1
mpr

, (10)

where kl is a coefficient which depends only of the l value,
linked to Clebsch-Gordan coefficients [6], and the resulting
mF value being a summation of field’s m values

mF = mp − ms + mpr − mas, (11)

paying attention to the presence of conjugated fields in the
nonlinear processes, which imply a change of the m sign
(since ê∗l

m = êl
−m). Therefore, the light field tensor F̄ has a

mF̄ -rotational symmetry in the sample plane defined by the m

values of the individual incident and emitted light fields.
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FIG. 2. Spherical tensors generated with three different circular
polarization schemes according to Eq. (12). mF = 0 is read out
when all the fields have the same circular polarization and the order
mF = 2 when the Stokes or the anti-Stokes beam have the opposite
polarization handiness with respect to the pump beam. mF = 4 is read
when the Stokes and the anti-Stokes polarizations have the opposite
handiness with respect to the pump.

Using Eqs. (10), (11), and (9), it can be seen that de-
generated CARS with circular polarization for pump, Stokes,
and probe allows a direct read-out of sample symmetries of
order 0 (isotropic, mF̄ = 0), order 2 (mF̄ = 2), and order 4
(mF̄ = 4) determined by the chosen field configurations, cre-
ating a symmetry-based contrast mechanism [17]. According
to Eq. (11), the order 0 is read out when all the fields have the
same circular polarization and the order 2 when the Stokes or
the anti-Stokes beam have the opposite polarization handiness
with respect to the pump beam. Order 4 is read when the Stokes
and the anti-Stokes polarizations have the opposite handiness
with respect to the pump. Using Eq. (10) and the values of kl

expressed in [23], the related field tensors expressed into the
spherical basis are

F̄mF =4 ∝ C̄4
4 ,

F̄mF =2 ∝
√

1/28C̄4
2 −

√
3/14C̄2

2 , (12)

F̄mF =0 ∝
√

1/70C̄4
0 −

√
4/63C̄2

0 +
√

4/45C̄0
0 ,

where C̄l
m is the unitary spherical tensor of order l and m

described in Table I. Another way to find this result is to write
the electric field polarization in the spherical basis θ , ϕ. The
in-plane circular polarizations are

e1
1 ∝ sin θeiϕ, (13)

e1
−1 ∝ sin θe−iϕ, (14)

where θ is the angle with respect to the propagation axis z

and ϕ is the angle in the xy plane. Consequently, the product
of four electric fields involved in the constitutive equation
(9) generates a field function F (θ,ϕ) which leads to the same
result as Eq. (12) and corresponds to the result illustrated in
Fig. 2.

The intensity scattered by an assembly of molecules can
thus be expressed in terms of spherical tensor components χl

m

and F l
m. For a coherent process, the scattered intensity is

Icoh = A(V,k)
∑

l

(−1)l
(
χl

mF

)2(
F l

−mF

)2
(15)

= A(V,k)ξ 2
mF

, (16)

with

ξmF
=

∑
l

(−1)lχ l
mF

kl, (17)

where ξmF
can be interpreted as an effective susceptibility

with an in-plane mF symmetry order, which encompasses
the full χl

m components by a summation over l. A(V,�k) is
a term proportional to the molecular density and involves
phase-matching conditions [24].

III. EXPERIMENTS

A. Methods

1. CARS experimental setup

CARS imaging was performed on a custom-built micro-
scope setup incorporating a picosecond dual color laser system
[25]. The laser system is composed of two optical parametric
oscillators (OPO1 and OPO2, Emerald, APE) synchronously
pumped by a mode-lock frequency doubled Nd:YVO Laser
(PicoTrain, HighQLaser) operating at 532 nm. The two
mode-locked beams from OPO1 (pump) and OPO2 (Stokes)
(pulse duration 5 ps, repetition rate 76 MHz) are overlapped
in time and space and sent into a custom-made scanning
microscope. For spectral scanning, the pump wavelength is
fixed to 730 nm and the Stokes wavelength is scanned in the
spectral windows from 775 to 800 nm and 870 to 885 nm in
order to excite vibrational resonances from 795 to 1200 cm−1

and from 2200 to 2400 cm−1. The CARS signal is detected in
forward direction using PMTs (Hamamatsu, H10682) working
in the photon-counting regime. Excitation and collection are
performed using two identical NA = 0.6 objectives (Olympus
UCPlan FL 40x). The incident powers at the sample plane were
1–4 mW for the pump beam and 1–5 mW for the Stokes beam
depending on the samples. Imaging is performed by scanning
galvanometric mirrors (typically: pixel dwell time of 50 μs,
100 × 100 pixels, and scan range of 30 μm). A home-built
software controls the galvo mirrors, data acquisition, and OPO
wavelength tuning [26]. In order to achieve symmetry-resolved
CARS (SR-CARS) imaging, an achromatic quarter-wave plate
was inserted before the focusing microscope objective to excite
the sample with circularly polarized light. The linear polariza-
tion state (before the quarter-wave plate) of the Stokes beam
was switched between V and H polarization, resulting in a
switching between left- and right-handed circular polarization
states in the sample plane. The generated CARS signal passed
through a second achromatic quarter-wave plate converting cir-
cular polarization to linear polarization. Subsequently, a Wol-
laston prism split the CARS beam into V and H polarization,
which were detected individually with photomultiplier tubes
[17]. On the same microscope, Raman spectra were acquired
using a HeNe laser at 632.8 nm and a spectrograph (Horiba
iHR320) equipped with a Peltier-cooled CCD detector.

2. Zeolite crystal samples

The first sample studied in this work is an
octahydrosilasesquioxane H8Si8O12 crystal (HT8), that
has cubic symmetry and belongs to the Oh crystallographic
point group. The H8Si8O12 crystal synthesis can be found in
[27]. For CARS spectroscopy, micrometric to millimetric size
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FIG. 3. Symmetry-resolved CARS and spontaneous Raman spectrum of HT8 zeolite crystal. (a), (b) T2g and Eg resonance in the O − H

bending mode region. (c) T2g and A1g in the O − H stretching mode region. The order 0 is the black line, order 2 the dashed green line, and
order 4 the blue (gray) line.

crystals were directly deposited onto microscope coverslip
and surrounded by water.

3. Multilamellar vesicle samples

As a second sample, multilamellar vesicle samples
(MLVs) were made from chain 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC) lipids and 5% cholesterol. DPPC was
hydrated in phosphate-buffered saline [(PBS), pH 7.4] above
the main phase-transition temperature (45 ◦C) for 1 h, leading
to MLVs of 1–30 μm size in a solution enclosed between
two spaced coverslips. The MLVs form almost spherical
objects made of concentric multilayers of lipids. Imaging was
performed at the equatorial plane of these objects where the
distribution of the lipids is expected to be oriented in the
transverse sample plane.

B. Results

1. Zeolite crystal

A crystalline sample offers an ideal starting point to
verify the link between the Raman and CARS susceptibilities
since the microscopic tensor is the same as the macroscopic
tensor. The HT8 zeolite crystal is a cubic molecular crystal
which offers vibrational resonances belonging to a variety
of symmetries. In a first step we investigate the three main
Raman active symmetries A1g , Eg , and T2g using circular
polarization spontaneous Raman spectroscopy (see Fig. 3). As
predicted by Gätcher, the A1g strong resonance at 2300 cm−1

is mainly present on the order zero. The measured order 2
contribution is attributed to polarization leakage since no order
two is expected at 2300 cm−1. The T2g resonances, at 910 and
1120 cm−1, are only present on the order 2. The Eg resonance
at 932 cm−1 appears on both order 0 and order 2.

Symmetry-resolved CARS shows a different signature than
spontaneous Raman. The A1g resonance is mainly composed
of an order-0 contribution. The order-2 and -4 contributions are
10 times less intense and most likely artifacts of polarization
leakage. The T2g resonances have a clear order-4 symmetry
while the Eg resonance shows symmetry components of order
0 and order 4. It can be seen that the order-0 contribution
interferes with the nonresonant CARS signal of the zeolite

which is mainly of order 0 resulting in the typical CARS line
shape and shift of the peak resonance.

The different orders of symmetry read out by the CARS
and the Raman follow our explanation by the tensorial product
of two Raman tensors, as demonstrated in the theoretical
part. The CARS susceptibility is thus the tensorial product
of two Raman tensors that are intrinsically limited to order 2
and, consequently, the CARS tensor does not possess more
information than the first-rank tensor.

2. Multilamellar vesicles (MLV)

DPPC multilamellar vesicles represent a different kind of
sample than crystalline sample as they show a macroscopic
symmetry different to the symmetry of their microscopic lipid
building blocks. They are interesting samples as they offer a
large variety of symmetries and controlled packing conditions
when mixed with cholesterol, allowing to monitor different
distribution function [28]. Symmetry-resolved CARS
spectra were acquired between 1030 and 1180 cm−1, to
observe the symmetric and antisymmetric bending of the lipid
carbon-carbon bond. The antisymmetric bending at 1060 cm−1

and the symmetric bending at 1133 cm−1 are known to be A

resonances of the group D2h. The difference between these
two vibrations is only the different ratio between the order-0
and the order-2 contributions [29]. The antisymmetric bending
contains a higher order-2 than order-0 contribution while in the
symmetric bending it is the other way around. For a D2h reso-
nance, the CARS susceptibility of the antisymmetric bending
should contain order-0, order-2, and order 4-contributions
[see Table II and Eq. (4)]. However, while we observe order-0
and order-2 contributions, the order-4 contribution is absent
for both resonances [see Fig. 4(a)]. The deviation between
our measurement and the prediction for a pure D2h resonance
results from the smooth distribution function by which the
microscopic building blocks are oriented to each other. Due to
the loose angular correlation of the lipid building blocks, the
order 4 of the D2h resonance gets filtered out when averaging
over many of them within the focal volume. In the case where
multilamellar vesicles are made with 5% cholesterol, the
packing of molecules is more rigid, leading to a sharper
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FIG. 4. Symmetry-resolved CARS of multilamellar vesicles in
the carbon-carbon bending region. (a) Order 0 (black upper line), 2
(green middle line), and 4 (blue lower line) of MLVs with 0% of
cholesterol. (b) Order 0 (black upper line), 2 (green middle line), and
4 (blue lower line) of MLVs with 5% of cholesterol.

distribution function [28]. The consequence is an increase of
the order 2, even for the nonresonant part, and the presence of
order 4 in the distribution function [see Fig. 4(b)]. The order 4
of the symmetric bending is probably weaker which is why we
did not see it in our measurement. A higher concentration of
cholesterol should increase the order-4 contributions further,
however, higher concentration of cholesterol also results in a
stronger birefringence of the MLV and makes the observation
impossible [28].

IV. SUMMARY AND DISCUSSION

The spherical formalism described here allows to reduce the
tedious calculation associated with the Cartesian formalism.
With the spherical formalism, one can express the different
spherical components of a specific vibration symmetry from
the Raman susceptibility tensor expressed into the spherical
basis. Then, the spherical components of the CARS tensor
are directly calculated. Using a spherical approach for the
measurement allows to read out directly the symmetry of the
macroscopic susceptibility with a single polarization set. In
crystalline sample, the spherical components of the CARS
tensor, built from the Raman spherical components, allow to
predict and measure the symmetry of vibrations. However, the
CARS tensor, due to its construction, does not contain more
information on the symmetry vibration than the Raman tensor,
even if the spherical components available have increased to
m = 4.

In soft matter, the spherical components of the macroscopic
susceptibility allows to measure the distribution function
coefficients and the spherical coefficients of the microscopic
susceptibility. In this case, the symmetry of the macroscopic
susceptibility comes from either the microscopic susceptibility
symmetry or the distribution molecular function symmetry.
The assignment of each contribution is difficult to perform
without any assumption on the sample, either the molecular
symmetry or the distribution of molecules. However, a strong
advantage occurs with CARS with respect to Raman: the
high-rank CARS tensor allows to reveal the fourth order of
the distribution function [28]. Providing that the molecular
susceptibility contains a nonvanishing order 4, the fourth order

of the molecular distribution function is available and enriches
the information about the molecular distribution.

The building process of the macroscopic susceptibility,
from the matching symmetry between the microscopic sus-
ceptibility and the distribution function, has a strong and
unknown consequence on the polarization measurements
and their interpretation. Usually, the assumption to retrieve
the molecule orientation with CARS [6,28], third harmonic
generation [30] or second harmonic generation [5], is based
on bond additive model. The bond additive model consists on
making the assumption that only one Cartesian component is
nonvanishing. Then, the elementary tensor is distributed along
the molecular distribution in order to generate a macroscopic
susceptibility tensor. With the spherical formalism, a molec-
ular tensor with only one nonvanishing Cartesian component
leads to a molecular tensor with several spherical components,
according to Table I. In this case, the macroscopic tensor
is not filtered out by the molecular tensor. Consequently,
the distribution function can be read out efficiently. This
assumption can be done for uniaxial bonds of group Cn, like
lipid molecules. However, if the molecular tensor does not
possess some orders, these missing orders will not appear into
the macroscopic susceptibility and the distribution function
will be misinterpreted. In this case, the symmetry of the
vibration must be taken into account.

Finally, the spherical formalism in polarized nonlinear op-
tics provides quantitative molecular bond symmetry imaging,
without the need for any polarizer rotation nor signal process-
ing. This approach, operated in microscopy, should open new
possibilities for chemical and biochemical applications where
the molecular organization is involved.
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APPENDIX

The irreducible components γ l
m of order l and m are

connected to the γijkl components according to the following
relation:

γ l
m =

∑
hijk

∑
m0 ,m1
m2,m3

∑
l′i ,li

(l3m3l2m2|l′im′
i)

× (l′im
′
i l1m1|limi)(limil0m0|lm)V l

l′i
U

l′i
li

× (l1m1|h)(l2m2|i)(l3m3|j )(l4m4|k)γhijk, (A1)

where V l
l′i

and U
l′i
li

are the symmetric recoupling matrix [23,31],
(l2m2l1m1|limi) are the Clebsch-Gordan coefficients, and
(lm|i) are the unitary transformation matrix between Cartesian
and spherical basis

(lm|i) =
⎛
⎝ i/

√
2 1/

√
2 0

0 0 −i

−i/
√

2 1/
√

2 0

⎞
⎠. (A2)
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