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The quantum Rabi model is in the scientific spotlight due to the recent theoretical and experimental progress.
Nevertheless, a full-fledged classification of its coupling regimes remains as a relevant open question. We propose
a spectral classification dividing the coupling regimes into three regions based on the validity of perturbative
criteria on the quantum Rabi model, which allows us the use of exactly solvable effective Hamiltonians. These
coupling regimes are (i) the perturbative ultrastrong coupling regime which comprises the Jaynes-Cummings
model, (ii) a region where nonperturbative ultrastrong and nonperturbative deep strong coupling regimes coexist,
and (iii) the perturbative deep strong coupling regime. We show that this spectral classification depends not
only on the ratio between the coupling strength and the natural frequencies of the unperturbed parts, but also
on the energy to which the system can access. These regimes additionally discriminate the completely different
behaviors of several static physical properties, namely the total number of excitations, the photon statistics of
the field, and the cavity-qubit entanglement. Finally, we explain the dynamical properties which are traditionally
associated with the deep strong coupling regime, such as the collapses and revivals of the state population, in the
frame of the proposed spectral classification.
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I. INTRODUCTION

The well-established Rabi model [1] describes the simplest
class of light-matter interaction, the dipolar coupling between
a two-level quantum system (qubit) and a classical monochro-
matic radiation field (unidimensional harmonic oscillator). In
its quantum version, the radiation is specified by a quantized
single-mode field, yielding the so-called quantum Rabi model
(QRM) [2,3]. This model accurately describes the dynamics of
a wide variety of physical setups, ranging from quantum optics
to condensed matter systems [4]. In addition, a plethora of pro-
tocols in contemporary quantum information theory [5], with
potential applications in future quantum technologies covering
from ultrafast gates [6] to quantum error correcting codes [7] or
remote entanglement generation [8,9], make use of the QRM
as a building block. Therefore, the QRM plays an extremely
important role in both theoretical and applied physics.

Typically, the standard experiments on cavity quantum
electrodynamics (cavity QED) are restricted to a light-matter
coupling strength much smaller than the natural frequencies
of the unperturbed parts. Thus, they happen in the realm of
the renowned Jaynes-Cummings (JC) model [10], which is
obtained by applying the rotating-wave approximation (RWA)
to the QRM [11]. In this scenario, the achievement of the
so-called strong coupling (SC) regime, when the coupling
strength exceeds all decoherence rates, has driven the field of
cavity QED for several decades [4]. Therefore, the JC model
has served as a theoretical and experimental milestone in the
history of quantum physics.

Since the last decade, a new coupling regime of the QRM,
in which the coupling strength is a substantial fraction of
the natural frequencies of the unperturbed parts, is being
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theoretically studied [12–18] and experimentally reached
in diverse solid state systems [18–32]. In this so-called
ultrastrong coupling (USC) regime, the RWA is no longer
suitable, such that the counter-rotating terms provide novel
counterintuitive physical phenomena and new applications
for the QRM emerge [6–9,33–44]. When the counter-rotating
terms can still be perturbatively treated, as in Refs. [18–30], the
QRM is approximately described by the Bloch-Siegert (BS)
Hamiltonian [14,19,45]. However, a few experiments have
recently achieved the nonperturbative USC regime [46–50],
for which the full QRM has to be considered.

When the coupling strength is even stronger, surpassing the
natural frequencies of the unperturbed parts, another regime
of light-matter interaction appears, with totally different
physics than the USC regime [51,52]. For this so-called
deep strong coupling (DSC) regime [51], the QRM can be
reasonably described by an approximate solution as discussed
in Refs. [51,53–60]. And, recently, Yoshihara et al. have
experimentally achieved such an impressive coupling in
superconducting circuits [49,50].

Therefore, the advent of the aforementioned remarkable ex-
perimental and theoretical achievements has placed the QRM
in the scientific spotlight. Nonetheless, the characterization
so far established for the coupling regimes of the QRM is
not quite universal, and a more specific criterion still remains
undetermined. For instance, there are definitions stating that
the USC regime is reached when the coupling strength is
greater than a critical value related to either dynamical cor-
relation functions [61] or quantum phase transitions [62,63].
However, for the latter case there is no consensus whether
this transition can be reached in physical setups [63–67], and
this definition does not take into account the properties of the
whole model, but only of its ground state, where this limitation
is also presented in Ref. [68]. Another attempt was recently
proposed in Ref. [50], where the coupling classification
is based on unique features exhibited in the transmission
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spectra of the system for different coupling regions. This
approach uses the fact that the selection rules which allow or
forbid transitions between eigenstates depend on the coupling
value, changing the transmission pattern for different coupling
regions. However, similarly to Refs. [62,63,68], this approach
does not take into account the properties of the whole model,
since only the first four eigenstates are considered.

On the other hand, it is also conjectured in the literature
that the USC regime is achieved when the coupling strength
is just a substantial fraction of the natural frequencies of the
unperturbed systems [13,18–21]. Here, we are interested in
quantitatively establishing how substantial this fraction has
to be for the system description being significantly affected
by the counter-rotating terms. Although the exact analytical
solution of the QRM was recently presented for all parameter
regimes [2], it strongly depends on zeros of a transcendental
function defined through an infinite power series, making it
difficult to extract the fundamental physics of that solution
in general. Hence, it is more convenient to use approximate
versions of the QRM as far as possible.

In this paper, we show that these approximate solutions
are excellent guides to define a quantitative characterization
of the coupling regimes of the QRM. In Sec. II, we show
that the coupling regimes are naturally divided into three
regions, whose boundaries depend not only on the ratio
between the coupling strength and the natural frequencies
of the unperturbed parts, but also on the energy to which
the system can access. In addition, we show in Sec. III
that our classification is supported by a completely different
behavior of several static physical properties of the QRM,
which depends on the region. Section IV provides a connection
of our spectral classification with the dynamical properties that
yield the traditionally blurry transition between the USC and
DSC regimes. Finally, Sec. V comprises the conclusions of
our work and the novel open questions emerging from it.

II. COUPLING REGIMES OF THE QUANTUM
RABI MODEL

The Hamiltonian of the ubiquitous QRM is (h̄ = 1)

HR = ωa†a + �

2
σz + g0σx(a + a†). (1)

Here, σx,y,z are the Pauli matrices for the qubit, with transition
frequency � (|g〉 = ground state and |e〉 = excited state), and
a (a†) stands for the annihilation (creation) operator of a
single-mode bosonic field, with frequency ω. The light-matter
coupling is quantified by the vacuum-Rabi frequency g0.

A. Perturbative ultrastrong coupling regime

Whenever |δ| � g0
√〈n̂〉 + 1 � �, with δ = � − ω, � =

� + ω, and 〈n̂〉 = 〈a†a〉, the QRM is well described by the JC
model using the RWA [11],

HJC = ωa†a + �

2
σz + g0(aσ+ + a†σ−), (2)

with σ± = (σx ± iσy)/2. Paradigmatic examples of the intu-
itive physics behind the JC dynamics are the Rabi oscillations
in the JC doublets, Eqs. (9) and (10) with ωBS = g2

0/� → 0,
as a consequence of the conservation of the total number of

excitations, and the collapses and revivals of the population
inversion of the qubit [11].

When the counter-rotating terms can still be perturbatively
treated, it is convenient to use the unitary transformation,

U = exp (�(aσ− − a†σ+) + ξ (a2 − a†2)σz), (3)

with � = g0/(ω + �) and ξ = g0�/2ω. To second or-
der in �, this yields the Bloch-Siegert (BS) Hamiltonian
[14,19,45],

U†HRU ≈ H
(2)
BS = ωBSσza

†a + ωBS
σz

2
− ωBS

2
+ HJC, (4)

in which ωBS = g2
0/� is the BS shift. From Eq. (4), it is

straightforward to note that while the BS Hamiltonian provides
the second-order correction in �, the JC provides the zeroth-
order one. Hence, the JC model is recovered from the BS
Hamiltonian by imposing � = 0 ⇒ ωBS = 0.

The energy spectrum of the BS Hamiltonian is

EBS
0 = −�

2
− ωBS, (5)

EBS
n,± =

(
n − 1

2

)
ω − ωBS ± 1

2

√(
	BS

n

)2 + 4g2
0n, (6)

with 	BS
n = δ + 2ωBSn and n ∈ N∗. The eigenstates are∣∣φBS

0

〉 = U |g,0〉, (7)∣∣φBS
n,±

〉 = U | ± ,n〉, (8)

with |g,n〉 = |g〉 ⊗ |n〉, where |n〉 is the Fock state, and

|+,n〉 = cos
θn

2
|e,n − 1〉 + sin

θn

2
|g,n〉, (9)

|−,n〉 = sin
θn

2
|e,n − 1〉 − cos

θn

2
|g,n〉, (10)

in which the BS mixing angle is

θn = arctan

(
2g0

√
n

	BS
n

)
. (11)

For the sake of simplicity, we will consider the resonant case
(ω = �) hereafter, but it is worth stressing that the following
discussion is also suitable for the general case. In Fig. 1, we
observe that the BS Hamiltonian provides an energy spectrum
in excellent agreement with the one of the full QRM [69],
surprisingly up to the first energy-level crossings (the so-called
Juddian points [2]). Even though the BS Hamiltonian provides
a second-order correction, this approximation breaks down
around the paired-level first cross as also happens for the
RWA, which is qualitatively pointed out in Refs. [54,55]. In
the following we investigate this approximation in detail, being
able to show quantitatively the validity of the BS Hamiltonian
as a function of both the coupling and the energy of
the system.

Therefore, the use of the first Juddian points is an excellent
attempt to define a boundary for a coupling regime. In this case,
since the BS Hamiltonian perturbatively takes into account
the breakdown of the RWA, we can establish the perturbative
USC regime (pUSC) of the QRM as the region before the
first Juddian points (g×

pUSC), which is obtained by imposing
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FIG. 1. Energy spectrum of the QRM (solid lines) and BS energy
spectrum (dashed lines) vs g0/ω. The squares represent the first
Juddian points calculated using Eq. (12), while the shaded area is
the region where the perturbative USC regime is valid [Eq. (14)]. For
the sake of clarity, the eigenenergies are rescaled by g2

0/ω.

EBS
n,+ = EBS

n+1,−. By squaring both sides of EBS
n,+ = EBS

n+1,− up
to the elimination of the square roots, we end up with an eighth-
degree polynomial in g0/ω. Since the BS Hamiltonian is valid
for perturbative values of g0/ω, we truncate this polynomial
up to second order, so that its non-negative solution yields the
first Juddian points for each n � 1,

g×
pUSC

ω
� 1√

2(2n + 1)
, (12)

such that 0 � g×
pUSC/ω � 1/

√
6.

We can also notice from Fig. 1 that the more energetic
the eigenenergies, the smaller the coupling values of first
the Juddian points. This indicates that the importance of the
counter-rotating terms depends not only on the ratio g0/ω, but
also on the energy to which the system can access, showing
that the properties of the ground state are not sufficient to fully
classify the coupling regimes of the QRM. Thus, the definition
of the pUSC coupling regime is also connected to the energy
to which the system can access.

Let us enlarge upon this point for the sake of clarity.
The question we want to answer is whether a quantum
state |ψ〉 evolving under HR with a given g0/ω will show
features corresponding to the pUSC regime. This state is not
necessarily an eigenstate, but it may be expanded in terms
of eigenstates of the QRM. Thus, for a given g0/ω, |ψ〉
can have contributions from eigenstates in the pUSC region
and from the region beyond that. Therefore, we take as a
natural qualitative quantifier the mean energy of the state
Ē = 〈ψ |HR|ψ〉 and choose the criterion that this state is in the
pUSC regime when its energy is below the curve shown in the
following.

If we invert Eq. (12) and replace n in EBS
n,+, assuming it

as a continuous parameter, we can define the boundary of the

pUSC regime as

EpUSC

ω
� 1

4

(
ω

g0

)2[
1 − 2

(g0

ω

)4
]

− 1

+ 1

4

√[
5 − 2

(g0

ω

)2
][

1 − 2
(g0

ω

)2
]
. (13)

This boundary is illustrated as the dotted line in Fig. 1, with
the shaded area standing for the region where the perturbative
USC regime is valid, i.e., when

g0 � g×
pUSC and Ē � EpUSC. (14)

It is worth stressing that, besides the BS approach, there
are other ones that can describe more accurately the QRM in
a perturbative way [53–60]. However, these methods result in
a much more complicated solution for g×

pUSC. We have also
checked that the BS Hamiltonian expanded to third order in
g0/ω [43] provides more accurate eigenenergies, which also
diverge from the exact calculated ones beyond the first Juddian
points (see Appendix A). This indicates that the proposed
definition for the pUSC region is not a simple consequence
of the second-order term, but something deeper related to the
breaking of the assumptions for the adiabatic expansion and
the point from which the total number of excitation is no longer
preserved, as discussed in Sec. III and shown in the left panel
of Fig. 4(a).

Considering the nonresonant case, our method can be
straightforwardly applied to the cases that are not far of
resonance (� ∼ ω). For � � 2ω, the first-level crossings,
predicted by the BS Hamiltonian, occur for EBS

n,+ = EBS
n+p,−,

where p is the integer part of the ratio �/ω. When p is even,
the BS Hamiltonian wrongly predicts first crossings, because,
in fact, the QRM has anticrossings instead. However, the BS
Hamiltonian still satisfactorily reproduces the QRM before
these first-level anticrossings. For extremely large detunings,
better results are obtained by using effective Hamiltonians that
also take into account either � � ω [53–60] or � � ω [70]
in their derivations. However, for those cases a clear solution
for both g×

pUSC and EpUSC may not be available.

B. Perturbative deep strong coupling regime

Analogously to the previous case, we can also employ the
same ideas for the coupling regime at the other end, i.e.,
when the interaction term is no more a mere perturbation,
but the main driver of the dynamics (DSC regime). In order to
visualize the essence of this regime, it is convenient to rewrite
HR in terms of the parity operator  = −σz(−1)a

†a [51], a
conserved quantity of the QRM besides the total energy [2],

HR = ωb†b + g0(b + b†) − �

2
(−1)b

†b, (15)

with b = σxa. Since  has eigenvalues p = ±1 and
[,HR] = 0, there exists an independent Hamiltonian de-
scribing a perturbed displaced harmonic oscillator for each
parity chain (p = ±1), whose perturbation is given by the
qubit term as an energy shift proportional to � [51]. Thus,
a perturbative approach up to first order in � provides the
following energy spectrum and the zeroth-order eigenstates
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FIG. 2. Comparison between the energy spectrum of the QRM
(solid lines) and the adiabatic approximation (dashed lines) given by
Eq. (16), with the circles representing the first solutions of Eq. (18)
for ε = 0.1 (Table I). The shaded area is the region where the
perturbative DSC regime is valid [Eq. (20)]. For the sake of clarity,
the eigenenergies are rescaled by g2

0/ω.

(adiabatic approximation) [51,53–60],

E
pDSC
±,n = (n − α2)ω ± �

2
e−2α2

Ln(4α2), (16)

∣∣φpDSC
±,n

〉 = 1√
2

[|+〉 ⊗ D(−α)|n〉 ± |−〉 ⊗ D(α)|n〉], (17)

in which Ln(x) is the Laguerre polynomial, |±〉 = (|e〉 ±
|g〉)/√2, D(α) = eαa†−α∗a with α = g0/ω, and n ∈ N. The
energy of the ground state for this case is given by E

pDSC
0,− .

A more refined approximation improves only marginally the
accuracy of the eigenenergies and does not reveal new physical
behavior [61].

The DSC regime has a typical dynamical feature, which is
the appearance of photon-number wave packets that bounce
back and forth along a defined parity chain, yielding collapses
and revivals of the initial population, even when the field
and the qubit are initially in the vacuum and ground state,
respectively [51]. This feature appears only for sufficient
large values of g0/ω, and it is more prominent after the
last Juddian points (last energy-level crossings), when the
adjacent eigenenergies asymptotically approach, becoming
quasidegenerate. Notice that the spectrum and the eigenstates
of the QRM are described by Eqs. (16) and (17) with high
fidelity [61]. Therefore, it is straightforward to note that
the collapse-revival phenomenon is strictly related to the
Schrödinger-cat-like states given by Eq. (17), which makes the
perturbative solution an excellent attempt to define a boundary
for a coupling regime.

In Fig. 2, considering ω = �, we notice that the energy
spectrum given by Eq. (16) strongly agrees with the one
of the full QRM beyond the last Juddian points, when
the adjacent eigenenergies become quasidegenerate. Thus,
we use this fact to establish the boundary delimiting the
perturbative DSC (pDSC) region. The boundary also connects

TABLE I. First numerical solutions of Eq. (18) for a ε = 0.1.

n g×
pDSC/ω n g×

pDSC/ω

1 1.473 7 2.832
2 1.778 8 2.998
3 2.035 9 3.155
4 2.261 10 3.304
5 2.466 11 3.447
6 2.655 12 3.584

with the appearance of the collapse and revivals of the initial
population. For this purpose, let us consider the set of αk(n,ε),
with n � 1 and k = 1,2, . . . ,m � n, which are solutions of
the equation,

1

ω

∣∣EpDSC
+,n − E

pDSC
−,n

∣∣ = e−2α2 |Ln(4α2)| ≡ ε, (18)

where ε is the maximum allowed energy difference close to
the quasidegenerate-energy region, which is related to the
minimum fidelity allowed between the exact solution of the
QRM and the perturbative states |φpDSC

±,n 〉. For a given n and ε,
Eq. (18) can have at maximum n solutions (indexed by k), since
it is a transcendental equation involving a Laguerre polynomial
of order n with an exponential envelope. Therefore, since we
are interested in the quasidegenerate-energy region beyond the
last Juddian points (related to the largest roots of the Laguerre
polynomials), the limit of the pDSC region is given by the set
of largest solutions of the above transcendental equation, i.e.,
for a given n and ε, we have g×

pDSC/ω = maxk[αk(n,ε)].
For our calculations, we have chosen ε = 0.1, value for

which we have numerically observed better than 99% fidelity
between |φpDSC

±,n 〉 and the corresponding exact eigenstates of
the QRM. The numerical solutions of Eq. (18) corresponding
to the lowest values of n are provided in Table I. Inserting
g×

pDSC into (EpDSC
+,n + E

pDSC
−,n )/2, these points can be accurately

fitted by the second-order equation,

EpDSC

ω
� a

(g0

ω

)2
+ b

(g0

ω

)
+ c, (19)

with a = 0.0425, b = −0.054478, and c = −1.1987, which
is our definition of the boundary of the pDSC regime. Such
a boundary is illustrated as the dotted line in Fig. 2, with the
shaded area indicating the region where the perturbative DSC
regime is valid, i.e., when

g0 � g×
pDSC and Ē � EpDSC. (20)

If we change ε → ε + 	ε (with |	ε| � |ε|), the new
solution of the transcendental equation will be simply α =
αε + λ	ε, with

λ = − e2α2
ε

4αε

(
Ln

(
4α4

ε

) + 2L1
n−1

(
4α2

ε

)) , (21)

where αε is the solution for ε.
It is noteworthy to mention that we have numerically

observed that the last maximum of the function e−x/2|Ln(x)| is
monotonically decreasing with n. As a consequence, it could
be that, for any fixed ε, there exists a value of n such that
the last solution to Eq. (18) could be placed before the last
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FIG. 3. Classification of the coupling regimes of the QRM. The
region before the first Juddian points stands for the perturbative
ultrastrong coupling (pUSC) regime, while the region beyond the
last Juddian points represents the perturbative deep strong coupling
(pDSC) regime. The intermediate region symbolizes the nonperturba-
tive ultrastrong–deep strong coupling (npUSC-npDSC) regime. The
color gradient around the boundaries symbolizes that our spectral
classification does not imply an abrupt change in the physical
properties of the QRM. Actually, such changes occur gradually, as
shown in Secs. III and IV.

Juddian point. In any case, even in the situation in which
this does not hold or when we want ε above this threshold,
there are several strategies to overcome this complication. The
most straightforward approach is to consider the analytical
extension of the curve fitted for smaller n. This actually
works since this region is indeed perturbative. A second
more complicated approach is introducing ε = 1 − F , with
F the fidelity of the perturbative eigenstates given by Eq. (17)
in comparison with the exact eigenstates of the QRM. The
problem with this approach relies on the lack of an analytically
simple expression for the exact eigenstates of the QRM, and
thus the fidelity can only be calculated numerically.

For the nonresonant case, our definition of the pDSC
regime can also be extended to the near-resonant case straight-
forwardly. When � � ω the solution given by Eqs. (16)
and (17) is still very suitable, but for � � ω such solution
does not provide a good fidelity and a solution that directly
consider such a limit in its derivation is required [70].
However, the procedure to define the pDSC region remains
the same.

C. Nonperturbative ultrastrong–deep strong
coupling regime

According to the aforementioned results, we are able to
classify the coupling regimes of the QRM into three regions,
whose boundaries depend not only on the relation between
the coupling strength and the natural frequencies of the
unperturbed parts, but also on the mean energy that the system
can access, as summarized in Fig. 3. The pUSC regime belongs
to the region right before the first Juddian points, whose
physics are well described by the BS Hamiltonian, which

still considers the interaction term as a perturbation. The BS
Hamiltonian includes the well-known JC model, i.e., the QRM
under the RWA. On the other hand, the pDSC regime belongs
to the region beyond the last Juddian points, where there is a
role interchange, since the interaction Hamiltonian becomes
the main driver of the dynamics, while the bare Hamiltonian
is the perturbative term. Finally, between these two coupling
regimes, there is a region in which all parts of the Hamiltonian
contribute on an equal footing to the dynamics. Then, we
can establish this region as the nonperturbative USC (npUSC)
regime, or as the nonperturbative DSC (npDSC) regime.

III. STATIC PROPERTIES

Although our classification seems originally related to the
validity of approximate mathematical models, it is associated
with physical properties of the QRM which change their
behavior qualitatively from region to region. In this section,
we will focus on three relevant static properties, namely, the
total number of excitations in the system, the photon statistics
of the field, and the cavity-qubit entanglement.

In Fig. 4(a), we show the total number of excitations
(ne = 〈n̂e〉 = 〈a†a + σ+σ−〉) for each exact eigenstate of the
QRM as a function of g0/ω. In the left panel, we observe
that the ne remains almost unchanged for the lower-coupling
region of the pUSC regime (g0 � g×

pUSC), which is expected
since the BS Hamiltonian which governs the dynamics in
this region commutes with n̂e. As we enter in the npUSC-
npDSC regime, ne has a nontrivial oscillatory dependency
with the coupling strength, which ceases as we approach
the pDSC region (g0 ∼ g×

pDSC), as depicted in the right
panel of Fig. 4(a). In the pDSC region, the total number
of excitations becomes quasidegenerate and increases with
(g0/ω)2 for the higher-coupling region of this region, with
|ne − (n + 1/2) − (g0/ω)2| � ε as shown in Appendix B. It is
worth stressing that we have checked that ne computed through
the approximate eigenstates agrees very well with the one
calculated via the exact eigenstates within the corresponding
region. This is also true for the other physical quantities shown
below, but we did not include such approximate results in Fig. 4
for the sake of clarity.

Another physical property with characteristic behavior in
each coupling region is the photon statistics of the field. Using
the Fano-Mandel parameter Q given by Eq. (C1) [11], we
distinguish sub-Poissonian (Q < 0 − genuine nonclassical
statistics), Poissonian (Q = 0), and super-Poissonian (Q >

0) statistics. Such characteristic behavior is illustrated in
Fig. 4(b), where we note that, except for the first two
eigenstates that do not have an energy crossing, the field always
exhibits a sub-Poissonian and a super-Poissonian photon
statistics in the pUSC and pDSC regimes (see Appendix C),
respectively, while all kinds of photon statistics can be
observed in the npUSC-npDSC regime. Moreover, we show in
Appendix C that there are transitions in the photon statistics
only in the npUSC-npDSC regime.

In Fig. 4(c), we observe that the entanglement between
the qubit and the field (von-Neumann entropy of each sub-
system [11]) also shows a peculiar behavior, with the minima
only appearing in the npUSC-npDSC regime. In addition, each
minimum is always localized between two Juddian points and

013849-5



ROSSATTO, VILLAS-BÔAS, SANZ, AND SOLANO PHYSICAL REVIEW A 96, 013849 (2017)

0 0.2 0.4 0.6 0.8 1
g0/ω

0

1

2

3

4

5

6

7

8

9

10

T
ot

al
nu

m
be

r
of

ex
ci

ta
ti

on
s

(n
e
)

0 1 2 3 4
g0/ω

0
1
2
3
4
5
6
7
8
9

10

n
e
−

(g
0/

ω
)2

-0.6

-0.4

-0.2

0

0.2

0.4

Q

0 1 2 3 4
g0/ω

-1

0

1

2

3

4

0 1 2 3 4
g0/ω

-1

0

1

2

3

4

5

-1

-0.5

0

0.5

1

1.5

2

|φ−,3〉

|φ+,3〉

|φ−,1〉

|φ+,1〉

|φ+,2〉

|φ−,2〉

|φ+,0〉

|φ−,0〉

0

0.4

0.8

1.2

E
nt

an
gl

em
en

t

0.8

0.9

1

0 1 2 3
g0/ω

0.8

0.9

1

0 1 2 3
g0/ω

0.8

0.9

1

|φ+,0〉

|φ−,0〉

|φ−,1〉

|φ+,1〉

|φ+,2〉

|φ−,2〉
|φ+,3〉

|φ−,3〉

(a)

(b)

(c)

FIG. 4. (a) Total number of excitations, (b) Fano-Mandel pa-
rameter of the photon distribution of the field, and (c) qubit-field
entanglement for the first exact eigenstates of the QRM in function
of g0/ω. The left and right shaded areas stand for the pUSC and
pDSC regimes, respectively, while the vertical dashed-dotted lines
stand for the energy crossings. For the sake of illustration, we use the
same terminology of the pDSC regime to label the eigenstates in (b)
and (c).

after the last one. The approximate analytical expressions of
the qubit-field entanglement for the pUSC and pDSC regimes
are given in Appendix D.

Our last remark is related to the decomposition of the
field state in the Fock basis {|m〉} for the higher-coupling
region of the pDSC regime, i.e., for g0 � g×

pDSC. Using the
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FIG. 5. Decomposition for g0 � g×
pDSC of the field state in the

Fock basis, considering g0 = 5ω. The bars are computed through the
exact eigenstates, while the solid line is obtained by using Eq. (17).

terminology of the pDSC regime just to label the eigenstates,
this decomposition is given by

P (±,n)
m = Tr(1q ⊗ |m〉〈m| ⊗ |φ±,n〉〈φ±,n|), (22)

in which 1q = σ+σ− + σ−σ+ and Tr(•) is the trace operation.
We display P (±,n)

m in Fig. 5 considering g0 = 5ω, in which
we first recognize that P (−,n)

m and P (+,n)
m tend toward the same

multimodal distribution centered at mc � (g0/ω)2. This can
be confirmed by using Eq. (17), which predicts (red solid line
in Fig. 5)

P (±,n)
m = α2|m−n|

eα2

min (m,n)!

max (m,n)!

(
L

|m−n|
min (m,n)(α

2)
)2

, (23)

in which La
n(x) is the generalized Laguerre polynomial and

α = g0/ω. Secondly, we can also see that the number of modes
of P (±,n)

m , n + 1, seems to be related to the number of energy
crossings between |φpDSC

−,n 〉 and |φpDSC
+,n 〉, which is n.

It is worth emphasizing that the boundaries of our spectral
classification does not imply an abrupt change in the physical
properties of the QRM, as noticed in Fig. 4. Actually, such
change gradually occurs around the boundaries of the pUSC
and pDSC regions, even for dynamical properties as we will
see in the next section.

IV. CONNECTION WITH DYNAMICAL PROPERTIES

As already mentioned in Sec. II B, the traditional character-
istic signature of the DSC regime is not a static property, but a
dynamical one—namely, the appearance of photon-number
wave packets that bounce back and forth along a defined
parity chain, yielding collapses and revivals of the initial
population. In this section, we show how the appearance of
this phenomenon is related to our spectral classification.

In the upper panel of Fig. 6, we show the spectral
classification together with the mean energy 〈ψ0|HR|ψ0〉 of
two initial states, |g,0〉 (solid line) and |g,1〉 (dashed line),
as function of g0/ω. Considering the values of g0 pointed
out by the arrows, we computed the initial population P|ψ0〉 =
〈ψ0|e−iHRt |ψ0〉. In the pUSC region, P|g,0〉 remains almost
constant since |g,0〉 is basically the ground state in that region
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FIG. 6. (Upper panel) Spectral classification together with the
mean energy of the initial states |g,0〉 (solid line) and |g,1〉 (dashed
line) as function of g0/ω. The arrows indicate the values of g0 which
are used for the computation of the initial population P|g,0〉 and P|g,1〉,
namely, g0/ω = 0.1 in (a) and (b), g0/ω = 1 in (c) and (d), g0/ω = 3
in (e) and (f), and g0/ω = 5 in (g) and (h).

[Fig. 6(a)], while P|g,1〉 exhibits Rabi oscillations due to the
conservation of the total number of excitations [Fig. 6(b)]. As
we enter in the npUSC-npDSC region, the Rabi oscillations
pattern is lost, since the counter-rotating terms introduce a
nontrivial oscillatory behavior in the initial population, as

shown in Figs. 6(c) and 6(d). Finally, as we approach the
pDSC region [Figs. 6(e) and 6(f)], the initial population starts
to present the collapse-revival pattern, which becomes more
prominent as we go inside that region [Figs. 6(g) and 6(h)].

V. CONCLUSION

In summary, we have introduced a spectral classification of
the coupling regimes of the quantum Rabi model based on the
validity of different perturbative approximations, showing that
such regimes depend not only on the ratio between the coupling
strength and the natural frequencies of the unperturbed parts,
but also on the mean energy accessible by the system. Our
classification comprises three coupling regions, namely the
perturbative ultrastrong, the nonperturbative ultrastrong–deep
strong, and the perturbative deep strong coupling regimes.
Remarkably, we have shown that the spectral classification
is supported by a clearly divergent behavior of several rele-
vant static physical properties in different coupling regimes.
Additionally, we have also tested the suitability of our
classification for the usual dynamical properties studied in
the literature, which yield the traditional vague USC-DSC
division. Therefore, our results clearly answer the long-
standing question of providing a founded comprehensible
classification of the coupling regimes in the QRM. Moreover,
our results also open novel questions which motivate further
studies of the mathematical and physical properties of these
coupling regions, such as the physical role of the Juddian points
in the QRM.
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APPENDIX A: INFLUENCE OF THE HIGHER
ORDERS OF THE BS APPROXIMATION

In this Appendix, we discuss the influence of the third order
of the BS expansion of the QRM in the definition of the pUSC
region. First, let us consider the BS Hamiltonian expanded up
to the third order in g0/ω [43],

H
(3)
BS = ωa†a + ω

2
σz − ωBS

(
σza

†a + 1

2

)
+ g(n̂)(a†σ− + aσ+), (A1)

where

g(n̂) = g0

(
1 − a†a

ωBS

2ω

)
(A2)

is the photon-dependent coupling strength. Notice that the
Hamiltonian given by Eq. (A1) preserves the number of
excitations, i.e., [H (3)

BS ,a†a + σ+σ−] = 0. In Fig. 7, the exact
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FIG. 7. Effect of the third-order BS expansion in the pUSC
region. We compare the exact eigenenergies of the QRM (solid lines)
with the eigenenergies of the second-order BS expansion (dashed
lines) and the third-order BS expansion (dashed-dotted lines). We
observe that the divergence is still in the first Juddian points, therefore
the shaded region still stands for the pUSC regime.

eigenenergies of the QRM are depicted and compared with
both the second and third orders of the BS expansion. One can
observe that, even though the third order is more accurate,
it still diverges from the correct eigenenergies also after
the first Juddian points. Indeed, this will happen for any
truncation in a finite order of the Bloch-Siegert expansion,
because it corresponds to an adiabatic approximation. Hence,
the increasing in the expansion order in the perturbation theory
simply marginally improves the description before the Juddian
points, points where the adiabatic approximation fails by
definition because the gap closes. Therefore, the region of
validity of the expansion cannot be enlarged by increasing the
truncation order.

Thus, as mentioned in Sec. II A, the proposed definition for
the pUSC region is not a simple consequence of the second-
order term, but something deeper related to the breaking of the
assumptions for the adiabatic expansion and the point from
which the number of excitations starts to be not preserved, as
we have seen in the left panel of Fig. 4(a). In addition, we
see that the second-order expansion is enough to describe the
physics that curiously lives before the first Juddian points.

APPENDIX B: TOTAL EXCITATIONS IN THE
PERTURBATIVE REGIMES

The total number of excitations is given by the operator
n̂e = a†a + σ+σ−. The fact that the number of excitations
is preserved in the pUSC regime is a direct consequence of
the commutation of this operator with the BS Hamiltonian
[n̂e,H

(2)
BS ] = 0 (note that this also holds for H

(3)
BS ).

Let us now compute the mean value of the operator n̂e in
the pDSC regime, i.e., 〈n̂e〉pDSC = 〈φpDSC

±,n |n̂e|φpDSC
±,n 〉. Hence,

〈n̂e〉pDSC = 1
2 [〈n|D†(α)a†aD(α)|n〉 ± 〈n|D2(α)|n〉 + 1

+〈n|D†(−α)a†aD(−α)|n〉 ± 〈n|D2(−α)|n〉],
(B1)

with α = g0/ω. In order to compute the first term, we use
〈n|D†(x)a†aD(x)|n〉 = 〈n|(a† + x)(a + x)|n〉 = n + x2. The
second term is given by Eq. (D10), so that 〈n|D2(x)|n〉 =
e−2x2

1F1(−n,1; 4x2), in which 1F1(a,b; z) is the Kummer’s
confluent hypergeometric function. By using these functions
real valued, we obtain

〈n̂e〉pDSC − α2 = n + 1
2 ± e−2α2

1F1(−n,1; 4α2)

= n + 1
2 ± e−2α2

Ln(4α2)︸ ︷︷ ︸
�ε

, (B2)

where we have made use of Kummer’s transformation
L(α)

n (z) = (
n+α

n

)
1F1(−n,α + 1; z) [71]. Therefore, effectively,

the variation in 〈n̂e〉pDSC − α2 is exponentially suppressed
when α → ∞, and upper-bounded by ε in the pDSC region.

APPENDIX C: FANO-MANDEL PARAMETER
IN PUSC AND PDSC

In this Appendix, we compute the photon statistics of the
QRM eigenstates in the pUSC and pDSC regimes through the
Fano-Mandel parameter,

Q = 〈n̂2〉 − 〈n̂〉2

〈n̂〉 − 1. (C1)

Let us recall that the photon distribution is classified as
sub-Poissonian (Q < 0 − genuine nonclassical statistics),
Poissonian (Q = 0), and super-Poissonian (Q > 0).

1. Perturbative USC regime

First, we must compute the photon distributions
of the eigenstates |φBS

n,±〉, which is defined by
Pm(φBS

n,±) = |〈g,m|φBS
n,±〉|2 + |〈e,m|φBS

n,±〉|2. In order
to perform the calculation, it is useful noticing that
U†|g,m〉 = 1√

m!
(U†a†mU)U†|g,0〉, with U given by Eq. (3).

By using the Baker-Campbell-Hausdorff formula to second
order,

U†amU = am + [am,H(α)] + 1
2 [[am,H(α)],H(α)]

+O(α3), (C2)

with

H(α) = (α/2)(aσ− − a†σ+) + (α2/4)(a2 − a†2)σz, (C3)

and α = g0/ω.
It is straightforward to prove the useful expressions

[a†,am] = −mam−1 and [a† 2,am] = −m(a†am−1 + am−1a†),
which may be used to compute, to the second order, the
commutator,

[am,H(α)] = −α

2
mam−1σ †

− α2

4
mσz(a

†am−1 + am−1a†) + O(α3). (C4)
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Let us now compute the second commutator of Eq. (C2) to the
second order,

[[am,H(α)],H(α)] = −α2

4
mamσz + O(α3). (C5)

Therefore, by replacing Eqs. (C4) and (C5) into Eq. (C2), we
obtain

U†amU = am − α

2
mam−1σ † − α2

4
mamσz

− α2

4
mσz(a

†am−1 + am−1a†) + O(α3). (C6)

Now, we have to compute U†|g,0〉, also to the second order in
α, i.e., U† = 1 − H(α) + 1

2H(α)2 + O(α3), which yields after
normalization,

U†|g,0〉 =
(

1 − α2

8

)
|g,0〉 + α

2
|e,1〉

− α2
√

2

4
|g,2〉 + O(α3). (C7)

By using this together with Eq. (C2), we obtain

U†|g,m〉 =
[

1 − (m + 1)
α2

8

]
|g,m〉 + α

2

√
m + 1|e,m + 1〉 − α2

4
(
√

(m + 1)(m + 2)|g,m + 2〉 −
√

m(m − 1)|g,m − 2〉). (C8)

Analogously,

U†|e,m〉 =
(

1 + m
α2

4

)
|e,m〉 − α

2

√
m|g,m − 1〉 + α2

4
(
√

(m + 1)(m + 2)|e,m + 2〉 −
√

m(m − 1)|e,m − 2〉). (C9)

The scalar products of these states with respect to the state given by Eq. (9) yields

〈g,m|U | + ,n〉 =
(

1 + m
α2

4

)
cos

(
θm+1

2

)
δn,m+1 − α

2

√
m sin

(
θm−1

2

)
δn,m−1

+ α2

4

[√
(m + 1)(m + 2) cos

(
θm+3

2

)
δn,m+3 −

√
m(m − 1) cos

(
θm−3

2

)
δn,m−3

]
. (C10)

〈e,m|U | + ,n〉 =
[

1 − (m + 1)
α2

8

]
sin

(
θm

2

)
δn,m + α

2

√
m + 1 cos

(
θm+2

2

)
δn,m+2

− α2

4

[√
(m + 1)(m + 2) cos

(
θm+2

2

)
δn,m+2 −

√
m(m − 1) cos

(
θm−2

2

)
δn,m−2

]
. (C11)

The sum of the squares of these elements gives the photon dis-
tributions Pm(φBS

n,+), for which we need to use the expressions

sin2 θn

2 = 1
2 (1 − α

√
n

2 ) and cos2 θn

2 = 1
2 (1 + α

√
n

2 ).
Now, we want to compute the first and second moments of

the distribution,

〈n̂〉 =
∞∑

m=0

mP +,n
m =

(
n − 1

2

)
− α

√
n

5

+ 1

8
(5 − 7n + 2n2) + O(α3), (C12)

〈n̂2〉 =
∞∑

m=0

m2P +,n
m

=
(

n2 − n + 1

2

)
+ α

4
(1 − 2n)

√
n

+ α2

8
(2n3 − 10n2 + 17n − 5) + O(α3). (C13)

In order to prove that the distribution is sub-Poissonian, it is
sufficient to study the sign of

〈n̂2〉 − 〈n̂〉2 − 〈n̂〉 =
(

3

4
− n

)
+ α

√
n

4

− α2

16
(4n3 − 8n2 − 13n + 10), (C14)

which can be straightforwardly proven to be negative in the
pUSC regime, i.e., assuming that 0 � α � 1/

√
2(2n + 1).

The cubic polynomial is negative when n = 1,2 and positive
when n � 3. The first case can be directly checked. In the

second case, 〈n̂2〉 − 〈n̂〉2 − 〈n̂〉 � ( 3
4 − n) +

√
n

8(2n+1) � ( 3
4 −

n) + 1
4 < 0, which finally proves that the photon distribution

of the states |φBS
n,+〉 is sub-Poissonian. In order to extend it to

the states |φBS
n,−〉, it is only necessary to apply the substitutions

sin θn

2 → − cos θn

2 and cos θn

2 → sin θn

2 in Eqs. (C10) and (C11)
and proceed analogously. This yields

〈n̂2〉 − 〈n̂〉2 − 〈n̂〉 =
(

3

4
− n

)
− α

√
n

4

− α2

16
(4n3 − 8n2 − 13n + 10), (C15)

which is also negative for n � 1. This concludes the proof.

2. Perturbative DSC regime

Here, we prove that the photon distribution of the eigen-
states of the QRM in the DSC regime is super-Poissonian. To
achieve it, we proceed similarly to the previous subsection,
assuming that in DSC the eigenstates are correctly described
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by Eq. (17). It is straightforward to see that〈
g,m

∣∣φpDSC
±,n

〉 = 1

2
(〈m|D(−α)|n〉 ∓ 〈m|D(α)|n〉), (C16)

〈
e,m

∣∣φpDSC
±,n

〉 = 1

2
(〈m|D(−α)|n〉 ± 〈m|D(α)|n〉), (C17)

where

〈m|D(α)|n〉 =
√

m!

n!
e− 1

2 α2
αm+n

min(n,m)∑
k=0

(−1)n−k

(m − k)!

(
n

k

)
α−2k.

(C18)

Let us start by computing the photon distribution for
|φpDSC

+,n 〉, which means that Pm(φpDSC
n,+ ) = |〈g,m|φpDSC

n,+ 〉|2 +
|〈e,m|φpDSC

n,+ 〉|2 is given by

Pm

(
φ

pDSC
n,+

) =
∣∣∣∣∣
√

m!

n!

e− 1
2 α2

αm+n

2

n∑
k=0

(−1)n−k

(m − k)!

(
n

k

)
α−2k

∣∣∣∣∣
2

× ((1 − (−1)m+n)2 + (1 + (−1)m+n)2)︸ ︷︷ ︸
=4

= |〈m|D(α)|n〉)|2.
Taking this into account, the computation of the first and
second moments is straightforward, since

〈n̂〉 =
∞∑

m=0

mP +,n
m =

∞∑
m=0

〈n|D†(α) |m〉m〈m|︸ ︷︷ ︸
n̂=a†a

D(α)|n〉

= n + α2, (C19)

〈n̂2〉 =
∞∑

m=0

m2P +,n
m =

∞∑
m=0

〈n|D†(α) |m〉m2〈m|︸ ︷︷ ︸
n̂2=(a†a)2

D(α)|n〉

= n2 + α4 + α2(4n + 1). (C20)

Therefore, in order to prove that the distribution is super-
Poissonian for α � g×

pDSC/ω, we have to study the sign of

〈n̂2〉 − 〈n̂〉2 − 〈n̂〉 = n(2α2 − 1) > 0, (C21)

which proves it, since α is always bigger than 1/
√

2 in the
pDSC regime (see Table I). For the case of the eigenstates
|φpDSC

−,n 〉, we only need to notice that the photon distribution
is exactly the same, hence Eqs. (C18)–(C21) also hold, which
concludes the proof.

APPENDIX D: CAVITY-QUBIT ENTANGLEMENT

In this Appendix, we compute the cavity-qubit entangle-
ment via the von-Neumann entropy in the pUSC and pDSC
regimes, which allows us to analytically prove the numerical
observations in Sec. III.

1. Von-Neumann entropy in the pUSC regime

We have to compute the reduce density matrix for the qubit
system. By using the Baker-Haussdorff-Campbell formula,

U | ± ,n〉〈±n|U† = |±,n〉〈±n| + [H(α),|±,n〉〈±n|]
+ 1

2 [H(α),[H(α),|±,n〉〈±n|]]
+O(H(α)3), (D1)

in which α = g0/ω with H(α) given by Eq. (C3). The reduced
density matrix is obtained by tracing out the bosonic degrees
of freedom, i.e., ρn,± = Trcav(U | ± ,n〉〈±n|U†). As usual, let
us first consider the states |+,n〉. Then, the contribution to the
reduced density matrix due to the first term in Eq. (D1) is

ρ(1) = Trcav(|+,n〉〈+n|)
= cos2 θn

2
|e〉〈e| + sin2 θn

2
|g〉〈g|. (D2)

For the second term, it is straightforward to prove that
ρ(2) = Trcav([H(α),|+,n〉〈+n|]) = O(α3), so it will not be
considered.

Finally, for the third term we must only consider the
influence of the Hamiltonian term α

2 (aσ− − a†σ+), since
we are working in O(α2). Let us notice that the double
commutator can be rewritten as [H(α),[H(α),|±,n〉〈±n|]] =
{|±,n〉〈±n|,H(α)2} − 2H(α)|±,n〉〈±n|H(α), so let us com-
pute both terms separately. The anticommutator yields

Trcav({|+,n〉〈+,n|,H(α)2})

= −α2

4

[
(n − 1) cos2 θn

2
|e〉〈e| + (n + 1) sin2 θn

2
|g〉〈g|

]
.

(D3)

Analogously, one obtains

Trcav(H(α)|+,n〉〈+,n|H(α))

= −α2

4

[
(n + 1) sin2 θn

2
|e〉〈e| + (n − 1) cos2 θn

2
|g〉〈g|

]
,

(D4)

such that the total contribution to the ρ(3), using that sin2 θn

2 =
cos2 θn

2 = 1
2 + O(α), is given by

ρ(3) = α2

2
(|e〉〈e| − |g〉〈g|) = α2

2
σz. (D5)

Therefore, the total density matrices for n > 0 are given by

ρn,± =
(

1

2
± α

√
n

4
+ α2

4

)
|e〉〈e|

+
(

1

2
∓ α

√
n

4
− α2

4

)
|g〉〈g|. (D6)

We can see that the entanglement is maximum for α ≈ 0,
as numerically observed. The von-Neumann entropy S(ρ) =
−∑

k λk log2 λk , where λk are the eigenvalues of ρ, is

S(ρn,±) = 1 − nα2

8
+ O(α3). (D7)

2. Von-Neumann entropy in the pDSC regime

Let us take the states describing the cavity-qubit system in
the pDSC regime given by Eq. (17), and trace out the bosonic
degrees of freedom,

Trcav
(∣∣φpDSC

±,n

〉〈
φ

pDSC
±,n

∣∣)
= 1

2
[|+〉〈+| + |−〉〈−| ± |+〉〈−|〈n|D2(−α)|n〉

± |−〉〈+|〈n|D2(α)|n〉]. (D8)

013849-10



SPECTRAL CLASSIFICATION OF COUPLING REGIMES . . . PHYSICAL REVIEW A 96, 013849 (2017)

Therefore, the aim here is to compute 〈n|D2(α)|n〉 =
〈n|D(2α)|n〉 = 〈n|D(2α) (a†)n√

n!
D†(2α)D(2α)|0〉. By using

D(2α)a†D†(2α) = a† − 2α and the Newton’s binomial
theorem,

〈n|D2(α)|n〉 = 1√
n!

〈n|
n∑

k=0

(
n

k

)
(−2α)n−ka† k|2α〉

=
n∑

k=0

(
n

k

)
(−2α)n−k 〈n − k|2α〉√

(n − k)!
, (D9)

where we have used ak|n〉 =
√

n!
(n−k)! |n − k〉. Then, employing

〈n − k|2α〉 = e−2α2 (2α)n−k√
(n−k)!

, we have

〈n|D2(α)|n〉 = e−2α2
n∑

k=0

(
n

k

)
(−1)k

(2α)2k

k!

= e−2α2

1F1(−n,1; 4α2), (D10)

where 1F1(a,b; z) is the Kummer confluent hypergeometric
function [71].

Therefore, the two eigenvalues of the reduced density
matrix for the qubit are

λ±
(
φ

pDSC
±,n

) = 1
2 [1 ± e−2α2

1F1(−n,1; 4α2)]. (D11)

Notice that the eigenvalues only depend on the quan-
tum number n. Finally, we can compute the en-
tropy S = − 1

2 (1 − y) log2( 1−y

2 ) − 1
2 (1 + y) log2( 1+y

2 ) = 1 −
y2

2 + O(y4), with y = e−2α2

1F1(−n,1; 4α2) � 1 in the pDSC
region. Hence, the entropy is given by

S = 1 − 1

2
e−4α2

1F
2
1 (−n,1; 4α2)︸ ︷︷ ︸

�ε2

, (D12)

which exponentially tends to 1 and it is lower bounded by
S � 1 − 1

2ε2 in the pDSC region.
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