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Leaky modes of solid dielectric spheres
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In the absence of external excitation, light trapped within a dielectric medium generally decays by leaking
out, and also by getting absorbed within the medium. We analyze the leaky modes of solid dielectric spheres by
examining solutions of Maxwell’s equations for simple homogeneous, isotropic, linearly dispersive media that
admit complex-valued oscillation frequencies. We show that, under appropriate circumstances, these leaky modes
constitute a complete set into which an initial electromagnetic field distribution inside a dielectric sphere can be
expanded. We provide the outline of a completeness proof, and also present results of numerical calculations that
illustrate the close relationship between the leaky modes and the resonances of solid dielectric spherical cavities.
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I. INTRODUCTION

A well-polished, solid, smooth, homogeneous, and trans-
parent glass sphere is a good example of material bodies which,
when continually illuminated, admit and accommodate some
of the incident light, eventually reaching a steady state where
the rate of the incoming light equals that of the outgoing.
By properly adjusting the frequency of the incident light,
one can excite resonances, thus arriving at conditions under
which the optical intensity inside the dielectric host exceeds,
often by a large factor, that of the incident light beam [1,2].
If now the incident beam is suddenly terminated, the light
trapped within the host medium begins to leak out, and,
eventually, that portion of the electromagnetic (EM) energy
which is not absorbed by the host returns to the surrounding
environment.

The so-called leaky modes of a dielectric body are
characterized by a unique set of complex-valued frequencies
ωq = ω′

q + iω′′
q , where the index q is used here to enumerate

the modes [3–7]. The imaginary part ω′′
q of each such frequency

signifies the decay rate of the leaky mode, and (aside from a
numerical coefficient) the corresponding quality factor is given
by Q = |ω′

q/ω
′′
q |.

The leaky modes of dielectric waveguides and cavities have
been studied for many years, and a considerable volume of
results pertaining to these modes exists in the literature. In
addition to their applications in computational photonics and
electromagnetics [8,9], such states of the EM field also pose
questions of fundamental interest. Specifically, the problem
of completeness and the general mathematical properties
of these so-called “quasinormal modes” have been broadly
investigated. Of particular relevance to the present paper are
the results reported in [5], which show that the leaky modes
of a dielectric cavity can serve as a basis to represent arbitrary
functions but only inside the cavity. In [6] it was shown that the
set of leaky modes remains complete in the aforementioned
sense even when the host medium exhibits losses as well
as some chromatic dispersion limited to finite frequencies.
Considering that the inclusion of chromatic dispersion and
optical loss complicates the problem considerably, most of
the pertinent mathematical analysis to date has been limited
to one-dimensional systems, with rigorous results usually
associated with cases in which chromatic dispersion and/or
optical loss have been absent [10,11].

A specific application of leaky modes is the evaluation
of the Purcell spontaneous emission enhancement factor
when a dipole oscillator is coupled to a nearby cavity or a
plasmonic resonator. Recent publications [12,13] have shown
that the Purcell factor can be estimated from one (or a few)
leaky modes, thus showcasing the need for delving into its
detailed derivation, which exploits the expansion of Green’s
tensor in terms of the leaky modes. The completeness of
the leaky modes is assumed in the aforementioned papers,
and references are given to the published literature where
completeness has been discussed. In the present paper we
emphasize that completeness should not be assumed but must
be proven, that the expansion of an initial field distribution
into a superposition of leaky modes is not trivial but involves
subtleties due to the unusual behavior of the leaky modes in the
vicinity of the singularities of the refractive index, and that the
expansion coefficients obtained without proper accounting for
such singularities could be wrong, resulting in a nonconvergent
series expansion. We will see how the leaky modes accumulate
near one of the singular points of the refractive index.
Consequently, if and when the excitation frequency happens to
be close to the pole(s) of the refractive index, the assumption
that one (or at most a few) leaky modes are sufficient to expand
a given field distribution would become questionable.

One of the goals of the present paper is to generalize the
previous results in several ways. In particular, we study di-
electric spheres with chromatic dispersion and loss properties
in the framework of a Lorentz oscillator model, which also
properly accounts for the behavior at high frequencies. This is
an issue of fundamental importance, because high-frequency
asymptotics in fact determine the conditions under which a set
of leaky modes can be considered complete. As the frequency
increases, the refractive index approaches unity and, for all
practical purposes, high-frequency propagating waves cease
to experience the presence of the cavity. While this is an
important feature that was not part of the analysis in [6], one
could reasonably argue that, in the absence of confinement for
high-frequency EM waves, leaky modes could only provide
approximations but not true resonant-mode expansions for
arbitrary functions. Yet another difficulty arising from the dis-
persive properties of the medium is that the Lorentz oscillator
model of the refractive index introduces branch cuts into the
analytic structure of the leaky-mode expansion. While the role
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of this singularity has been related to the overcompleteness
of the resonant states [14], the existence of branch cuts
can potentially invalidate arguments supporting completeness.
We address these questions rigorously, and demonstrate the
convergence of the leaky-mode expansion inside the cavity
when a realistic high-frequency wave behavior is properly
taken into consideration. In doing so, we also show that
the leaky-mode expansion can be constructed in a way that
eliminates the potential problem caused by the branch cuts
associated with the refractive index.

The present paper contributes to the mathematics of open
systems by providing an alternative completeness proof for
leaky modes of solid, homogeneous, isotropic, dispersive
dielectric spheres. We put forward an alternative approach
to the completeness analysis that might find applications
elsewhere in mathematical physics as well. The main tools
of the trade in the existing literature on quasinormal and
resonant modes are invariably Green’s functions. In contrast
to such conventional approaches, we present a method that
relies solely on the analytic properties of the scattering states,
thus avoiding any reliance on Green’s functions. Ours is
a straightforward approach that simplifies the analysis of
the leaky-mode expansion in comparison to conventional
methods. Also possible are similar proofs of completeness for
the leaky modes of parallel-plate dielectric slabs and infinitely
long dielectric cylinders, which we have recently reported in
a conference proceedings paper [15].

An important question with regard to the completeness
issue is the space of functions that can be expressed as a
superposition of leaky modes. Interestingly, this is actually
rarely addressed in the context of optical cavities. Note that
our analysis is concerned with inherently lossy systems; in
other words, not only is the system under investigation open,
but also its EM energy content can be dissipated throughout
the host medium. Thus, the problem being non-Hermitian,
one cannot rely on the completeness of the scattering states
as a point of departure when attempting to prove that the
set of leaky modes forms a basis for expansion. To address
this issue, we provide a constructive specification of the
function space that is spanned by the leaky modes. It is
specified as the space of EM fields excited within the optical
cavity under external illumination. Assuming the external
excitation has reached a steady state (after a sufficiently long
time) when it is terminated, we proceed to show that the
subsequent evolution of the EM field left inside the cavity
can be represented by a convergent superposition of the leaky
modes.

Our approach provides a direct link between the various
ways in which resonant modes can be detected and studied. In
particular, the correspondence between resonance conditions,
line shapes, and Q factors of a spherical cavity can be readily
explored. We present numerical results to illustrate certain
general properties of spherical cavities. Last but not least, our
results provide insight into features of resonant modes that are
of practical interest. By comparing the properties of idealized
spherical cavities with those made of realistic (i.e., lossy and
dispersive) materials, we will show the way in which the losses
inherent to the host material impose limits on the achievable
Q factors of solid dielectric spheres.

In the following sections, we analyze the EM structure
of the leaky modes of solid dielectric spheres, and examine
the conditions under which certain initial field distributions
can be decomposed into a superposition of leaky modes. We
also present numerical results where the resonance conditions,
line shapes, and quality factors of a spherical cavity are
computed; the correspondence between these and the leaky-
mode frequencies is subsequently explored.

We begin by describing in Sec. II the dispersive properties
of linear, isotropic, homogeneous dielectric media whose
electric permittivity and magnetic permeability each follow
a single Lorentz oscillator model. Then, in Sec. III, after
a summary presentation of vector spherical harmonics, we
demonstrate the completeness of the leaky modes of solid
dielectric spheres for a special class of initial distributions
residing within the spherical cavity. Numerical results showing
the connection between the resonances of a dielectric sphere
(when illuminated by a tunable source) and the corresponding
leaky-mode frequencies are presented in Sec. IV. Section V
provides a summary of the main results of the paper followed
by a few concluding remarks.

II. REFRACTIVE INDEX MODEL FOR
A DISPERSIVE DIELECTRIC

The simplest dispersive dielectric is a medium whose
electric and magnetic dipoles behave as independent Lorentz
oscillators, each having their own resonance frequency ωr ,
plasma frequency ωp, and damping coefficient γ [16,17]. The
electric and magnetic susceptibilities of the material will then
be given by

χe(ω) = ω2
pe

ω2
re − ω2 − iγeω

, (1a)

χm(ω) = ω2
pm

ω2
rm − ω2 − iγmω

. (1b)

The corresponding refractive index, which is also a function
of the frequency ω, will then be

n(ω) = √
με =

√
(1 + χm)(1 + χe)

=
√

1 + ω2
pm

ω2
rm − ω2 − iγmω

√
1 + ω2

pe

ω2
re − ω2 − iγeω

=
√

(ω − �1m)(ω − �2m)

(ω − �3m)(ω − �4m)

√
(ω − �1e)(ω − �2e)

(ω − �3e)(ω − �4e)
,

(2a)

where

�1,2 = ±
√

ω2
r + ω2

p − 1

4
γ 2 − 1

2
iγ, (2b)

�3,4 = ±
√

ω2
r − 1

4
γ 2 − 1

2
iγ . (2c)
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FIG. 1. Locations in the ω plane of the poles and zeros of
ε(ω), whose square root contributes to the refractive index n(ω) in
accordance with Eq. (2). A similar set of poles and zeros, albeit at
different locations in the ω plane, represents μ(ω). The dashed lines
connecting pairs of adjacent poles and zeros constitute branch cuts for
the function n(ω). In accordance with the Cauchy-Goursat theorem
[18], the integral of a meromorphic function, such as f (ω), over a
circle of radius Rc is 2πi times the sum of the residues of the function
at the poles of f (ω) that reside within the circle.

Assuming that γ � ωr , the poles and zeros of μ(ω) and ε(ω)
will be located in the lower half of the complex ω plane,
as shown in Fig. 1. The dashed line segments in the figure
represent branch cuts that are needed to uniquely specify
each square-root function appearing on the right-hand side of
Eq. (2a). For the sake of simplicity, one might further assume
that the branch cuts of

√
μ and those of

√
ε do not overlap,

although, strictly speaking, this restriction is not necessary.
Whenever ω crosses (i.e., moves from immediately above
to immediately below) one of these four branch cuts, the
refractive index n(ω) is multiplied by −1. Note also that, in
the limit when |ω| → ∞ (along any straight line originating
at ω = 0), the complex entities μ(ω), ε(ω), and the refractive
index n(ω) will all approach 1.0, while 1 − n2(ω) approaches
(ω2

pm + ω2
pe)/ω2.

III. LEAKY MODES OF A SOLID DIELECTRIC SPHERE

The vector spherical harmonics of the EM field within a
homogeneous, isotropic, linear medium having permeabil-
ity μ0μ(ω) and permittivity ε0ε(ω) are found by solving
Maxwell’s equations in spherical coordinates [16,17]. The
electric and magnetic field profiles for transverse electric (TE)
and transverse magnetic (TM) modes of the EM field are found
to be as follows.

m = 0 TE mode (Er = 0):

E(r,t) =
E0J

�+ 1
2

(kr)
√

kr
P 1

� (cos θ) exp (−iωt)ϕ̂, (3)

H(r,t) = E0

μ0μ(ω)rω

⎧⎨
⎩

J
�+ 1

2
(kr)

i
√

kr

[
cot θP 1

� (cos θ) − sin θṖ 1
� (cos θ )

]
r̂

−
krJ̇

�+ 1
2

(kr) + 1
2J

�+ 1
2

(kr)

i
√

kr
P 1

� (cos θ)θ̂

⎫⎬
⎭ exp (−iωt). (4)

m �= 0 TE mode (Er = 0):

E(r,t) = E0

⎡
⎣J

�+ 1
2

(kr)
√

kr

P m
� (cos θ)

sin θ
θ̂ +

J
�+ 1

2
(kr)

im
√

kr
sin θṖ m

� (cos θ )ϕ̂

⎤
⎦ exp [i(mϕ − ωt)], (5)

H(r,t) = − E0

μ0μ(ω)rω

⎧⎨
⎩

�(� + 1)J
�+1/2

(kr)

m
√

kr
P m

� (cos θ)r̂ −
krJ̇

�+ 1
2

(kr) + 1
2J

�+ 1
2

(kr)

m
√

kr
sin θṖ m

� (cos θ )θ̂

−
krJ̇

�+ 1
2

(kr) + 1
2J

�+ 1
2

(kr)

i
√

kr

P m
� (cos θ)

sin θ
ϕ̂

⎫⎬
⎭ exp [i(mϕ − ωt)]. (6)
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m = 0 TM mode (Hr = 0):

E(r,t) = − H0

ε0ε(ω)rω

⎧⎨
⎩

J
�+ 1

2
(kr)

i
√

kr

[
cot θP 1

� (cos θ ) − sin θṖ 1
� (cos θ )

]
r̂−

krJ̇
�+ 1

2
(kr) + 1

2J
�+ 1

2
(kr)

i
√

kr
P 1

� (cos θ )θ̂

⎫⎬
⎭ exp (−iωt),

(7)

H(r,t) =
H0J

�+ 1
2

(kr)
√

kr
P 1

� (cos θ) exp (−iωt)ϕ̂. (8)

m �= 0 TM mode (Hr = 0):

E(r,t) = H0

ε0ε(ω)rω

⎧⎨
⎩

�(� + 1)J
�+ 1

2
(kr)

m
√

kr
P m

� (cos θ)r̂ −
krJ̇

�+ 1
2

(kr) + 1
2J

�+ 1
2

(kr)

m
√

kr
sin θṖ m

� (cos θ )θ̂

−
krJ̇

�+ 1
2

(kr) + 1
2J

�+ 1
2

(kr)

i
√

kr

P m
� (cos θ )

sin θ
ϕ̂

⎫⎬
⎭ exp [i(mϕ − ωt)], (9)

H(r,t) = H0

⎡
⎣J

�+ 1
2

(kr)
√

kr

P m
� (cos θ)

sin θ
θ̂ +

J
�+ 1

2
(kr)

im
√

kr
sin θṖ m

� (cos θ )ϕ̂

⎤
⎦ exp [i(mϕ − ωt)]. (10)

In the above equations, the Bessel function Jν(z) and its derivative with respect to z, J̇ν(z), could be replaced by a Bessel
function of the second kind, Yν(z), and its derivative, Ẏν(z), or by Hankel functions of type 1 or type 2, namely, H(1,2)

ν (z), and

corresponding derivatives Ḣ
(1,2)
ν (z).

The (complex) field amplitudes are denoted by E0 and H0. In our spherical coordinate system, the point r is at a distance r

from the origin, its polar and azimuthal angles being θ and ϕ. The oscillation frequency is ω, and the wave number k is defined
as k(ω) = n(ω)k0, where k0 = ω/c, and n(ω) = √

μ(ω)ε(ω) is the refractive index of the host medium. The integers � � 1, and
m (ranging from −� to +�) specify the polar and azimuthal mode numbers. P m

� (ζ ) is an associated Legendre function, while
Ṗ m

� (ζ ) is its derivative with respect to ζ . Note that, for a given m, the TM mode may be obtained from the corresponding TE
mode by substituting E for H , and −H for E, keeping in mind that rω = kr/

√
μ0ε0μ(ω)ε(ω), and that the E/H amplitude

ratio for each mode is always given by
√

μ0μ(ω)/ε0ε(ω). Finally, the various Bessel functions of half-integer order are defined
by the following formulas [19]:

J�+ 1
2
(z) =

√
2

πz

{
sin

(
z − 1

2
�π

) ��/2	∑
k=0

(−1)k(� + 2k)!

(2k)!(� − 2k)!

(
1

2z

)2k

+ cos

(
z − 1

2
�π

) �(�−1)/2	∑
k=0

(−1)k(� + 2k + 1)!

(2k + 1)!(� − 2k − 1)!

(
1

2z

)2k+1
}

, (11)

Y�+ 1
2
(z) = (−1)�−1

√
2

πz

{
cos

(
z + 1

2
�π

) ��/2	∑
k=0

(−1)k(� + 2k)!

(2k)!(� − 2k)!

(
1

2z

)2k

− sin

(
z + 1

2
�π

) �(�−1)/2	∑
k=0

(−1)k(� + 2k + 1)!

(2k + 1)!(� − 2k − 1)!

(
1

2z

)2k+1
}

, (12)

H
(1)

�+ 1
2

(z) =
√

2

πz
exp

{
i

[
z − 1

2
(� + 1)π

]} �∑
k=0

(� + k)!

k!(� − k)!

(
i

2z

)k

. (13)

Note that
√

zJ
�+ 1

2
(z) is an even function of z when � = 1, 3, 5, · · · , and an odd function when � = 2, 4, 6, · · · . This fact will

be needed later on, when we try to argue that certain branch cuts in the complex ω plane are inconsequential. Also, the following
alternative representation of Bessel functions of the first kind, order ν, will be found useful:

Jν(z) = (z/2)ν
∞∑

k=0

(−1)k(z/2)2k

k! (ν + k + 1)
. (14)

Given that ν = � + 1
2 � 3

2 for spherical harmonics, Eq. (14) reveals that J
�+ 1

2
(z)/z → 0 when z → 0.

013846-4



LEAKY MODES OF SOLID DIELECTRIC SPHERES PHYSICAL REVIEW A 96, 013846 (2017)

Consider now a solid dielectric sphere of radius R, relative permeability μ(ω), and relative permittivity ε(ω). Inside the
particle, the radial dependence of the TE mode is governed by a Bessel function of the first kind, E0 J

�+ 1
2

(kr), and its derivative.

The refractive index of the spherical particle being n(ω) = √
μ(ω)ε(ω), the corresponding wave number inside the particle is

k(ω) = n(ω)k0 = n(ω)ω/c. The particle is surrounded by free space, which is host to an outgoing spherical harmonic whose
radial dependence is governed by a type 1 Hankel function, E1H

(1)

�+ 1
2

(k0r), and its derivative. Invoking the Bessel function identity

zJ̇ν(z) = νJν(z) − zJν+1(z) —which applies to Yν(z) and H(1,2)
ν (z) as well—we find, upon matching the boundary conditions at

r = R, that the following two equations must be simultaneously satisfied:

E0J
�+ 1

2
(nk0R)

√
nk0R

=
E1H

(1)

�+ 1
2

(k0R)

√
k0R

, (15a)

E0
[
(� + 1)J

�+ 1
2

(nk0R) − nk0RJ
�+ 3

2
(nk0R)

]
μ(ω)

√
nk0R

=
E1

[
(� + 1)H(1)

�+ 1
2

(k0R) − k0RH
(1)

�+ 3
2

(k0R)
]

√
k0R

. (15b)

Streamlining the above equations, we arrive at⎡
⎢⎣ J

�+ 1
2

(nk0R) −√
nH

(1)

�+ 1
2

(k0R)

(� + 1)J
�+ 1

2
(nk0R) − nk0RJ

�+ 3
2

(nk0R) −μ
√

n
[
(� + 1)H(1)

�+ 1
2

(k0R) − k0RH
(1)

�+ 3
2

(k0R)
]
⎤
⎥⎦[

E0

E1

]
= 0. (16)

A nontrivial solution for E0 and E1 thus exists if and only if the determinant of the coefficient matrix in Eq. (16) vanishes;
that is,

F (ω) = nk0RH
(1)

�+ 1
2

(k0R)J
�+ 3

2
(nk0R) + [

(μ − 1)(� + 1)H(1)

�+ 1
2

(k0R) − μk0RH
(1)

�+ 3
2

(k0R)
]
J

�+ 1
2

(nk0R) = 0. (17)

This is the characteristic equation for leaky TE modes,
whose solutions comprise the entire set of leaky frequencies
ωq . (The index q is used here to enumerate the various leaky-
mode frequencies.) For TM modes, μ(ω) in Eq. (17) must be
replaced by ε(ω).

Equation (17) must be solved numerically for complex
frequencies ωq ; these being characteristic frequencies of the
spherical particle’s leaky modes, one expects (on physical
grounds) to find all the roots ωq of F (ω) in the lower
half of the complex plane. Note that

√
nF (ω) is an even

function of n when � = 1, 3, 5, · · · , and an odd function
when � = 2, 4, 6, · · · . This is because successive Bessel
functions J

�+ 1
2

and J
�+ 3

2
alternate between odd and even

parities. Note also that F (ω) vanishes at the zeros of n(ω),
that is, F (�1) = F (�2) = 0; see Eq. (2b). Nevertheless, �1

and �2 do not represent leaky-mode frequencies, because
setting n(�1,2) = 0 in Eqs. (3)–(10) extinguishes the EM field
throughout the dielectric sphere. At the poles of n(ω), namely,
ω = �3 and ω = �4 given by Eq. (2c), the function F (ω) is
undefined, but an arbitrarily small circle centered at �3 (or
�4) can be shown to contain an infinite number of the zeros of
F (ω). One could argue that, throughout the dielectric sphere,
the EM fields associated with the �3,4 frequencies should be
negligible, although the mathematical reasoning behind this
argument is not straightforward. Finally, when ω → 0, F (ω)
approaches a constant (see the Appendix), and when |ω| →
∞, μ(ω) → 1 − (ωpm/ω)2 and ε(ω) → 1 − (ωpe/ω)2, thus
allowing the asymptotic behavior of F (ω) to be determined
from Eqs. (11) and (13).

Our goal is to express an initial field distribution inside
the spherical particle (e.g., one of the spherical harmonic

waveforms given by Eqs. (3)–(10), which oscillate at a
real-valued frequency ω0) as a superposition of leaky modes,
each having its own complex frequency ωq . To this end, we
must form a meromorphic function G(ω) incorporating the
following features:

(I) The function F (ω) of Eq. (17) appears in the denomi-
nator of G(ω), thus causing the zeros of F (ω) to act as poles
for G(ω).

(II) A desired initial waveform, say, J
�+ 1

2
[ωn(ω)r/c],

appearing in the numerator of G(ω).
(III) The real-valued frequency ω0 associated with the

initial waveform acting as a pole for G(ω).
(IV) In the limit when |ω| → ∞, G(ω) → 0 exponentially,

so that
∮

G(ω)dω over a circle of large radius Rc would
vanish.

A simple (although by no means the only) such
function is

G(ω) =
√

ω exp (iRω/c)J
�+ 1

2
(kr)

(ω − ω0)F (ω)
. (18)

With reference to Eq. (11), note that the prefactor 1/
√

n

of the Bessel function in the numerator of G(ω) cancels the
corresponding prefactor that accompanies the denominator.
The remaining part of the Bessel function in the numerator will
then have the same parity with respect to n(ω) as the function
that appears in the denominator. Consequently, switching the
sign of n(ω) does not alter G(ω), indicating that the branch cuts
associated with n(ω) in the complex ω plane do not introduce
discontinuities into G(ω). The presence of

√
ω exp(iRω/c)

in the numerator of G(ω) is intended to eliminate certain
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undesirable features of the Hankel functions appearing in the
denominator. The function G(ω) is thus analytic everywhere
except at its poles, where its denominator vanishes. The poles,
of course, consist of ω = ω0, which is the frequency of the
initial EM field residing inside the spherical particle at t = 0,
and ω = ωq , which are the leaky-mode frequencies found by
solving Eq. (17)—or its TM mode counterpart. The zeros of
the refractive index n(ω), namely, ω = �1,2, do not become
poles of G(ω) because the numerator of G(�1,2) also equals
zero. At the poles ω = �3,4 of the refractive index, G(ω) is
undefined, but it is well behaved in the sense that the integral
of G(ω) around a small circle centered at ω = �3,4, whose

radius passes between consecutive poles, approaches zero as
the radius of the circle goes to zero. For this reason, one can
invoke Cauchy’s theorem in order to construct a leaky-mode
expansion for the dielectric sphere, even though the integrand,
G(ω), has nonisolated singularities at �3,4 (and also when
ω → ∞). These mathematical details will be addressed in a
forthcoming paper.

In the limit |ω| → ∞, where μ(ω) → 1 − (ωpm/ω)2 and
ε(ω) → 1 − (ωpe/ω)2, we find that G(ω) approaches zero
exponentially. Thus, the vanishing of

∮
G(ω)dω around a

circle of large radius Rc ensures that all the residues of G(ω)
add up to zero; that is,

√
ω0 exp(iRω0/c)J

�+ 1
2

[ω0n(ω0)r/c]

F (ω0)
+

∑
q

√
ωq exp(iRωq/c)J

�+ 1
2

[ωqn(ωq)r/c]

(ωq − ω0)F ′(ωq)
= 0. (19)

The initial field distribution J
�+ 1

2
[ω0n(ω0)r/c] may thus be expanded as the following superposition of all the leaky

modes:

J
�+ 1

2
[ω0n(ω0)r/c] =

∑
q

(ωq/ω0)
1
2 exp[iR(ωq − ω0)/c]F (ω0)

(ω0 − ωq)F ′(ωq)
J

�+ 1
2

[ωqn(ωq)r/c]. (20)

To incorporate into the initial distribution the denominator
√

kr , which accompanies all the field components in Eqs. (3)–(10),
we modify Eq. (20)—albeit trivially—as follows:

J
�+ 1

2
[ω0n(ω0)r/c]

√
ω0n(ω0)r/c

=
∑

q

(ωq/ω0)[n(ωq)/n(ω0)]
1
2 exp[iR(ωq − ω0)/c]F (ω0)

(ω0 − ωq)F ′(ωq)

J
�+ 1

2
[ωqn(ωq)r/c]√
ωqn(ωq)r/c

. (21)

The above formula is a central result of the present paper,
indicating that a general EM field distribution excited from
outside the cavity can be represented by a superposition
of leaky modes. Indeed, upon termination of the external
excitation, the field that remains within the cavity is, in
general, a superposition of functions similar to that appearing
on the left-hand side of Eq. (21), with the spectral weight
associated with each such function depending on its oscillation
frequency ω0. Thus, with the important caveat discussed
in the following paragraph, Eq. (21) provides an explicit
formula for computing the leaky-mode expansion coefficients
corresponding to the postexcitation evolution of the intracavity
field.

Without going into details, it must be pointed out that the
argument for the vanishing of the contour integral around a
large circle in the ω plane contains a couple of subtleties. One
is that the integration contour must pass between the poles that
represent the very resonances used for the expansion. While
the straightforward reasoning about the exponential decay of
the integrand cannot be applied to such a portion of the integral,
it can be shown that its contribution does indeed vanish in the
limit Rc → ∞ if our choice for G(ω) as given by Eq. (18) is
somewhat modified in such a way as to accelerate its approach
to zero when |ω| → ∞. The second issue is that, besides
ω → ∞ being an accumulation point for the singularities of
G(ω), there exist other such points, namely, the poles �3,4

of the Lorentzian refractive index; see Fig. 1. In this case, it
can be shown that the requirements for the series convergence

are less restrictive than those pertaining to ω → ∞. In fact,
one can introduce additional poles into G(ω) by multiplying
its denominator with (ω − �3)(ω − �4) and still obtain a
convergent series. These convergence issues are brought about
by the dispersion properties of the refractive index together
with the fact that n(ω) → 1 when |ω| → ∞, issues that,
to the best of our knowledge, have not been discussed in
the existing literature concerning leaky-mode expansion of
dispersive optical cavities. Unfortunately, a detailed exposition
of the convergence proof is beyond the scope of the present
paper and must be presented elsewhere. The bottom line is that
the convergence of the series can be guaranteed if the leaky-
mode expansion coefficients in Eq. (21) are multiplied by the
additional factor (ω0 − �3)(ω0 − �4)/[(ωq − �3)(ωq − �4)].

Taking advantage of the flexibility of G(ω), we now extend
the same treatment to the remaining components of the EM
field. For instance, if we choose

G(ω) =
√

ω exp (iRω/c) J
�+ 1

2
(kr)

ω(ω − ω0)(ω − �3)(ω − �4)μ(ω)F (ω)
, (22)

then G(ω) → 0 exponentially in the limit when |ω| → ∞,
resulting in a vanishing integral around the circle of large
radius Rc in the ω plane. We thus arrive at an alternative form
of Eq. (21), which is useful for expanding the field component
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Hr appearing in Eqs. (4) and (6); that is,

J
�+ 1

2
[ω0n(ω0)r/c]

μ(ω0)rω0
√

ω0n(ω0)r/c

=
∑

q

(ωq/ω0)[n(ωq)/n(ω0)]
1
2 exp[iR(ωq− ω0)/c]F (ω0)

(ω0− ωq)F ′(ωq)

× (ω0−�3)(ω0 − �4)

(ωq − �3)(ωq − �4)

J
�+ 1

2
[ωqn(ωq)r/c]

μ(ωq)rωq[ωqn(ωq)r/c]
1
2

. (23)

Similarly, if we choose

G(ω) =
√

ω exp(iRω/c)
[
krJ̇

�+ 1
2

(kr) + 1
2J

�+ 1
2

(kr)
]

ω(ω − ω0)(ω − �3)(ω − �4)μ(ω)F (ω)
,

(24)

it continues to be meromorphic (i.e., free of branch cuts), and
will have a vanishing integral over a large circle of radius Rc

in the limit when Rc → ∞. The relevant expansion of the field
components Hθ and Hϕ appearing in Eqs. (4) and (6) will then
be obtained from G(ω) of Eq. (24).

In this way, one can expand into a superposition of leaky
modes the various E- and H -field components that comprise
an initial distribution. It will then be possible to follow each
leaky mode as its phase evolves while its amplitude decays
with the passage of time.

As for the beam that leaks out of the cavity and into the
free-space region r > R, it can be shown that the fields grow
exponentially along the radial direction, but of course this
exponential growth terminates at r = ct , where the leaked
beam meets up with the tail end of the beam that was originally
reflected from the surface of the sphere (i.e., prior to the abrupt
termination of the incident beam at t = 0). The EM energy in
the region R < r < ct is just the energy that has leaked out
of the spherical cavity, with the exponential decline of the
field amplitude in time compensating for the expansion of the
region “illuminated” by the leaked beam.

Before concluding this section, a note concerning overcom-
pleteness might be in order. It is known that resonant modes are
subject to sum rules which make it possible to create nontrivial
linear combinations that sum up to zero [20,21]. Our method
also allows derivation of such sum rules. To this end it is
sufficient to remove the factor ω/(ω − ω0) from the function
G(ω). This will not modify the asymptotic behavior at infinity,
but it eliminates the contribution of the pole at ω0, thus giving
rise to an overcompleteness relation.

IV. NUMERICAL RESULTS

As pointed out earlier, the zeros ωq of the characteristic
function F (ω) appearing in Eq. (17) must be confined to
the lower half of the complex ω plane. This is because,
when the incident beam is removed, the time-dependence
factor exp(−iωqt) of the corresponding leaky modes inside
and outside the cavity can only decrease with time. Also,
considering that ε(−ω∗

q) = ε∗(ωq), and μ(−ω∗
q) = μ∗(ωq),

and n(−ω∗
q) = n∗(ωq), the zeros of F (ω) always appear in

pairs such as ωq and −ω∗
q . Consequently, leaky frequencies

appear in the third and fourth quadrants of the ω plane as
mirror images of each other.

Trivial leaky modes occur at ωq = �1m and �1e (with their
twins occurring at −ω∗

q = �2m and �2e), where n(�1,2) = 0.
Substitution into Eqs. (3)–(10) reveals that, for these trivial
leaky modes, which are associated with the zeros of the
refractive index n(ω), both E and H fields inside and outside
the cavity vanish. Finally, referring to the complex ω plane of
Fig. 1, note that when ω crosses (i.e., moves from immediately
above to immediately below) one of the branch cuts, n(ω)
gets multiplied by −1, which causes F (ω) of Eq. (17) to be
multiplied by ±i (depending on the value of � being even or
odd).

The contour plots in Fig. 2 show, within two segments of
the fourth quadrant of the ω plane, the zeros of Re[F (ω)]
in red (solid) lines and the zeros of Im[F (ω)] in blue
(dashed) lines. Both Re(ω) and Im(ω) are normalized by the
(arbitrarily chosen) reference frequency ωref = 1.216 × 1015

rad/s, which corresponds to the free-space wavelength λref =
1.55 μm. The chosen value of � for the plots of Fig. 2 is
10, the dielectric sphere has radius R = 1.55 μm, permeabil-
ity μ(ω) = 1.0, and the refractive index, n(ω) = √

ε(ω), is
governed by a single Lorentz oscillator having ωr = 2ωref ,
ωp = 5ωref , and γ = 0.02ωref . The fourth quadrant pole and
zero of n(ω) are thus located at �3e

∼= (2.0 − 0.01i)ωref and
�1e

∼= (5.385 − 0.01i)ωref , respectively. The parameter values
chosen here do not necessarily represent a realistic cavity such
as a fused silica microsphere. Nevertheless, we have chosen
these values with the following illustration in mind. Despite
being artificial, they preserve the “topology” of the resonant
pole distribution in the ω plane, while allowing a reasonable
visualization. The small size of the cavity, together with a
strongly lossy and dispersive medium, effectively isolates the
important features that we would like to show.

The points where the contours depicted in Fig. 2 cross
each other—several crossing points are circled in the plot—
represent the zeros of F (ω), which we have denoted by
ωq = ω′

q + iω′′
q and referred to as leaky-mode frequencies.

The region of the ω plane depicted in Fig. 2(a) contains the
fourth quadrant leaky-mode frequencies to the left of �3e; a
large number of such frequencies are seen to accumulate in
the vicinity of ω = �3e, where the coupling of the incident
light to the cavity is weak, and the damping within the sphere
is dominated by absorption losses. The region of the ω plane
depicted in Fig. 2(b) contains the fourth quadrant leaky-mode
frequencies to the right of �1e. The imaginary part ω′′

q of these
leaky frequencies is seen to acquire large negative values as
the corresponding real part ω′

q increases. No leaky frequencies
were found in the upper half of the ω plane, nor were there
any in the strip between �1e and �3e. As mentioned earlier,
symmetry considerations ensure that the poles in the third and
fourth quadrants are mirror images of each other. As will be
seen shortly, when the dielectric sphere is illuminated with a
real-valued excitation frequency ω, resonances occur in the
vicinity of ω = ω′

q , i.e., at and around the real parts of the
various leaky-mode frequencies.

Note that the leftmost zero crossing shown in Fig. 2(b)
represents a zero of the refractive index n(ω), which has
multiplicity equal to the order of the Bessel function associated
with the modal field. However, this zero of the function F (ω) is
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FIG. 2. Contours in the complex ω plane representing regions where Re[F (ω)] = 0 (solid red lines) and Im[F (ω)] = 0 (dashed blue
lines). The real and imaginary axes are normalized by the reference frequency ωref = 1.216 × 1015 rad/s. Where a solid red and a dashed
blue curve cross, F (ω) vanishes; these crossing points (some of them marked with small circles) correspond to TE leaky-mode frequencies
ωq = ω′

q + iω′′
q of the spherical cavity at the chosen value of � = 10. The spherical particle has radius R = 1.55 μm, permeability μ(ω) = 1.0,

and refractive index n(ω) = √
ε(ω) governed by a single Lorentz oscillator. The fourth quadrant pole and zero of n(ω) are, respectively, at

�3e
∼= (2.0 − 0.01i)ωref and �1e

∼= (5.385 − 0.01i)ωref .

canceled out by the numerator of G(ω), as can be readily seen
by expanding in the vicinity of the complex zero of n(ω). As
such, the leftmost zero crossing in Fig. 2(b) does not contribute
to the leaky-mode expansion.

To investigate the resonant behavior of the dielectric sphere
described in conjunction with Fig. 2, we pick a real-valued
frequency ω, then select a mode consisting of incoming and
outgoing Hankel functions outside the sphere, matched to a
Bessel function of the first kind residing inside. The resulting
equations do not depend on the azimuthal mode number m,
which indicates that, for a given integer �, the modes associated
with all values of m between −� and � are degenerate. Figure 3
shows the computed amplitude ratio of the E field inside the
sphere to the incident E field, plotted versus the normalized
excitation frequency ω/ωref . Here the E-field amplitude is
defined as the magnitude of E0 in Eq. (5). As before,
R = 1.55 μm, μ(ω) = 1.0, ε(ω) follows a single Lorentz
oscillator model (ωr = 2ωref, ωp = 5ωref, γ = 0.02ωref), and
the selected TE mode has � = 10. In the interval [�3e,�1e]
between the pole and zero of the refractive index (see Fig. 1),
the field amplitude inside the cavity is seen to be vanishingly
small. Outside this “forbidden” zone, the field has resonance
peaks at specific frequencies, and the ratio Einside/Eincident can
vary significantly between adjacent peaks and valleys. For the
chosen set of parameters in Fig. 3, the minimum resonance
frequency occurs at ω ∼= 0.762 53ωref .

A comparison of Fig. 2 with Fig. 3 reveals a close
relationship between the leaky-mode frequencies and the
resonances of the dielectric sphere. Resonances occur at or
near the (real-valued) frequencies ω = ω′

q , and the height and
width of a resonance line are, by and large, determined by the
decay rate ω′′

q of the corresponding leaky mode—unless the
leaky-mode frequency happens to be so close to the pole(s) of
the refractive index n(ω) that the strong absorption within the
medium would suppress the resonance. It must be emphasized
that the presence of a gap in the frequency domain [such as

that between ω = Re(�3e) and ω = Re(�1e) in the present
example] should not prevent the leaky modes from forming
a complete basis. This is because one expects, on physical
grounds, that the ensemble of leaky modes would carry all the
spatial frequencies needed to capture the various features of
an arbitrary initial EM field distribution.

For leaky TE modes, the radial dependence of the E

field inside and outside the dielectric sphere is given by

FIG. 3. Logarithmic plot of the ratio of the E field inside the
sphere to the incident E field, for a dielectric sphere of radius R =
1.55 μm at � = 10. The horizontal axis represents the normalized
excitation frequency ω/ωref . The refractive index n(ω) = √

ε(ω) of
the spherical particle is governed by a single Lorentz oscillator. The
fourth quadrant pole and zero of n(ω) are at �3e

∼= (2.0 − 0.01i)ωref

and �1e
∼= (5.385 − 0.01i)ωref , respectively. The EM field hardly

penetrates the dielectric sphere in the frequency interval between the
pole and zero of n(ω). Outside this “forbidden” interval, the E-field
amplitude ratio exhibits sharp peaks at certain frequencies, which is
indicative of resonant behavior.
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FIG. 4. The E-field amplitude inside and outside a solid dielectric sphere of radius R = 1.55 μm, plotted versus the normalized radial
coordinate r/R for three � = 10 TE modes. The real part of the field is shown in (a), while its imaginary part appears in (b). The solid black, dashed
red, and dash-dotted blue curves correspond, respectively, to ω/ωref = 0.762 53 + 0.001 28i, 0.938 779 + 0.001 99i, and 1.080 39 + 0.002 75i

(ωref = 1.216 × 1015 rad/s). The particle, whose permeability is μ(ω) = 1.0, has a refractive index n(ω) = √
ε(ω) governed by a single

Lorentz oscillator (ωr = 2ωref , ωp = 5ωref , and γ = 0.02ωref ).

E0J
�+ 1

2
(kr)/

√
kr and E1H

(1)

�+ 1
2

(k0r)/
√

k0r , respectively. Here

k(ω) = n(ω)ω/c and k0(ω) = ω/c. Plots of the E-field am-
plitude for several leaky � = 10 TE modes of a sphere of
radius R = 1.55 μm are shown in Fig. 4. The refractive index
of the dielectric material at the reference frequency ωref =
1.216 × 1015 rad/s is n(ωref) = 3.055 + 0.0091i. The fields
are plotted as functions of the normalized radial coordinate
r/R, with frames (a) and (b) depicting the real and imaginary
components of the E field. The solid (black) curve, the dashed
(red) curve, and the dash-dotted (blue) curve correspond to
ω/ωref = 0.762 53 + 0.001 28i, 0.938 779 + 0.001 99i, and
1.080 39 + 0.002 75i, respectively.

Figure 5 provides a comparison between the E field inside
a spherical cavity and its expansion in terms of the leaky
modes (R = 1.55 μm, � = 10 TE mode, ω = 1.8ωref). The

FIG. 5. Comparison of the E field inside a spherical cavity with its
expansion as a superposition of leaky modes (R = 1.55 μm, � = 10
TE mode, ω = 1.8ωref ). The real and imaginary parts of Einside(r)
are shown as solid lines—black and red (gray), respectively. The
superposed symbols (i.e., small solid circles) represent the result of
leaky-mode expansion,

∑
q Eleaky(r), composed of 100 terms.

solid black and solid red lines show, respectively, the real and
imaginary parts of the target solution, Einside(r), whereas the
symbols superposed on these solid lines represent the leaky-
mode expansion,

∑
q Eleaky(r), of the target function composed

of 100 terms. The convergence is seen to be rather poor near
the surface of the sphere (0.9 < r/R < 1.0).

The error of the leaky-mode expansion depicted in Fig. 5
(superposed on the function being expanded) illustrates that
the gap between the expansion and its target function, while
indiscernible at small radii, grows in the vicinity of the
boundary of the cavity. This behavior is generic, and a

FIG. 6. Computed Q factor versus the resonance frequency for a
solid dielectric sphere (R = 77.5 μm, μ = 1, n = 1.5) in the vicinity
of ωref = 1.216 × 1015rad/s. The leaky frequencies ωq = ω′

q + iω′′
q

are solutions of F (ω) = 0, which have been found numerically. The
ratio |ω′

q/ω
′′
q | is used as a measure of the cavity Q factor at the

excitation frequency ω = ω′
q . Shown are computed Q factors for

both TE and TM modes (solid blue squares for TE, open red circles
for TM) at several resonance frequencies of the dielectric sphere
corresponding to � = 340.
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manifestation of the fact that our leaky-mode expansion
converges rather slowly. In fact, adding hundreds or even
thousands of terms to the expansion only results in a minuscule
reduction in the residual error. We have traced this behavior
to the fact that the terms in the expansion do not enter
their asymptotic regime until their count is on the order of
1010. The practical consequence here is that, while a good
approximation can be achieved with a fairly small number of
terms, suppressing the error below a few parts in a thousand
becomes utterly impractical. That being said, one should keep
in mind that the expansion error is due primarily to those
basis functions that decay rapidly upon termination of the
excitation. In other words, due to the large imaginary parts ω′′

q

of their eigenfrequencies, the contribution of high-order leaky
modes will disappear almost instantly once the excitation is
terminated. If, for some applications, accuracy beyond a few
parts in a thousand turns out to be necessary, it is worth noting
that, with the asymptotic information about convergence rates
that can easily be determined for these series, it is highly likely
that convergence accelerating resummation methods can be
deployed.

For the remaining set of figures, we shall ignore the
dispersive nature of the dielectric host and simply assume
that μ(ω) = 1.0 and ε(ω) = 2.25 at and around the reference

frequency ωref = 1.216 × 1015rad/s (corresponding to the
vacuum wavelength λref = 1.55 μm). This is tantamount to
confining the frequency range of interest to �1m � ω � �3e.
Unlike the previous example in which the parameter selection
was driven by the visualization needs, the parameter values
in the following examples are comparable to those found in
actual experiments [1,2].

Figure 6 shows the resonances of a dielectric sphere of
radius R = 50λref and refractive index n = 1.5 for the � = 340
TE and TM modes. The contours of real and imaginary parts
of the characteristic equation F (ω) = 0 have been plotted in
the ω plane, as was done for a different set of parameters
in Fig. 2. Where the contours cross each other, the function
F (ω) vanishes, indicating the existence of a leaky mode at
the crossing frequency ωq = ω′

q + iω′′
q . The ratio |ω′

q/ω
′′
q | is a

measure of the Q factor of the spherical cavity at (or near) the
excitation frequency ω = ω′

q .
Shown in Fig. 6 are the computed Q factors of the

spherical cavity for both TE and TM modes at the various
resonance frequencies corresponding to � = 340. (Note that
the characteristic equation does not depend on m, which
indicates that, for a given integer �, the modes associated with
all m between −� and � are degenerate.) The lowest resonance
frequency occurs at ω ∼= 0.78ωref . The large values of Q seen

FIG. 7. Plots of the amplitude ratio of the E field inside the dielectric sphere (R = 77.5 μm, μ = 1, n = 1.5) to the incident E field for
the � = 340 spherical harmonic. The horizontal axis represents the excitation frequency ω normalized by ωref = 1.216 × 1015rad/s. (a) TE
mode. (b) TM mode. Note that the cutoff frequency for both modes is ω ∼= 0.78ωref , below which no resonances are excited. Above the cutoff,
in between adjacent resonances, the field amplitude inside the cavity drops to exceedingly small values. The occurrence of extremely large
resonance peaks in these plots is due to the assumed value of the refractive index n being purely real. (c) Close-up view of the resonance lines
of the glass ball for the � = 340 spherical harmonic, showing the TM resonances (dashed red lines) being slightly shifted away from the TE
resonances (solid black lines). (d) Magnified view of an individual TE resonance line centered at ωR = 1.002 07ωref .
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in Fig. 6 are a consequence of the fact that the refractive
index n is assumed to be purely real; later, when absorption is
incorporated into the model via the imaginary part of n, the Q

factors will drop to more reasonable values.
The direct method of determining the resonances of the

spherical cavity involves the computation of the amplitude
ratio Einside/Eincident for an incident Hankel function of type
2 (incoming wave) and a fixed mode number �. [As pointed
out earlier, the amplitude of each E field is defined as the
magnitude of the corresponding E0 in Eq. (5), with the radial
dependence of the inside field being given in terms of the
Bessel function J

�+ 1
2

(kr), while that of the incident field

outside the sphere involves the Hankel function H(2)
ν (k0r).]

Once again, the results are independent of the azimuthal mode
number m, as the modes associated with m = −� to � are
all degenerate. Figure 7 shows plots of Einside/Eincident for
the spherical cavity of radius R = 50λref , refractive index
n = 1.5, and mode number � = 340, at and around ωref =
1.216 × 1015rad/s; the results for both TE and TM modes are
presented in the figure. The resonances are seen to be strong,
with narrow linewidths.

Outside the resonance peaks and especially at lower
frequencies, it is seen that the coupling of the incident beam to
the cavity is extremely weak. The TE and TM modes are quite
similar in their coupling efficiencies and resonant line shapes,
their major difference being the slight shift of TM resonances
toward higher frequencies, as can be seen in Fig. 7(c). Figure
7(d) is a magnified view of the line shape for a single TE
resonant line centered at ω = 1.002 07ωref .

To gain an appreciation for the effect of the mode number
� on the resonant behavior of our spherical cavity, we show in
Fig. 8 the computed ratio Einside/Eincident for � = 10, 20, and
25. It is observed that, with an increasing mode number �, the
lowest accessible resonance moves to higher frequencies, and
that the Q factor associated with individual resonance lines
tends to rise.

FIG. 8. Excitation frequency dependence of the ratio of the E

field inside a glass sphere to the incident E field for � = 10 (solid
black), � = 20 (dashed blue), and � = 25 (dash-dotted red) TE
spherical harmonics.

FIG. 9. Similar to Fig. 6, except that the refractive index n = n′ +
in′′ of the dielectric sphere is now allowed to have a small nonzero
imaginary part, n′′, representing absorption within the material.

Finally, Fig. 9 shows computed Q factors (Q = |ω′
q/ω

′′
q |)

for a spherical cavity having R = 77.5 μm, μ = 1.0, n =
n′ + in′′, and � = 340. Setting n′ = 1.5 allows a comparison
between the results depicted in Fig. 6, where n′′ = 0, and
those in Fig. 9, which correspond to n′′ = 10−8 (blue squares),
10−7 (red circles), and 10−6 (black diamonds). These positive
values of n′′ account for the presence of small amounts of
absorption within the dielectric sphere. Compared to the case
of n′′ = 0, the resonance frequencies in Fig. 9 have not changed
by much, but the Q factors of the various resonances are
seen to have declined substantially. As expected, the greatest
drop in the Q factor is associated with the largest value
of n′′. This is a practically interesting finding, especially in
light of the previous result on the Q factors of an idealized
cavity, which could reach exceedingly high values. Here
we see that accounting for realistic values of optical loss
brings down the computed Q factor to the levels observed in
experiments [1,2]. This also indicates that the limiting factor
in the best spherical resonators available today is most likely
the medium properties rather than roughness and other cavity
imperfections as one might reasonably presume. Considering
that the measured absorption coefficients (e.g., n′′ ∼= 10−7 for
a fused silica microsphere in the visible optical range) are
comparable to the theoretical values of n′′ needed to bring
the Q factor of a perfectly spherical dielectric resonator to
within the range of the highest-Q factors that are currently
accessible to experiments, it is reasonable to conclude that
the Q-factor-limiting physical effect is in fact absorption
within the microsphere. Needless to say, scattering from
surface roughness and also deleterious effects of inclusions,
impurities, and material inhomogeneities could result in mode
mixing, which causes further reduction of the Q factor.
Nevertheless, the purity and the polish quality of existing
dielectric microspheres are such that their observed Q factors
indeed appear to be limited by the absorption coefficient n′′ of
the host material.
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V. CONCLUDING REMARKS

Leaky modes contain a wealth of information about the
resonant behavior of dielectric cavities, including the lifetimes
associated with the light trapped inside the cavity immediately
after the source of excitation is turned off. Listed below is
a summary of the main results of the present paper, with
emphasis placed not only on mathematical aspects but also
on the physical attributes of our findings.

(1) A dielectric or metallic sphere, when illuminated from
the outside or excited internally, contains EM fields. Once the
excitation is terminated, the trapped fields inside the sphere
decay by leaking out and/or by being absorbed within the
sphere. We have identified the complete set of leaky modes,
and shown the conditions under which a trapped field can be
expressed as a superposition of these leaky modes.

(2) We have proven the completeness of these leaky modes
under special circumstances, although completeness under
more general conditions remains to be demonstrated. We
have modeled the dielectric function ε(ω) = n2(ω) of the
spherical particle as a single Lorentz oscillator, thereby treating
dispersion and absorption of the material medium in a simple
yet physically realistic way. While we have assumed that the
sphere is surrounded by free space, the results can be readily
extended to the case of a surrounding dielectric medium.

(3) Our completeness proof rigorously accounts for re-
alistic dispersion effects, including absorption losses, the
existence of branch cuts associated with the Lorentz oscillator
model of the refractive index, and the fact that infinitely
many complex poles accumulate in the vicinity of the singular
point(s) of the refractive index.

(4) We did not invoke the Green’s function (or tensor)
that has been traditionally used to analyze this type of
problem. Instead, we relied on the exact solutions of Maxwell’s
equations to identify the leaky modes, then constructed
the modal expansion of an initial field distribution using a
straightforward application of the Cauchy theorem of complex
analysis; see, e.g., Eq. (19). The explicit formulas derived here
for the expansion coefficients allow easy evaluation of the
relative contributions to an arbitrary initial distribution (inside
the spherical particle) of the various leaky modes; see Eq. (23).

(5) With regard to the conventional Green’s function
approach, we note that one can certainly rewrite Maxwell’s
equations into an integral equation, and the boundary con-
ditions at infinity are carried by the choice of the Green’s
function. Usually the waves at infinity are either outgoing
or incoming, since, for these boundary conditions, Green’s
functions are easy to find. However, for the specific goal
of obtaining leaky-mode expansions of the fields, one also
needs to find the leaky modes, then express Green’s functions
as sums of the leaky modes. This can certainly be done at
a formal level, but there are two problems that have to be
faced. The first is to find an effective way to calculate the
coefficients of the expansion; this, in general, is not a simple
problem, and numerical methods might have to be deployed.
The second is that the question of convergence of the resulting
expansion must be treated separately, as there is nothing in
the Green’s function formulation that would guarantee the
convergence of the leaky-mode expansion. To the best of our
knowledge, the arguments given in favor of the convergence
in the literature do not constitute a rigorous proof, if only

because the question of accumulation points of the resonance
poles has so far not been analyzed within the Green’s function
framework.

(6) As a matter of fact, most works utilizing Green’s
functions seem to primarily target applications to cavity
perturbations rather than address questions of convergence
[8,22–27]. In contrast, the approach taken in the present
paper is to (i) find the leaky modes, (ii) find the explicit
expansion coefficients of the functions of interest with respect
to the modes, and (iii) decide on the convergence of the
series. Solving Maxwell’s equations using scattering boundary
conditions in conjunction with Cauchy’s theorem addresses the
three aforementioned goals in a well-designed, easy-to-use
package. Ours is a highly flexible approach in which the
design of the leaky modes and the corresponding expansion
coefficients are guided by the question of convergence. In fact,
rather than being some latecomer to the game, in our approach
convergence is actually a design tool.

(7) Our numerical results have intimated a close associa-
tion between resonant behavior and the leaky eigenmodes of
dielectric spheres. The fact that spherical harmonics with large
� values are associated with high-Q resonances hints at the
importance of electromagnetic angular momentum in relation
to the long lifetimes of the modes trapped inside these cavities.
In other words, there appears to be a connection between the
strength of the circular motion of EM energy inside a cavity
and the time it takes for this energy to leak out. We have
seen a similar relation between the azimuthal mode number
m and the cavity Q factor in the case of cylindrical cavities
[15]. In fact, when the radius R and the refractive index n of a
dielectric cylinder are the same as those of a sphere, and when
the mode number m for the cylinder is the same as the mode
number � for the sphere (m = � � 1), the plots of Q factor
versus resonance frequency for the two cavities are found to
be nearly identical.

(8) Leaky modes are often characterized as “unphysical”
because they seem to carry infinite energy. We have empha-
sized that the EM field distribution outside the sphere grows ex-
ponentially with radial distance, while decaying exponentially
with time. The exponential growth with distance, however, is
not unphysical, because the fields only extend to a distance
r = ct from the sphere’s surface, where t is the time elapsed
since the external and/or internal excitation of the spherical
particle was terminated. Considering that the leaky modes
exist only after the termination of the excitation, the outer tails
of the leaky modes within the surrounding medium do not
extend to infinity and, therefore, the well-known exponential
growth of the field amplitude with distance does not constitute
a violation of the law of conservation of energy. (Note that
the situation discussed here is completely analogous to that in
quantum mechanics; see, e.g., [28].)

(9) In Fig. 2, we presented a typical map of the leaky
frequencies ωq in the complex ω plane, and drew attention
to the singular points of this map, which are located at the
pole(s) and zero(s) of the refractive index n(ω) of the spherical
particle. It must be emphasized that, when the excited field has
a frequency close to the pole(s) of the refractive index, there
will be a large number of closely spaced leaky frequencies that
must be included in any physically meaningful expansion of
the initial field distribution.
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(10) We have provided several numerical examples, some
with artificial parameter values to emphasize the mathematical
aspects of the leaky-mode expansion (e.g., Figs. 2–5), and
some with physically realistic parameter values (e.g., Figs. 6–
9) in order to draw attention to the behavior of leaky modes in
problems of practical interest.

(11) Finally, it is interesting to note that small amounts of
absorption or loss can dramatically suppress the Q factors of
a solid dielectric sphere at large � and in the vicinity of the
cutoff frequency, as revealed by a comparison between Figs. 6
and 9. This finding indicates that the Q factors occurring in
practice might be actually limited by the material properties
rather than the particle’s surface quality.

In conclusion, the present paper has described a general
approach to analyzing and computing the leaky modes of
solid dielectric spheres. In Sec. III, we presented the outlines
of a completeness proof for expanding certain initial field
distributions as a sum over leaky modes. Mathematical
details and some of the subtleties associated with the series
convergence were either skipped over or mentioned only
briefly. These subtleties, which revolve around the behavior
of the accumulated poles of the function G(ω) of Eq. (18)
when ω approaches the poles �3,4 of the refractive index n(ω),

and also when ω → ∞, will be the subject of a forthcoming
mathematics-oriented paper.
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APPENDIX

We show that F (ω) of Eq. (17) approaches a constant when
ω → 0. In the limit z → 0, we have

Jν(z) → (z/2)ν

(ν + 1)
. (A1)

Yν(z) → (z/2)ν

tan (νπ )(1 + ν)
− (z/2)−ν

sin (νπ )(1 − ν)
,

(ν �= an integer). (A2)

Therefore, when ω → 0, considering that k0 = ω/c → 0,
we will have

· 

0 0

0

0

(A3)

The identity (x + 1) = x(x) has been used in the above derivation. We may now invoke the identity ( 1
2 + x)( 1

2 − x) =
π/ cos(πx) to arrive at

limω→0F (ω) = i[
√

μ(0)ε(0) ]�+
1
2 [1 + � + �μ(0)]/

[(
� + 1

2

)
π

]
. (A4)

It is seen that F (ω) has no poles at ω = 0, which indicates that, in the vicinity of ω = 0, the function G(ω) is not singular.
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