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Pseudo-Hermitian Landau-Zener-Stückelberg-Majorana model
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We derive the analytical solution of the model of a two-state system interacting with an external coherent field,
in which the Hamiltonian is pseudo-Hermitian. We describe in detail the non-Hermitian generalization of the
famed Landau-Zener-Stückelberg-Majorana model, but similar generalizations can be derived in a very simple
fashion for the other analytically soluble two-state models. The analytical solutions possess a non-Hermitian
dynamical invariant, which replaces the probability conservation condition in the Hermitian case. Implementations
in waveguide optics and nonlinear frequency conversion are suggested.
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I. INTRODUCTION

In many experiments in quantum and optical physics, a two-
state transition is sufficient to describe the essential changes
in the state of the system. The coherent two-state dynamics
is studied extensively in relation to many areas of physics,
including nuclear magnetic resonance [1], coherent atomic
excitation [2], atomic collisions [3], quantum information
processing [4], and polarization optics [5], to mention just
a few. There are several exactly soluble nonresonant two-state
models, including the Rabi [6], Landau-Zener-Stückelberg-
Majorana (LZSM) [7], Demkov-Kunike [8], Demkov [9],
Nikitin [10], and Carroll-Hioe [11] models. Their significance
derives from the ability to design simple recipes for control of
the transition probability and, more generally, of the entire
propagator. Moreover, they allow one to obtain physical
insight into the dynamics and the explicit dependence on the
interaction parameters. In particular, one can quantify such
important features as the behavior of the oscillation frequency
and the amplitude of the Rabi oscillations, the degree of
power broadening, the presence or absence of excitation
sidebands, etc.

In recent years, there has been growing interest in the
use of non-Hermitian (NH) Hamiltonians [12], especially in
the context of PT -symmetric systems [13]. It was shown,
for instance, that such systems can produce a faster-than-
Hermitian evolution in a two-state quantum system, while
keeping the eigenenergy difference fixed [14]. NH extensions
have been presented on the LZSM model [15], and some
schemes for the realization of PT symmetry have been
proposed [16]. Recently, an approximation of the adiabatic
condition for NH systems was also derived [17]. Finally,
NH Hamiltonians have been used as shortcuts to adiabatic
processes [18].

A very interesting (from a practical point of view) subclass
of the NH Hamiltonians is the so-called pseudo-Hermitian
Hamiltonians. An operator H is called pseudo-Hermitian if
there exists a Hermitian operator η, such that

ηHη−1 = H†. (1)

Very recently, the dynamical invariants of a pseudo-Hermitian
Hamiltonian have been explicitly derived in a closed form
[19]. Examples of practical applications of pseudo-Hermiticity
include a description of spinor fields in gravitational Kerr fields

[20], optical microspiral cavities [21], microcavities perturbed
by particles [22], modeling a possible discrepancy between
experiment and the standard model value of the muon’s
anomalous g-factor [23], describing Maxwell’s equations in
pseudo-Hermitian form [24], describing a weak backscattering
between counterpropagating traveling waves in a general open
quantum system [25], modeling the propagation of light in a
perturbed medium [26,27], etc. For many other applications,
which include quantum cosmology, magnetohydrodynamics,
and quantum chaos, see Ref. [28].

To be specific, we focus on a couple of experimental
implementations wherein NH Hamiltonians emerge: quantum
and classical optics. The application of NH Hamiltonians in
quantum physics apparently violates the laws of quantum me-
chanics, which require that the Hamiltonian must be Hermitian
in order to obtain a real energy spectrum, probability con-
servation, and unitary evolution. However, a NH Hamiltonian
usually describes an open subsystem of a larger system, and the
latter is described by a Hermitian Hamiltonian. The algebraic
separation of the subsystem from the full system, e.g., by
adiabatic elimination, may give rise in a NH Hamiltonian.
The probability nonconservation in the subsystem naturally
reflects its interaction with the larger system and the ensuing
outflow or inflow of population. Another example of NH
Hamiltonians is the phenomenological inclusion of decay rates
in the Schrödinger or Bloch equation.

In classical optics, NH Hamiltonians emerge naturally, e.g.,
in nonlinear frequency conversion. There the physical reason
for the emergence of NH behavior is the undepleted pump
approximation used, in which the pump field is considered as
an infinite source of energy. Another example of NH behavior
is guided-wave optics, in the case when light travels in opposite
directions in two coupled waveguides.

In this paper, we demonstrate how a certain type of pseudo-
Hermitian two-state problem can be solved by using the
Hermitian solution after a certain symmetrization procedure.
We apply this method to the special case of the LZSM model,
but the same approach is suitable for any two-state model.

The paper is organized as follows. In the next section,
we introduce the pseudo-Hermitian generalization of the
LZSM model and we derive the exact analytical solution
for the propagator. In Sec. III, we generalize our method to
other two-state models, and we show that it can be applied
to generalize any Hermitian two-state problem. We discuss
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possible physical implementations in Sec. IV. Finally, the
conclusions are summarized in Sec. V.

II. LANDAU-ZENER-STÜCKELBERG-MAJORANA
MODEL

A. The model

The model that we consider is for a coupled two-state quan-
tum system, described by the ordinary differential equations
for the probability amplitudes c1 and c2 of the two states,

i
d

dt
c1(t) = −1

2
�(t)c1(t) + 1

2
�(t)c2(t), (2a)

i
d

dt
c2(t) = 1

2
k�(t)c1(t) + 1

2
�(t)c2(t), (2b)

where �(t) is the coupling (assumed real) between the two
states, �(t) is the frequency detuning, and the parameter k

brings asymmetry in the system and makes the Hamiltonian
non-Hermitian. If k is real, the Hamiltonian is pseudo-
Hermitian, while if k is complex, it has a more general NH
nature. In this paper, for simplicity and due to implementation
feasibility, we will only focus on real values of k, but most of
the results are also valid for complex k.

In the LZSM model [7], we have a constant coupling and a
linear detuning,

�(t) = �0, �(t) = β2t, (3)

where �0 and β are real constants. We consider a finite time
duration, which means that the coupling lasts from some initial
moment ti until some final moment tf , and we will express
the solution in terms of the evolution matrix U(tf ,ti), which
connects the initial and final amplitudes,

c(tf ) = U(tf ,ti)c(ti), (4)

where c(t) = [c1(t),c2(t)]T . For the NH model, which we
consider, the evolution matrix is not unitary.

B. Exact solution

To derive the solution, it is convenient to introduce the
parameters

τ = βt√
2
, α =

√
k �0√
2 β

. (5)

Next, we decouple Eqs. (2) by repeated differentiation and
obtain the following second-order equation for c1(τ ):

d2

dτ 2
c1(τ ) + (α2 + τ 2 − i)c1(τ ) = 0. (6)

The solution of this equation is expressed in terms of the
parabolic cylinder (Weber) function Dν(z) [29] as

c1(τ ) = ADν(z) + BDν(−z), (7)

where A and B are integration constants and

ν = 1
2 iα2, z = βte−iπ/4. (8)

The solution for c2(τ ) can be obtained from here and Eq. (2),
and is

c2(τ ) =
√

k α√
2

e−iπ/4[−ADν−1(z) + BDν−1(−z)]. (9)

The constants A and B are to be found from the initial values
c1(τi) and c2(τi) and read

A = 
(1 − ν)√
2π

[
Dν−1(−zi)c1(τi)

−
√

2√
k α

eiπ/4Dν(−zi)c2(τi)

]
, (10a)

B = 
(1 − ν)√
2π

[
Dν−1(zi)c1(τi) +

√
2√

k α
eiπ/4Dν(zi)c2(τi)

]
.

(10b)

After some simple algebra, the evolution matrix elements
acquire the form

U11 = 
(1 − ν)√
2π

[Dν−1(−zi)Dν(zf ) + Dν−1(zi)Dν(−zf )],

(11a)

U12 = 
(1 − ν)

α
√

kπ
eiπ/4[Dν(zi)Dν(−zf ) − Dν(−zi)Dν(zf )],

(11b)

U21 = α
√

k 
(1 − ν)

2
√

π
e−iπ/4[Dν−1(zi)Dν−1(−zf )

−Dν−1(−zi)Dν−1(zf )], (11c)

U22 = 
(1 − ν)√
2π

[Dν(−zi)Dν−1(zf ) + Dν(zi)Dν−1(−zf )].

(11d)

If we compare these results with the propagator of the
Hermitian LZSM model [30], we notice that the elements U11

and U22 in our solution are the same as for the Hermitian case
with the substitution � → �

√
k. However, the U12 and U21

elements possess also an additional nontrivial loss and gain
factor of

√
k.

The probabilities Pj→l , starting from state j to end up in
state l, are

Pj→l = |Ulj |2. (12)

In Fig. 1 we plot the transition probability time evolution
for different values of the parameter k. From the left frames,
we notice the following:

(i) For the Hermitian case, k = 1, the probability sum is
conserved,

P1→1 + P1→2 = 1. (13)

(ii) For k = −1, it is their difference that is conserved,

P1→1 − P1→2 = 1. (14)

From the right frames, we notice the following:
(i) For k < 1, a probability loss occurs from the system,

P1→1 + P1→2 < 1. (15)
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FIG. 1. Transition probabilities P1→1 and P1→2 as a function of
scaled time for different values of the parameter k and �0 = β.

(ii) For k > 1, a probability gain takes place,

P1→1 + P1→2 > 1. (16)

C. Symmetric crossing

In a way similar to the Hermitian LZSM model, it is
convenient to derive the asymptotic behavior of the transition
probabilities for large values of the time parameter. To do this,
we use the large-argument asymptotics of the Weber function,

Dν(z) ∼ zνe−z2/4

×
[

N∑
n=0

(− 1
2ν

)
n

(
1
2 − 1

2ν
)
n

n!
( − 1

2z2
)
n

+ O(|z2|−N−1)

]
(

|arg(z)| <
3π

4
,ν fixed,|z| → ∞

)
, (17)

where (a)n = 
(a + n)/
(a) is Pochhammer’s symbol. In
the case of a symmetric time interval (τi = −τ, τf = τ ), the
asymptotic behavior of the transition probability reads

P1→1 = P2→2 ≈ e−πα2 + 2α

τ
e− 1

2 πα2
√

1 − e−πα2 cos ξ,

(18a)

P1→2 ≈ k(1 − P1→1), (18b)

P2→1 ≈ 1

k
(1 − P1→1), (18c)

where

ξ = α2

2
ln 2τ 2 + τ 2 + π

4
+ arg

[



(
1 − i

α2

2

)]
. (19)

For an infinite time duration (τ → ∞), as in the original
LZSM model, we find

P1→1 = P2→2 ≈ e−πα2
, (20a)

P1→2 ≈ k(1 − e−πα2
), (20b)

P2→1 ≈ 1

k
(1 − e−πα2

). (20c)

FIG. 2. Transition probabilities P1→1 and P1→2 as a function of
Rabi frequency �0 for different values of the parameter k and tf =
−ti = 20/β. The dashed lines represent the corresponding asymptotic
probabilities.

A few important conclusions follow from here. In the Her-
mitian limit k = 1, we recover the well-known probabilities in
the LZSM model. In the NH regime, the probabilities are not
confined in the range [0,1]. For example, for k > 1 it may occur
that P1→2 > 1, while for k < 1 it may occur that P2→1 > 1.
Moreover, the transition probabilities P1→2 and P2→1 are not
equal for k �= 1: their ratio is k2. In other words, the probability
of transition from state 1 to state 2 is different from the
probability of transition from state 2 to state 1. However, the
no-transition probabilities P1→1 and P2→2 are equal, regardless
of the value of k. Moreover, these no-transition probabilities
do not depend on k and are the same as in the Hermitian case.

We also note that the probability conservation identities
P1→1 + P1→2 = 1 and P2→1 + P2→2 = 1 are not fulfilled for
k �= 1. Instead, the relations

kP1→1 + P1→2 = k, kP2→1 + P2→2 = k (21)

are satisfied. These are the dynamical invariants of the NH sys-
tem, which replace the probability conservation relations [19].

In Fig. 2 we plot the transition probability as a function
of the Rabi frequency for different values of the parameter k.
For k = −1, we notice that there is an exponential growth of
the probabilities, which is also clearly seen from Eqs. (20),
because when k is negative, α2 is also negative.

D. Half-crossing

In a similar manner, one can derive the half-crossing
probabilities (τi = 0,τf → ∞), which are

P1→1 = P2→2 ≈ 1

2

(
1 + e− 1

2 πα2)
, (22a)

P1→2 ≈ k

2

(
1 − e− 1

2 πα2)
, (22b)

P2→1 ≈ 1

2k

(
1 − e− 1

2 πα2)
. (22c)

In Fig. 3 we plot the half-crossing transition probability
as a function of the Rabi frequency for different values of
the parameter k. As in Fig. 2, again we notice that the NH

013845-3



BOYAN T. TOROSOV AND NIKOLAY V. VITANOV PHYSICAL REVIEW A 96, 013845 (2017)

FIG. 3. Transition probabilities P1→1 and P1→2 as a function
of Rabi frequency �0 for different values of the parameter k and
ti = 0; tf = 20/β. The dashed lines represent the corresponding
asymptotic probabilities.

conservation laws are fulfilled, and an exponential growth
of the probabilities takes place in the case of negative k.
We also note that the asymptotic solution fits quite well the
exact solution, except for the oscillations in the curves, which
can be described by keeping another term in the asymptotic
expansion.

III. GENERALIZATION TO OTHER MODELS

The procedure, which we applied to the LZSM model, could
be applied to any exactly soluble two-state model. To do this,
we write the Hamiltonian of the system as a 2 × 2 matrix,

H(t) = h̄

2

[−�(t) �(t)
k�(t) �(t)

]
. (23)

To derive the propagator, we make a simple transformation in
the amplitude,

c2 →
√

kc2, (24)

which leads to a symmetrization of the Hamiltonian, and it
becomes

H(t) = h̄

2

[ −�(t)
√

k�(t)√
k�(t) �(t)

]
. (25)

Now if the solution of the Schrödinger equation for this
Hamiltonian is given by the propagator

U =
[
U11 U12

U21 U22

]
, (26)

then the solution for the nonsymmetric Hamiltonian (23) is

U =
[

U11 U12/
√

k

U21

√
k U22

]
. (27)

In this way, one can use the existing solutions for the Hermitian
two-state models to derive the non-Hermitian generalizations.

We note here that if k < 0, the Hamiltonian in Eq. (25) is
still non-Hermitian. Nevertheless, as we shall see, we can still
use the results for the Hermitian two-state problems. To do
this, we proceed as follows. First, we find the propagator for

the two-state Hermitian Hamiltonian,

H(t) = h̄

2

[−�(t) �(t)
�(t) �(t)

]
, (28)

which in many cases is well known and has been derived in
the literature. Next, we replace in the solution � with

√
k�.

Finally, we add the
√

k factors in the off-diagonal elements of
the propagator, as shown in Eq. (27).

It has been shown in Ref. [19] that a pseudo-Hermitian
Hamiltonian possesses a set of invariants, which our solutions
must keep fixed. For a 2 × 2 Hamiltonian, there is one
independent invariant, which is

Tr(ηρ) = kPj→1 + Pj→2 = const (j = 1,2). (29)

Since there is a simple connection between the propagator of
the pseudo-Hermitian system and a propagator of a Hermitian
system, it is trivial to prove that this equation is satisfied by
our solution.

IV. PHYSICAL IMPLEMENTATION

Non-Hermitian Hamiltonians can be implemented in a
number of physical systems. We will describe two cases.

A. Guided wave optics

One interesting application of the pseudo-Hermitian models
is in the area of guided-wave optics [26]. If we consider two
electromagnetic modes, traveling through a medium in the
opposite directions, the complex amplitudes A and B of the
two modes obey the two coupled equations

i
dA

dz
= κeiφe−i�zB, (30a)

i
dB

dz
= −κe−iφei�zA, (30b)

where κ(z) is a real coupling function of the propagation
direction z, � is a real phase mismatch, and φ(z) is a real
phase. These equations are derived within the framework
of the coupled-mode theory [26]. After a simple phase
transformation of the amplitudes, one can easily obtain the
Hamiltonian of Eq. (23) for k = −1, if z is considered as the
“time” variable.

The dynamical invariant for this system, which replaces the
probability conservation for a Hermitian Hamiltonian, reads
[cf. Eq. (29) for k = −1]

P1→2 − P1→1 = const. (31)

The LZSM model, as well as other models, can be imple-
mented by spatially varying the propagation constants of the
waveguides by using a photoinduction technique [31].

B. Sum-frequency generation

Another useful application is in the sum-frequency gen-
eration (SFG) process. In this nonlinear optical process, we
mix a weak signal with frequency ω1 with a strong signal
with frequency ω2 to convert the ω1 signal into a signal
with frequency ω3 = ω1 + ω2. If we denote the amplitudes
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of the signals with frequencies ω1 and ω3 by A1 and A3, in
the undepleted-pump approximation (A2 ≈ const) they satisfy
the following equation [27]:

i
d

dz
A = HA, (32)

where A = [A1,A3]T and

H =
[−�/2 K1(z)

K3(z) �/2

]
. (33)

Here � is the phase mismatch and Kj ∝ ω2
jχ

(2)(z), where
χ (2) is the nonlinear susceptibility of the crystal, and j = 1,3.
We see from this equation that if ω1 �= ω3, the couplings K1

and K3 are different in magnitude, and the pseudo-Hermitian
solutions can be applied.

The dynamical invariants are given by Eq. (29). We note
that the NH behavior of the SFG equations above stems from
the undepleted-pump approximation used, in which the pump
field is considered as an infinite source or sink of energy.
The LZSM behavior can be implemented by spatially varying

the phase mismatch by using an aperiodically poled nonlinear
crystal, as in recent experiments [32].

V. DISCUSSION AND CONCLUSIONS

In this work, we derived analytical solutions for a special
type of pseudo-Hermitian generalization of the two-state
problem. We focused on the LZSM model, but we also showed
how to derive the solution for the generalizations of any two-
state problem. Several practical applications were considered,
namely in waveguide optics and sum-frequency generation.
Finally, we note that, because of practical feasibility, we have
assumed only real values of the asymmetry parameter k, which
lead to a pseudo-Hermitian Hamiltonian. However, most of
the derived formulas are also valid for complex values of k, in
which case the Hamiltonian has a more general non-Hermitian
form.
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