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Remote polarization-entanglement generation by local dephasing and frequency up-conversion
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We introduce a scheme for remote entanglement generation for the photon polarization. The technique is
based on transferring the initial frequency correlations to specific polarization-frequency correlations by local
dephasing and their subsequent removal by frequency up-conversion. On fundamental level, our theoretical results
show how to create and transfer entanglement, to particles which never interact, by means of local operations.
This possibility stems from the multipath interference and its control in frequency space. For applications, the
developed techniques and results allow for the remote generation of entanglement with distant parties without
Bell state measurements and open the perspective to probe frequency-frequency entanglement by measuring the
polarization state of the photons.
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I. INTRODUCTION

The study of light frequency has had a key role in the
development of modern physics. Even the first observations
of quantum effects such as blackbody radiation and the
photoelectric effect relied on spectroscopic studies. Still
nowadays frequency is one of the most utilized degrees
of freedom (DOF) of light in photon based technologies.
Indeed, frequency multiplexing of information is crucial
for classical telecommunications and modern fluorescence
imaging techniques, and recently a lot of effort has been
put in exploiting the frequency DOF also for quantum-based
information technologies [1–6].

Photonic architectures are a natural candidate for realizing
quantum networks since photons are fairly insensitive to
environmental noise, they are easily manipulated, and efficient
detection methods are readily available. However, the realiza-
tion of future quantum networks requires reliable long-distance
transmission of quantum information and entanglement. Al-
though photons are the optimal quantum information carriers
in long-distance quantum communication, the polarization
DOF, which is most often utilized for processing the quantum
information, is sensitive to noise in free space and optical
fibers. Since other DOFs are less fragile to such noise,
multi-DOF hyperentangled quantum networks have been
suggested as a more reliable solution for quantum information
transmission [7–10].

For the operation of multi-DOF quantum networks, trans-
ferring entanglement between the different DOFs is crucial
[11]. In this paper we explore the possibility to trans-
fer frequency entanglement to the polarization DOF after
transmission of photons, thus allowing remote entangle-
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ment generation for the photon polarization. The protocol
is performed in two steps: first the polarization DOF is
coupled with the frequency in a local birefringent medium
realizing local dephasing noise. Then, erasure of which fre-
quency information, achievable via local frequency conversion
[12–14], is performed. Besides the ideal case with dis-
crete color (frequency bin) entanglement, we also explore
the possibility of using continuous frequency entanglement
which is naturally present in spontaneous parametric down-
conversion (SPDC) experiments as a consequence of energy
conservation. Figure 1 displays schematically the basic ideas
and corresponding optical setup.

The paper is structured as follows: Section II describes
theoretically the optical setup for realizing the protocol.
In Sec. III the ideal case with discrete color entanglement
is presented and the connection with quantum erasure is
discussed. Section IV explores the possibility of using contin-
uous frequency entanglement for the creation of polarization
entanglement and Sec. V summarizes the results and discusses
some future directions.

II. GENERAL FORMALISM OF THE OPTICAL SETUP

We consider a pair of photons subjected to local birefringent
environments [15,16]. The same setup has also been used
recently to study and implement nonlocal memory effects
[17–19].

The polarization degree of freedom of the photons con-
stitutes the two-qubit open system while the continuous
frequency degree of freedom of each photon forms the local
environments. A common source of photon pairs is based
on SPDC, which allows one to create and to control the
amount of initial entanglement between the frequencies of
the two photons—that is, between the two environments in our
scheme—by controlling the properties of the down-conversion
pump. The two photons created in SPDC travel along two arms,
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FIG. 1. A schematic picture of the protocol and corresponding
optical setup. (a) The state after parametric down-conversion. The
polarization state (black circles) is factorized and the frequency
state (grey circles) is entangled. See Eqs. (1) and (2). (b) The
polarization is coupled with the frequency in a quartz plate. See
Eq. (11). (c) The interaction time is fixed. See Eq. (16). (d) Parametric
up-conversion erases the frequency information and produces the
entangled polarization state. See Eq. (17).

which we label by a and b, and for the total system we have
initially a polarization-frequency product state

|�(0)〉 = |ψ(0)〉 ⊗
∫ ∫

dωadωbg(ωa,ωb)|ωa,ωb〉, (1)

where g(ωa,ωb) is the joint probability amplitude of finding a
photon with frequency ωa in arm a and a photon with frequency
ωb in arm b, with the corresponding joint probability distri-
bution P (ωa,ωb) = |g(ωa,ωb)|2. Since one of our motivations
is to develop a technique for remote creation of polarization
entanglement, we choose as initial state a polarization product
state

|ψ(0)〉 = 1
2 (|Ha〉|Hb〉 + |Ha〉|Vb〉 + |Va〉|Hb〉 + |Va〉|Vb〉),

(2)

where H (V ) corresponds to horizontal (vertical) polarization.
This state can be created, e.g., in type I down-conversion where
both of the created photons have the same polarization which
is orthogonal to the pump polarization [20–22]. The produced
polarization product state can be further manipulated for each
of the photons with wave plates.

The local system-environment—or polarization-
frequency—interaction is obtained by inserting quartz
plates along each arm. Due to birefringence in quartz plates,
polarization and frequency of each photon interact with a

local interaction Hamiltonian

Ĥi = −
∫

dωi ωi(nH |Hi〉〈Hi | + nV |Vi〉〈Vi |) ⊗ |ωi〉〈ωi |,
(3)

where i denotes one of the arms a or b and nH (V ) is the index of
refraction for the horizontal (vertical) polarization component.
Note that here by the term “local” we mean local interaction of
the polarization of each photon with the frequency of the same
photon, and not local operations on the polarization Hilbert
space of each photon. Therefore the total Hamiltonian acting
on the pair can be written as Ĥ = Ĥa ⊗ Îb + Îa ⊗ Ĥb which
can nevertheless lead to a nonlocal dynamical map for bipartite
open systems when initial correlations within the composite
environment are present [17].

After an interaction time τ in each arm, the total system
state reads

|�(τ )〉 = 1

2

∫ ∫
dωadωbg(ωa,ωb)(eiτnH (ωa+ωb)|Ha〉|Hb〉

+ eiτnV (ωa+ωb)|Va〉|Vb〉 + eiτ (nH ωa+nV ωb)|Ha〉|Vb〉
+ eiτ (nV ωa+nH ωb)|Va〉|Hb〉) ⊗ |ωa,ωb〉. (4)

It is important to note here that the total system state, and
the polarization state when tracing over the frequency, depend
crucially on the joint initial frequency amplitude distribution
g(ωa,ωb). The two extreme cases correspond to (i) having
fully anticorrelated initial frequencies for the photons, i.e.,
ωa + ωb = ω0 where ω0 is the frequency of the pump, and
(ii) completely uncorrelated frequencies (wide SPDC pump).
For the first case, it is easy to see from the right-hand
side in the above equation that, when tracing over the
frequency, the polarization components |Ha〉|Hb〉 and |Va〉|Vb〉
retain well-defined and precise relative phase between them
throughout the time evolution, since ωa + ωb = ω0, whereas
the polarization components |Ha〉|Vb〉 and |Va〉|Hb〉 dephase.
For the second case, when there are no initial correlations
between the frequencies of the photons, all polarization
components contribute to dephasing. Obviously, in both of
the cases during time evolution, the local interactions induce
correlations between polarization and frequency.

Our aim is now to see whether we can, after the local de-
phasing interactions, create entanglement between the qubits
by removing the generated system-environment correlations.
Indeed, we can use up-conversion to modify the frequency
distributions of the photons, and at the same time remove the
polarization-frequency correlations. However, a considerable
challenge here is to design a scheme which allows the photon
pairs having only polarization components |Ha〉|Hb〉 and
|Va〉|Vb〉 in Eq. (4) to be up-converted while not up-converting
the components |Ha〉|Vb〉 and |Va〉|Hb〉.

For this purpose, we consider local frequency up-
conversion of each of the photons; i.e., both photons have their
own laser pump driving the up-conversion. For the calculations
below, we assume that the shape of the pumps for each photon
has the same structure and that the up-conversion process is
local. Since we are interested in only those photons which
do get up-converted, we do not use the full Hamiltonian to
describe the process but deal with an operator corresponding
to the matrix element of the Hamiltonian coupling the initial
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states into the up-converted states. Since we deal with single
photons locally, the up-conversion process can be described
with a local operator

Ôi =
∫

dνi P (νi)|ωi + νi〉〈ωi |. (5)

Here, i takes values a or b corresponding to the two arms,
and the probability distribution P (νi) for the frequency of the
laser pumps also describes the coupling strength or efficiency
of the up-conversion process. This operator maps a given
frequency ωi of the photon in arm i to frequency ωi + νi .
If we assume that the average of the local single photon
frequency distribution P (ωi) before the up-conversion and
the average of the up-conversion pump distribution P (νi) are

equal, but the width of the latter is much larger the former,
then after the up-conversion the local frequency distributions
of the photons are identical. Moreover, since the frequency of
the up-converted photon is random—within the limits of used
pump shapes and corresponding distributions—we have also
removed all the possible frequency correlations between the
photons in addition to removing the polarization-frequency
correlations. Note that frequency up-conversion has been used
before, e.g., to remove the frequency distinguishability of two
photons [12].

To make the description more rigorous and quantitative, let
us consider now in detail the influence of the up-conversion
process with operator (5) on the total state (4). Applying
operator Ô on both arms, the system-environment state after
local up-conversion in the two arms reads

|�(τ )〉u = 1

2

∫
dωa

∫
dωb

∫
dνa

∫
dνb g(ωa,ωb)P (νa)P (νb) × (eiτnH (ωa+ωb)|Ha〉|Hb〉 + eiτ (nH ωa+nV ωb)|Ha〉|Vb〉

+ eiτ (nV ωa+nH ωb)|Va〉|Hb〉 + eiτnV (ωa+ωb)|Va〉|Vb〉) ⊗ |ωa + νa,ωb + νb〉. (6)

Let us for the sake of convenience use a more compact notation in the rest of the paper by defining |Ha〉|Vb〉 ≡ |HV 〉. We can
obtain the reduced state of the open system (polarization) by tracing over the frequency (environment). Formally, the elements
of the polarization state density matrix can be therefore expressed as

〈λμ|ρ(τ )|λ′
μ

′ 〉
= 1

4

∫
dωa

∫
dω

′
a

∫
dωb

∫
dω

′
b g(ωa,ωb)g∗(ω

′
a,ω

′
b)exp[iτ (nλωa + nμωb − nλ

′ ω
′
a − nμ

′ ω
′
b)]E(ωa − ω

′
a,ωb − ω

′
b), (7)

where λ,μ,λ
′
,μ

′ = H,V and the function E is defined as

E(ωa − ω
′
a,ωb − ω

′
b)

=
∫

dνaP (νa)P (νa + ωa − ω
′
a)

×
∫

dνbP (νb)P (νb + ωb − ω
′
b). (8)

It is evident from Eq. (7) that the final polarization state
depends critically on the function E whose form is in
turn crucially connected to the efficiency of erasing prior
information on the frequency of the photons and polarization-
frequency correlations. If we assume a Gaussian frequency
distribution for the up-conversion pump, such that P (ν) =
exp[−(ν−ν0)2

2σ 2 ]/σ
√

2π , where σ and ν0 are the standard devi-
ation and the average, respectively, the function E takes the
form

E(ωa − ω
′
a,ωb − ω

′
b) = e

−(ωa−ω
′
a )2

4σ2

2σ
√

π
× e

−(ωb−ω
′
b

)2

4σ2

2σ
√

π
. (9)

We have now two extreme cases depending on whether σ 	
ωi − ω

′
i or σ 
 ωi − ω

′
i . In the former case, with a very wide

up-conversion pump, E can be approximated by

E ≈ 1/4πσ 2. (10)

In the opposite case, with a narrow pump, we have E(ωa −
ω

′
a,ωb − ω

′
b) ≈ δ(ωa − ω

′
a)δ(ωb − ω

′
b).

We have now presented the general expression for the
polarization state of the pair of photons after the local

dephasing processes followed by up-conversion. Before in-
troducing the results and discussing under which conditions
and how much entanglement can be generated remotely, we
will briefly present an idealized case. This illustrates the
basic mechanism and provides intuition on the reason why
entanglement generation is possible in our scheme.

III. IDEAL ERASURE WITH DISCRETE COLOR
ENTANGLEMENT

As an ideal case we consider frequency states where,
instead of the finite width frequency distributions, the state is
in a discrete color entangled state 1/

√
2(|ω1,ω2〉 + |ω2,ω1〉).

The preparation of such states has been studied in, e.g., [1].
With initial polarization product state (2) and after the local
dephasing interaction given by the Hamiltonian (3) the total
system state is

|�(τ )〉 = eiτnH ω0

2
(|ψ0(τ )〉 ⊗ (|ω1,ω2〉 + |ω2,ω1〉)

+ |ψ1(τ )〉 ⊗ |ω1,ω2〉 + |ψ2(τ )〉 ⊗ |ω2,ω1〉),
(11)

where

|ψ0(τ )〉 = 1√
2

(|HH 〉 + eiτ�nω0 |V V 〉), (12)

|ψ1(τ )〉 = 1√
2

(eiτ�nω2 |HV 〉 + eiτ�nω1 |V H 〉), (13)

|ψ2(τ )〉 = 1√
2

(eiτ�nω1 |HV 〉 + eiτ�nω2 |V H 〉). (14)

013844-3



S. HAMEDANI RAJA et al. PHYSICAL REVIEW A 96, 013844 (2017)

Here �n = nV − nH and ω0 = ω1 + ω2. Equation (11) shows
that the polarization subspace spanned by |ψ0(τ )〉 (|HH 〉,
|V V 〉) always remains factorized from the environment. In
contrast, the behavior of the subspace spanned by |ψ1,2(τ )〉
(|HV 〉, |V V 〉) is different. To realize this fact, consider
the inner product 〈ψ1(τ )|ψ2(τ )〉 = cos(t�n�), where we
have defined � = ω1 − ω2. Hence we have periodically
times τ = τc at which |ψ1(τc)〉 = |ψ2(τc)〉 and τ = τd where
|ψ1(τd )〉 = −|ψ2(τd )〉. Therefore, the total system states at
these two points of time are

|�(τc)〉 = eiτcnH ω0

2
[(|ψ0(τc)〉 + |ψ1(τc)〉)

⊗ (|ω1,ω2〉 + |ω2,ω1〉)] (15)

and

|�(τd )〉 = eiτdnH ω0

2
[|ψ0(τd )〉 ⊗ (|ω1,ω2〉 + |ω2,ω1〉)

+ |ψ1(τd )〉 ⊗ (|ω1,ω2〉 − |ω2,ω1〉)]. (16)

Obviously, the former is a product polarization-frequency
state. For the latter, the initial frequency entanglement has
been transferred to full polarization-frequency entanglement.
Note also that here the measurement of polarization would
reveal the full information about the frequency state. In order
to create polarization entanglement, we want to maintain only
the component including the state |ψ0〉 in Eq. (16). To this end,
consider an ideal up-conversion in which we map locally any
initial frequency of each of the photons to a fixed frequency
ωu. Therefore, all frequency vectors will be mapped to |ωu,ωu〉
and the total state of the pair changes to

|�(τd )〉 = eiτdnH ω0 [ |ψ0(τd )〉+|ψ1(τd )〉−|ψ1(τd )〉] ⊗ |ωu,ωu〉
= eiτdnH ω0 |ψ0(τd )〉 ⊗ |ωu,ωu〉, (17)

which includes fully entangled polarization state |ψ0(τd )〉 for
the open system.

The procedure depicted above can be seen as an erasure
procedure with entangled tags [23]. With a discrete color
entangled frequency state, the frequency acts as a which-way
tag for the polarization, and the entanglement transfer process
is similar to that described in [24]. However, here we have,
instead of one which-way tag, two entangled tags that locally
interact with the system. Such a setup allows, instead of
disentanglement erasure, a transfer of entanglement to an
initially uncorrelated system.

This process of entanglement generation is also linked to
interference of mode paths during the erasure process. As we
depict in Fig. 2, and according to Eq. (16), when we up-convert
the frequency of each photon to ωu, components including two
orthogonal vectors |ω1,ω2〉 + |ω2,ω1〉 and |ω1,ω2〉 − |ω2,ω1〉
interfere differently. While the first one leads to constructive
interference along the mode paths, the latter comes with
destructive interference of them, thus eliminating |ψ1(τ )〉
and allowing the generation of entanglement in the open
system.

The simplifications in the above scheme are twofold even
in the case of initially fully anticorrelated frequencies when
ω1 + ω2 = ω0. First, in the realistic case one has large number
of ω1 and ω2 pairs, whose sum is equal to ω0, since the
frequency distributions of the created photons in SPDC have

FIG. 2. Schematic description of interference of mode paths
for local up-conversion of both photons. (a) Frequency component
|ω1,ω2〉 + |ω2,ω1〉, which is associated to polarization state |ψ0〉
in Eq. (16). (b) Frequency component |ω1,ω2〉 − |ω2,ω1〉 which is
associated to polarization state |ψ1〉 in Eq. (16). After up-conversion
of only one of the photons, initial vectors have four mode paths in
the middle of the figure with corresponding signs due initial relative
phases. After the up-conversion of the other photon, mode paths
interfere constructively in (a) and destructively in (b).

finite but nonzero widths. Second, the up-conversion does not
produce single-frequency photons with |ωu〉 but rather photons
with a wide and continuous distribution. Therefore, efficient
entanglement generation with a more realistic model requires
total constructive and destructive interference paths consisting
of all possible ω1 and ω2 pairs for all possible ωu’s. Despite
this subtle issue, we show in the next section that efficient
entanglement generation is possible also with continuously
entangled photon pairs. It is also worth mentioning here that
having initially a mixed polarization state, instead of the pure
state given by Eq. (2), will influence the efficiency of the
process. However, note that since the dephasing decoherence
function is independent of the used initial states [17], changing
the relative phases, or magnitude of the probability amplitudes
in Eq. (2) does not influence the fundamental efficiency of the
scheme.

IV. CONTINUOUS FREQUENCY ENTANGLEMENT

In the previous section we showed how discrete color
entanglement can be transferred to the polarization DOF via
an erasure procedure. Now, we want to explore whether con-
tinuous frequency entanglement would allow for inter-DOF
transfer of entanglement. Such entanglement occurs naturally
between two photons after a down-conversion process due to
energy conservation.

To this end, let us study how the form of the initial frequency
distribution, e.g., its width, and the degree of initial frequency
correlations influence the amount of created polarization
entanglement. Moreover, we consider single and double peak
Gaussian distributions, that can be associated with Markovian
and non-Markovian dynamics respectively [25].

A. Double-peak initial frequency distribution

To have a double-peak distribution, we consider a sym-
metric sum of two bivariate Gaussian distributions with the
same variance and correlation coefficient but different mean
values. The first bivariate distribution is peaked at (1,2),
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while the other has its mean value at (2,1). We also have
� = 2 − 1 and 2 + 1 = ω0, where ω0 is the central
frequency of the SPDC laser pump. Therefore, the frequency
distribution of the initial state of the environment is (apart from
the normalization factor)

|g(ωa,ωb)|2 = P1(ωa,ωb) + P2(ωa,ωb), (18)

where we have defined

P1(2)(ωa,ωb) = 1

2π
√

det C
e− ( �ω−〈 �ω1(2)〉)T C−1( �ω−〈 �ω1(2)〉)

2 . (19)

Here, �ω = (ωa,ωb)T , 〈 �ω1〉 = (1,2)T , 〈 �ω2〉 = (2,1)T ,
and C is the covariance matrix

C =
(

δ2 kδ2

kδ2 δ2

)
, (20)

where k is the correlation coefficient and δ is the standard
deviation.

To have the probability amplitudes g(ωa,ωb), we take the
square root of the probability distribution defined in Eq. (18).
This is because the phases of the frequency amplitudes are
nonrandom [26] and we take the initial amplitudes to be real.
Therefore, the initial joint frequency probability amplitudes of
the photon pair are given by

g(ωa,ωb) =
√

P1(ωa,ωb) + P2(ωa,ωb). (21)

We consider the case where the peaks of the two Gaussians
given by P1(1,2) and P2(2,1) are well-separated, � 	
δ, and therefore we can make the approximation

g(ωa,ωb) ≈
√

P1(ωa,ωb) +
√

P2(ωa,ωb). (22)

Substituting amplitudes (22) into Eq. (7), and considering a
perfect erasure procedure with a wide up-conversion pump
[cf. Eq. (10)], yield the following elements for the reduced
polarization state density matrix (dropping all common factors
and apart from normalization since we are interested only in
the up-converted part):

〈HH |ρ(τ )|HH 〉 = 2e−4(1+k)n2
H τ 2δ2

, (23)

〈HH |ρ(τ )|HV 〉 = e−((3+2k)nH
2+2knH nV +nV

2)τ 2δ2

× (e−iτ�n1 + e−iτ�n2), (24)

〈HH |ρ(τ )|V H 〉 = e−((3+2k)nH
2+2knH nV +nV

2)τ 2δ2

×(e−iτ�n1 + e−iτ�n2), (25)

〈HH |ρ(τ )|V V 〉 = 2e−2(1+k)(n2
H +n2

V )τ 2δ2−iτ�nω0 , (26)

〈HV |ρ(τ )|HV 〉 = e−2(nH
2+2knH nV +nV

2)τ 2δ2

× (1 + cos(τ�n�)), (27)

〈HV |ρ(τ )|V H 〉 = e−2(nH
2+2knH nV +nV

2)τ 2δ2

× (1 + cos(τ�n�)), (28)

〈HV |ρ(τ )|V V 〉 = e−((3+2k)nV
2+2knH nV +nH

2)τ 2δ2

× (e−iτ�n1 + e−iτ�n2), (29)

〈V H |ρ(τ )|V H 〉 = e−2(nH
2+2knH nV +nV

2)τ 2δ2

× (1 + cos(τ�n�)), (30)

〈V H |ρ(τ )|V V 〉 = e−((3+2k)nV
2+2knH nV +nH

2)τ 2δ2

× (e−iτ�n1 + e−iτ�n2), (31)

〈V V |ρ(τ )|V V 〉 = 2e−4(1+k)n2
V τ 2δ2

. (32)

By setting δ = 0 and k = −1, corresponding to sharp local
frequency peaks and a fully entangled initial state, and
having τ = τd indicating that cos(τd�n�) = −1, it is quite
straightforward to see that we recover the ideal case result
presented in the previous section [cf. Eqs. (12) and (17)]. In
general, it is worth noting that the solutions above contain
oscillatory terms with cos(τ�n�) and exponential damping
terms such as exp [−2(nH

2 + 2knH nV + nV
2)τ 2δ2] for the

matrix element 〈HV |ρ(τ )|HV 〉 [cf. Eq. (27)], one of the terms
we want to minimize in order to maximize the entanglement
generation with |HH 〉 and |V V 〉.

This clearly shows that we have two different time scales
governing the entanglement generation: one given by the fre-
quency difference between the peaks � and the other one re-
lated to the frequency width δ. In particular, for fully anticorre-
lated initial frequencies of the photons (k = −1), we have, e.g.,
exp [−2(nH

2 + 2knH nV + nV
2)τ 2δ2] = exp [−2�n2τ 2δ2].

Thereby, entanglement generation is possible both in the short
interaction time non-Markovian region controlled by � and
in the asymptotic long-time limit controlled by δ.

This observation is confirmed by the results presented
in Fig. 3 where we plot the entanglement quantified by
concurrence [27] as a function of the dephasing interaction
time for k = −1. Here, the interaction time is measured by
the path difference �n × L/2λ0 with λ0 = 2πc/ω0, and one
can use τ = L/c to convert back to real time. For very narrow
initial frequency distributions, close to the case presented in
the previous sections, we have periodic creation of a large

FIG. 3. Polarization entanglement as a function of path difference
for the double-peak case and changing the widths of the frequency
distribution. Here λ0 = 780 nm, k = −1, and � = 3 nm; the dot-
dashed green line shows when the width (FWHM) of the local peaks
is 0.125 nm, the solid blue line when local the widths are 0.25 nm,
and the dashed red line when the local widths are 0.5 nm.
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FIG. 4. Polarization entanglement as a function of path differ-
ence for the double-peak case and reducing the amount of initial
correlations. Here λ0 = 780 nm, nH = 1.51004, nV = 1.54360, the
separation between two local peaks is 3 nm, and local widths (FWHM)
are 0.5 nm; the solid blue line shows when k = −0.999, the dashed red
line when k = −0.99, and the dot-dashed green line when k = −0.9.

amount of entanglement (green curve). Increasing the width
of the initial frequency distribution allows one to reach high
values of entanglement faster in the asymptotic regime (blue
and red curves). Thereby one has two viable options: to control
very precisely the interaction time in the short-time region in
order to exploit the peaks of the oscillation, or to use longer
interaction times where the condition on the precise control of
the interaction time can be relaxed.

Reaching full frequency anticorrelations k = −1 may not
always be easy, and therefore we are also interested in how
reducing the amount of correlations influences the efficiency
of the entanglement generation. Note, however, that k = −1.0
and k = −0.99995 were recently used in an experiment
exploiting nonlocal memory effects for efficient superdense
coding [28]. Figure 4 shows the results for k > −1. We
see that for long interaction times the amount of generated
entanglement decreases and ultimately tends to zero. However,
the short-time oscillations are still present and can be used to
generate entanglement even though the maximum value of
entanglement reached in the first oscillation peak diminishes
for lower and lower initial frequency correlations. Obviously,
not having perfect frequency correlations means that the
delicate balance required for interference in up-conversion for
full entanglement generation is disturbed, and the longer is
the dephasing time, the more prominent is the influence of
imperfect initial correlations.

We have already explained how—in the double-peak case—
the entanglement generation is characterized by short-time
periodic and long-time asymptotic behavior. The presence of
the latter feature opens the possibility to generate entanglement
also with the initial single-peak frequency distribution and
without the appearance of non-Markovian memory effects.
We consider this scenario in the next subsection.

B. Single-peak initial frequency distribution

We now consider a bivariate Gaussian distribution to
describe the initial joint frequency probability distribution of

FIG. 5. Polarization entanglement of single-peak case as a func-
tion of path difference for different widths of the initial frequency
distribution with k = −1. Here λ0 = 780 nm. The dot-dashed green
line shows when the local width (FWHM) is 2 nm, the solid blue line
when the local width is 1 nm, and the dashed red line when the local
width is 0.5 nm.

the photon pair:

|g(ωa,ωb)|2 = 1

2π
√

det C
e− ( �ω−〈�ω〉)T C−1( �ω−〈�ω〉)

2 . (33)

Here, �ω and C are similar to the double-peak case, but one
has 〈 �ω〉 = (ω0/2,ω0/2)T ; i.e., the Gaussian has mean value at
(ω0/2,ω0/2). As before, the probability amplitudes are given
by the square root of the probability distribution defined in
(33). We can again use the solution from Eqs. (23)–(32) by
setting 1 = 2 = ω0/2 and � = 0. Obviously, the oscilla-
tory parts in the solutions vanish since cos(τ�n�) = 0 when
� = 0 and we are left with exponential damping terms for
the long-time region and for density matrix elements to be
minimized in order to maximize the entanglement generation.

Indeed, the results in Fig. 5 for k = −1 show the monotonic
increase in the amount of generated entanglement as function

FIG. 6. Polarization entanglement of the single-peak case as a
function of path difference for different widths of the initial frequency
distribution with k = −0.99. Here λ0 = 780 nm, nH = 1.51004,
nV = 1.54360; the dot-dashed green line shows when the local width
(FWHM) is 2 nm, the solid blue line when the local width is 1 nm,
and the dashed red line when the local width is 0.5 nm.

013844-6



REMOTE POLARIZATION-ENTANGLEMENT GENERATION . . . PHYSICAL REVIEW A 96, 013844 (2017)

of the dephasing time. The three curves correspond to different
initial widths δ of the frequency distributions. When the initial
width is larger, the entanglement generation is faster. In other
words, the dephasing for unwanted polarization components
preventing their up-conversion is faster when the frequency
window of the environment is wider.

We saw before for the double-peak case that the entangle-
ment generation is quite sensitive when the amount of initial
frequency correlations are reduced. Figure 6 shows similar
results as in Fig. 5 but for k = −0.99. This result demonstrates
that, even though one can still reach considerable amount of
entanglement, the process is more sensitive to imperfections
in correlations compared to the double-peak case. The results
also show that one can make the required interaction time
shorter by widening the initial frequency distribution, but the
maximun value of entanglement remains the same for a given
value of the correlation coefficient k.

V. DISCUSSION AND CONCLUSIONS

We have shown how to convert initial frequency entangle-
ment between two photons to their polarization entanglement.
One of the interesting features here is that this can be achieved
by local interactions and operations only [see Eqs. (3) and
(5)] without the need for any ancillary photons except those
of the pumps driving the up-conversion processes. First, two
photons are distributed via dephasing channels to receiving
parties, which converts the frequency-frequency entanglement
to polarization-frequency correlations. This is followed by
local up-conversion by each party removing the polarization-
frequency correlations and which-path information in fre-
quency space. Thereby the scheme ultimately allows for the
remote creation of polarization entanglement.

We have identified two different mechanisms for this
purpose depending on the initial form of the frequency
distributions. When we use a two-peak structure for the local
distributions, corresponding to non-Markovian dynamics, one
can create polarization entanglement both in short and long

dephasing time regimes. If the frequency distribution has a
single-peak structure, corresponding to Markovian dephasing
dynamics, one can create entanglement asymptotically. In
the latter case, the stronger the dephasing is, the faster the
asymptotic high-entanglement limit is reached. Moreover, the
creation of polarization entanglement can be interpreted as de-
structive and constructive interference between the frequency
mode paths in the up-conversion, where only those polarization
components that form the entangled state get up-converted.

In addition to carrying both fundamental importance for
quantum interferometry and practical importance for entan-
glement generation, our results also pave the way to the
development of techniques to detect the entanglement between
the photon frequencies. When the initial amount of frequency
entanglement is not known, our scheme allows us—– by
measuring the amount of created polarization entanglement—
to infer whether or not there existed initial frequency entan-
glement. This is the key ingredient to implement a quantum
probe for entanglement detection. We think that a proof-of-
principle experiment able to demonstrate remote polarization-
entanglement generation by local dephasing and frequency
up-conversion is currently within the grasp of experimentalists.
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