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Pure quadratic or higher-order optical effects in anisotropic crystals induced by external dc fields
and probed by a single low-intensity plane electromagnetic wave
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The determination of a clear theoretical demarcation between a true or a false quadratic or higher-order low-
intensity optical effect induced by an externally applied static or quasistatic (dc) vector field in anisotropic crystals
is the scope of the present work. A complete set of necessary and sufficient conditions required for the practical
possibility of direct detection, measurement, and tabulation of only those pure optical contributions is finally ob-
tained. The dc electro-optic effect stands out as the most representative of all of these low-power dc optical effects.
However, although the dc Kerr effect remains the main topic of application of the analytical treatment developed in
this work, the current theoretical formalism is extended to include other dc conventional crystal optics effects, such
as electrogyration, electroabsorption, and externally induced ray or energy propagation. Even more, the theoretical
conditions are further generalized to apply to any pure higher-order crystal optics effect induced by external dc
fields. These can be electric, magnetic, force, and even temperature or concentration gradient fields. The current
treatment does not extend to multiple-beam high-intensity nonlinear optics effects induced by optical (ac) fields.
Compared to previously published expressions, a more general Fresnel equation is also provided here together
with the most general Jones vectors describing the eigenpolarizations of the single probing beam of light. All the
generalizations and extensions mentioned in this article are valid as long as the field-dependent coefficients of the
particular optical effect under consideration satisfy the equation of a positive-definite complex Hermitian form.
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I. INTRODUCTION

When an external vector field interacts with an optical
medium the properties of that medium change. If the applied
field is not strong enough to damage the material, then the
physical parameters describing those changed properties can
be expanded in a power series in the strength of the field. For
optical media that have a center of symmetry, the odd-order
terms in the field are null so the quadratic terms become
the dominant ones by default. To determine those dominant
quadratic coefficients in centrosymmetric crystals becomes an
easy task. However, in noncentrosymmetric media, the first-
order terms in the field are generally the dominant ones, with
the effects of the quadratic or higher-order ones being partially
eclipsed. The tacitly accepted idea in the crystal optics field
was that one should not bother trying to detect the quadratic
or higher-order terms in crystals lacking inversion symmetry
because these terms are generally masked by the first-order
ones. This is probably one of the main reasons why there are
relatively very few, if any, of these quadratic or higher-order
coefficients measured or tabulated. Yet, as was later reported
by the current authors, in these acentric anisotropic crystals,
there are many experimental configurations for which one can
practically bypass the first-order or lower-order effects and
get direct information about the second-order or higher-order
effects, respectively. The convention throughout this work is
that these coefficients are considered pure or true as long
as they do not contain any contributions from the first-order
or lower-order coefficients, respectively. If those quadratic or
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higher-order terms happen to contain, in any way, at least one
contribution from the first-order or lower-order terms, respec-
tively, then they are considered impure or false. Finding these
particular experimental configurations in noncentrosymmetric
crystals together with the determination, measurement, and
tabulation of their corresponding quadratic or higher-order co-
efficients constitutes an experimentally demanding topic of re-
search in the old field of conventional crystal optics. To the best
knowledge of the current authors, the above research project
was initiated in 2004 with the dc quadratic electro-optic effect
[1]. As of now, this project proves to still be in its infancy [1–5],
especially in regards to its experimental (data) side of research.

The dc electro-optic effect occurs when the application of
a dc electric field across a crystal induces direct changes in
the refractive indexes of that material. The electrical imper-
meabilities of that medium can be expressed as a perturbation
series in the strengths of the components of that field, with
the linear (first-order) terms being called Pockels terms and
the quadratic (second-order) ones named Kerr terms. The
zero-order terms are just the zero-field impermeabilities. It has
been previously reported and tabulated that in almost 90% of
the noncentrosymmetric crystals for which the Pockels effect
is generally dominant, it is possible to bypass it, in principle,
and obtain direct information only about the quadratic or
higher-order electro-optic terms [2,3]. In that work, however,
no clear demarcation between the configurations involving
the true and the false quadratic terms was provided; it was
tacitly and wrongly assumed that the false quadratic terms
were insignificant by at least one order of magnitude relative
to the true ones. The first interesting attempt at deriving an
analytical way of categorizing the configurations for which
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quadratic electro-optic contributions could be isolated from
the Pockels ones was published shortly afterwards for the case
of one beam of low-intensity light propagating in an arbitrary
direction through a uniaxial crystal [4]. Those results, however,
proved to be only necessary, but not sufficient, for a complete
distinction between the pure and the false quadratic influences.
They were not sufficient in the sense that they did not allow for
the complete elimination of all the influences from the Pockels
coefficients into the expressions for the quadratic terms. From
the current authors’ perspective, the most important aspect
of that work [4] was asserting the idea that in certain media
and optical configurations, the false quadratic terms, made of
products of two Pockels terms, could have the same order of
magnitude as the Kerr ones. That idea immediately raised the
important issue of figuring out the optical configurations where
only the true second-order terms were made manifest in non-
centrosymmetric crystals. The next step involved determining
all those crystal configurations where only combinations of
pure quadratic terms could be directly detected in materials
where the Pockels effect is usually the dominant effect [5].
In that work, however, all those specific configurations were
obtained by methodically considering all the crystal classes
and all configurations, and selecting only the ones solely
involving combinations of Kerr terms; no consistent analytical
method of selection was provided. Aside from determining
and tabulating all those special configurations, another positive
aspect of that work was devising a technique for a three-in-one
experimental setup to be used in detecting those specific
experimental configurations [5].

This present article provides a continuation and completion
of the above-mentioned work by the current authors [5]. It
also contributes up to five important ideas to the previous
efforts. First of all, it provides the complete set of necessary
and sufficient conditions for direct detection of dc field-
induced true quadratic optical effects in the case of arbitrary
propagation of a single low-power probing beam of light in
crystals lacking inversion symmetry. Secondly, it extends those
conditions for the general case involving direct detection of
pure terms of any order of magnitude higher or equal to 2;
in that way those general expressions could be put to use in
the cases of both noncentrosymmetric and centrosymmetric
media. The general set of necessary and sufficient conditions
derived in this work depends on the optical experimental
configuration and the point group symmetry of the crystal
under investigation. Thirdly, the conditions obtained here
pertain to all anisotropic crystals including the ones belonging
to the category with the lowest optical symmetry, the biaxial
class; it is then shown how the restrictions of those conditions
could then be relaxed further so as to apply to the other classes
having higher optical symmetry—the uniaxial and anaxial.
Fourthly, the real and symmetric impermeability tensor that
is traditionally used in electro-optics will be extended to its
more general form as a second-rank complex Hermitian tensor.
In this way, the electrically induced linear birefringence (the
electro-optic effect) [1–5,8–24] may be treated together with
the electrically induced circular birefringence (the electro-
gyration effect) [6–24], if necessary. By analogy with these
two nondissipative effects, the theory is further expanded to
allow for the inclusion of the two corresponding dissipative
effects of electrically induced linear absorption and circular

dichroism [14–17,20,23,24]. As compared to a previous work
by a different group of authors [4], a more general Fresnel
equation is obtained.

Throughout this work it will be assumed that the probing
electromagnetic wave is a single, plane, monochromatic,
and low-intensity wave. In other words, no multiple-beam,
high-power nonlinear optics effects induced by optical (ac)
fields will be covered here. All the theoretical treatment
will be phenomenological in nature; it will start at a more
abstract level and it will be gradually reduced to the particular
case of the quadratic electro-optic effect—the main topic of
application of this work. Other analogous low-power optical
effects induced by static or quasistatic (dc) fields, such as
electrogyration, electroabsorption, and externally induced ray
(energy) propagation, will be mentioned afterwards. They will
not be treated in too much detail. It will simply be shown how
these similar dc optical effects can be described as special
cases of the general method provided in this article. Everything
from vector fields to physical terms and coefficients will be
represented in a fixed laboratory-based Cartesian system of
coordinates of unit vectors x̂1, x̂2, and x̂3.

II. WORK

In this section, the formalism of the general treatment will
be provided together with the derivation of a generalized
Fresnel equation and the set of necessary and sufficient
conditions for direct detection of only true optical effects
of a certain order without any involvement of the false or
lower-order ones in anisotropic media.

A. Formalism of general treatment

When an external vector field �F = F1x̂1 + F2x̂2 + F3x̂3

is applied to an optical medium, certain properties of that
physical system change. If the perturbing field is not very
strong, so as to irreversibly damage the medium, any physical
parameter, generically labeled Ñpq( �F ), associated with a
certain changed property of the optical system in question,
can be expressed mathematically as a perturbation series in
the field given by

Ñpq( �F ) = Ñ (0)
pq ( �F ) + Ñ (1)

pq ( �F ) + Ñ (2)
pq ( �F ) + · · · . (1)

Ñ (0)
pq ( �F ) = Ñpq( �F = 0) = c̃(0)

pq , Ñ (1)
pq ( �F ) = ∑3

j=1 c̃
(1)
pqjFj ,

and Ñ (2)
pq ( �F ) = ∑3

j,k=1 c̃
(2)
pqjkFjFk are the zero-order, first-

order (linear), and second-order (quadratic) power terms in
the components of the field, respectively. The c̃(0)

pq , c̃
(1)
pqj ,

and c̃
(2)
pqjk are the corresponding coefficients associated with

them; the tilde symbol “∼” on top of symbols implies that
they can represent complex quantities. Throughout this work
p,q ∈ {1,2,3}. For the sake of simplicity Ñpq( �F ) will be used
as Ñpq from now on and the field dependence will be assumed
in all of the first- or higher-order perturbation terms. The
general treatment of this work is valid for all externally induced
optical effects for which the Ñpq terms satisfy the equation of
a positively definite complex Hermitian form given by

3∑
p,q=1

Ñpqxpxq = 1. (2)
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The geometrical representation of this equation is a closed
surface in a three-dimensional space called a complex Hermi-
tian triaxial (scalene) ellipsoid. The terms Ñpq = Lpq + iCpq

have Lpq = Lqp and Cpq = −Cqp with i = √−1. In matrix
format

[Ñpq]3×3 = [Lpq]3×3 + i[Cpq]3×3

=

⎛
⎜⎝

L11 L12 + iC12 L13 + iC13

L12 − iC12 L22 L23 + iC23

L13 − iC13 L23 − iC23 L33

⎞
⎟⎠, (3)

with [Lpq]3×3 being a real symmetric matrix and [Cpq]3×3 a
real antisymmetric matrix quantifying the field-induced optical
effects associated with the linear and circular polarizations of
the probing electromagnetic wave, respectively. The matrix
provided above in Eq. (3) may be used to model theoretically
the optical effects associated with elliptical polarizations.

B. Generalized Fresnel equation

The generalized Fresnel equation will be obtained using
the method of (undetermined) Lagrange multipliers, where
the Lagrange function �(x1,x2,x3; l1,l2,l3), containing the
Lagrange multipliers l1, l2, and l3, is here defined as

�(x1,x2,x3; l1,l2,l3)

=
3∑

p,q=1

δpqxpxq + l1

⎛
⎝ 3∑

p,q=1

Ñpqxpxq − 1

⎞
⎠

+ l2

3∑
p,q=1

δpqspxq + l3

⎛
⎝ 3∑

p,q=1

δpqspsq − 1

⎞
⎠. (4)

The following system of equations is obtained:

∂�

∂x1
= 2x1 + 2l1

⎛
⎝ 3∑

q=1

Ñ1qxq

⎞
⎠ + l2s1 = 0

∂�

∂x2
= 2x2 + 2l1

⎛
⎝ 3∑

q=1

Ñ2qxq

⎞
⎠ + l2s2 = 0

∂�

∂x3
= 2x3 + 2l1

⎛
⎝ 3∑

q=1

Ñ3qxq

⎞
⎠ + l2s3 = 0

∂�

∂l1
=

3∑
p,q=1

Ñpqxpxq − 1 = 0

∂�

∂l2
=

3∑
p,q=1

δpqspxq = 0

∂�

∂l3
=

3∑
p,q=1

δpqspsq − 1 = 0. (5)

The first constraint limits the range of values taken from the
center of the complex Hermitian triaxial ellipsoid anywhere
to its surface. The second constraint restricts even further
those extrema values by imposing the condition that they

must also belong only to the complex Hermitian biaxial
ellipse in the plane that cuts the ellipsoid through its center
and is perpendicular to the direction of the wave normal or
phase propagation direction ŝ = ∑3

p,q=1 δpqspx̂q . The third
constrain guarantees that the ŝ vector is actually a unit vector.
δpq is the Kronecker delta symbol.

The expressions for the first two Lagrange multipli-
ers are found to be l1 = ∑3

p,q=1 δpqxpxq = − 1
N

and l2 =
2
N

∑3
p,q=1 Ñpqspxq , with N = ∑3

p,q=1 δpqxpxq a real param-
eter. The third multiplier l3 does not need to be determined.
Substituting the two multipliers in Eq. (5), the following
homogeneous matrix equation is obtained:⎛

⎜⎝
Ñ11 − N Ñ12 Ñ13

Ñ21 Ñ22 − N Ñ23

Ñ31 Ñ32 Ñ33 − N

⎞
⎟⎠

⎛
⎜⎝

x1

x2

x3

⎞
⎟⎠ = 0. (6)

The matrix [Ñpq]3×3 is given by

[Ñpq]3×3 = {I3×3 − [spsq]3×3}[Ñpq]3×3, (7)

where [Ñpq]3×3 is provided in Eq. (3), I3×3 is the unity matrix
and

[spsq]3×3 =

⎛
⎜⎝

s2
1 s1s2 s1s3

s2s1 s2
2 s2s3

s3s1 s3s2 s2
3

⎞
⎟⎠ (8)

is a real, symmetric matrix. Since Det{I3×3 − [spsq]3×3} =
0, the characteristic equation above [Eq. (6)] reduces to
a second degree polynomial equation in N = NL,C,ŝ =
N (Lpq,Cpq,spsq) given by

N2
L,C,ŝ − UL,ŝNL,C,ŝ + VL,ŝ − WC,ŝ = 0. (9)

The three coefficients UL,ŝ , VL,ŝ , and WC,ŝ are all real and
given by

UL,ŝ = U
(
Lpq,spsq

) = (L22 + L33)s2
1 + (L11 + L33)s2

2

+ (L11 + L22)s2
3 − 2L12s1s2

− 2L13s1s3 − 2L23s2s3, (10)

VL,ŝ = V
(
Lpq,spsq

) = (
L22L33 − L2

23

)
s2

1

+ (
L11L33 − L2

13

)
s2

2 + (
L11L22 − L2

12

)
s2

3

+ 2(L13L23 − L12L33)s1s2

+ 2(L12L23 − L13L22)s1s3

+ 2(L12L13 − L23L11)s2s3, (11)

and

WC,ŝ = W
(
Cpq,spsq

) = C2
23s

2
1 + C2

13s
2
2 + C2

12s
2
3

− 2C13C23s1s2 + 2C12C23s1s3 − 2C12C13s2s3. (12)

This third term, WC,ŝ , contains only coefficients of the type
Cpq which are associated with optical effects involving the
circular polarization of the probing wave. On the other hand,
the first two terms, UL,ŝ and VL,ŝ , contain only coefficients
of the type Lpq that are associated with effects involving the
linear polarization. Similar expressions for the first two terms
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[Eq. (10) and (11)] were reported previously [4], but not for
the third one [Eq. (12)].

To the authors’ best knowledge, Eq. (9) gives the most
general expression of a Fresnel’s wave vectors equation for
a plane electromagnetic wave propagating in an arbitrary
direction ŝ through an anisotropic crystal. A general Fresnel

wave vector equation for the electro-optic effect has been
previously obtained by a different group of authors [4].
The current authors, however, express their reservation as
regarding the full correctness of those authors’ equation
as published. This issue will be discussed quantitatively in
Sec. I.

The eigenvalues of Eq. (9) are real and of the form

N±
L,C,ŝ = N±(

Lpq,Cpq,spsq

) = 1

2
UL,ŝ ±

√
1

4
U 2

L,ŝ − VL,ŝ + WC,ŝ . (13)

Throughout this work, the “±” superscript refers only to the sign before the square root. In no way does the ± symbol imply
that one (eigen) value is positive and the other negative.

For the same probing electromagnetic wave, the eigenpolarizations associated with those eigenvalues are mutually
perpendicular and elliptical in nature. These eigenpolarization ellipses are located in a plane normal to ŝ and, when expressed in
a Jones-vector format, have the most general form,

J±
L,C,ŝ = J±(

Lpq,Cpq,spsq

) =

⎛
⎜⎝

√
1

4
U 2

L,ŝ − VL,ŝ ±
√

1

4
U 2

L,ŝ − VL,ŝ + WC,ŝ

−i
√

WC,ŝ

⎞
⎟⎠, (14)

with corresponding generalized ellipticities,

e±
L,C,ŝ = e±(

Lpq,Cpq,spsq

) = −√
WC,ŝ√

1
4U 2

L,ŝ − VC,ŝ ±
√

1
4U 2

L,ŝ − VL,ŝ + WC,ŝ

. (15)

C. Necessary and sufficient conditions

Since, according to Eq. (1), the Ñpq’s may all be written as a perturbation series in the strengths of the components of the
vector field, then the three coefficients above may also be expressed as the perturbation series UL,ŝ = ∑

ζ U
(ζ )
L,ŝ , VL,ŝ = ∑

ζ V
(ζ )
L,ŝ ,

and WC,ŝ = ∑
ζ W

(ζ )
C,ŝ , where

U
(ζ )
L,ŝ = [

L
(ζ )
22 + L

(ζ )
33

]
s2

1 + [
L

(ζ )
11 + L

(ζ )
33

]
s2

2 + [
L

(ζ )
11 + L

(ζ )
22

]
s2

3 − 2L
(ζ )
12 s1s2 − 2L

(ζ )
13 s1s3 − 2L

(ζ )
23 s2s3, (16)

V
(ζ )
L,ŝ =

ζ∑
ς=0

⎧⎪⎪⎨
⎪⎪⎩

[
L

(ς)
22 L

(ζ−ς )
33 − L

(ς)
23 L

(ζ−ς )
23

]
s2

1 + [
L

(ς)
11 L

(ζ−ς)
33 − L

(ς)
13 L

(ζ−ς)
13

]
s2

2

+[
L

(ς)
11 L

(ζ−ς)
22 − L

(ς)
12 L

(ζ−ς)
12

]
s2

3+2
[
L

(ς)
13 L

(ζ−ς )
23 − L

(ς)
12 L

(ζ−ς)
33

]
s1s2

+2
[
L

(ς)
12 L

(ζ−ς )
23 − L

(ς)
13 L

(ζ−ς )
22

]
s1s3 + 2

[
L

(ς)
12 L

(ζ−ς )
13 − L

(ς)
23 L

(ζ−ς )
11

]
s2s3

⎫⎪⎪⎬
⎪⎪⎭, (17)

and

W
(ζ )
C,ŝ =

ζ∑
ς=0

[
C

(ς)
23 C

(ζ−ς )
23 s2

1 + C
(ς)
13 C

(ζ−ς )
13 s2

2 + C
(ς)
12 C

(ζ−ς )
12 s2

3

−2C
(ς)
13 C

(ζ−ς )
23 s1s2 + 2C

(ς)
12 C

(ζ−ς)
23 s1s3 − 2C

(ς)
12 C

(ζ−ς )
13 s2s3

]
, (18)

with the extra clarification that L
(ς)
pq L

(ζ−ς)
pq and C

(ς)
pq C

(ζ−ς )
pq are of the same order of magnitude as the terms L

(ζ )
pq and C

(ζ )
pq ,

respectively, but are not the same as them.
The general system of conditions necessary and sufficient to have the two (eigen) solutions N±

L,C,ŝ above dependent on the

L
(ξ )
pq and C

(ξ )
pq terms and not at all dependent on L

(ζ )
pq , L

(ς)
pq L

(ζ−ς)
pq , C

(ζ )
pq , or C

(ς)
pq C

(ζ−ς )
pq terms of lower order ζ (0 � ς < ζ < ξ ) is

ξ−1∑
ζ=1

U
(ζ )
L,ŝ = 0

ξ−1∑
ζ=1

[
V

(ζ )
L,ŝ − W

(ζ )
C,ŝ

] = 0

ξ−1∑
ζ=1

⎧⎪⎪⎨
⎪⎪⎩

[
L

(ζ )
22 L

(ξ−ζ )
33 − L

(ζ )
23 L

(ξ−ζ )
23 − C

(ζ )
23 C

(ξ−ζ )
23

]
s2

1 + [
L

(ζ )
11 L

(ξ−ζ )
33 − L

(ζ )
13 L

(ξ−ζ )
13 − C

(ζ )
13 C

(ξ−ζ )
13

]
s2

2

+[
L

(ζ )
11 L

(ξ−ζ )
22 − L

(ζ )
12 L

(ξ−ζ )
12 − C

(ζ )
12 C

(ξ−ζ )
12

]
s2

3 + 2
[
L(ζ )

13 L(ξ−ζ )
23 − L(ζ )

12 L(ξ−ζ )
33 + C(ζ )

13 C(ξ−ζ )
23

]
s1s2

+2
[
L

(ζ )
12 L

(ξ−ζ )
23 − L

(ζ )
13 L

(ξ−ζ )
22 − C

(ζ )
12 C

(ξ−ζ )
23

]
s1s3 + 2

[
L

(ζ )
12 L

(ξ−ζ )
13 − L

(ζ )
23 L

(ξ−ζ )
11 + C

(ζ )
12 C

(ξ−ζ )
13

]
s2s3

⎫⎪⎪⎬
⎪⎪⎭ = 0. (19)
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III. dc KERR ELECTRO-OPTIC EFFECT

When the physical system happens to be a nonabsorbing, nongyrotropic, and nonmagnetic optical crystal with the externally
applied dc field on it being only electric in nature ( �F → �E), then the electro-optic effect (electrically induced linear birefringence)
manifests itself. The physical parameters quantifying this phenomenon become the real symmetric impermeabilities of the crystal.
In other words, ŝ → ŝ, Lpq → ηpq = n−2

pq , Cpq → 0, L → η, C → η′ = 0, NL,C,ŝ → ηη,0,ŝ = n−2
η,0,ŝ , and N±

L,C,ŝ → η±
η,0,ŝ =

(n±
η,0,ŝ)

−2. The symmetric real terms ηpq = ηqp may be written as a perturbation series in the components of the electric field:

ηpq = η(0)
pq + η(1)

pq + η(2)
pq + ..., with η(0)

pq = 0 for p �= q and η(0)
pq > 0 for p = q, η(1)

pq = ∑3
j=1 r

(1)
pqjEj , and η(2)

pq = ∑3
j,k=1 r

(2)
pqjkEjEk .

The real quantities r
(1)
pqj and r

(2)
pqjk are the Pockels and Kerr coefficients, respectively. In this work they are considered effective

electro-optic coefficients—in the sense that the coupled effects of inverse piezoelectricity, electrostriction, or similarly indirect
effects like those will be assumed as already absorbed theoretically in their values.

The Fresnel’s wave vectors equation, as a function of the index of refraction nη,0,ŝ = η−0.5
η,0,ŝ , becomes[(

η22η33 − η2
23

)
n4

η,0,ŝ − (η22 + η33)n2
η,0,ŝ + 1

]
s2

1 + [(
η11η33 − η2

13

)
n4

η,0,ŝ − (η11 + η33)n2
η,0,ŝ + 1

]
s2

2

+ [(
η11η22 − η2

12

)
n4

η,0,ŝ − (η11 + η22)n2
η,0,ŝ + 1

]
s2

3 + 2
[
(η12η13 − η11η23)n4

η,0,ŝ + η23n
2
η,0,ŝ

]
s2s3

+ 2
[
(η12η23 − η22η13)n4

η,0,ŝ + η13n
2
η,0,ŝ

]
s1s3 + 2

[
(η13η23 − η33η12)n4

η,0,ŝ + η12n
2
η,0,ŝ

]
s1s2 = 0. (20)

This expression is slightly different from a previously published one by a different group of authors [4]. Here the nη,0,ŝ’s which
multiply the terms (η11η33 − η2

13) and (η13η23 − η33η12) above are at the fourth power, not the second. Even if these discrepancies
might turn out to be due to typographical errors alone, they still need to be properly addressed. This is especially important for
new expressions.

The general system of conditions [Eq. (19)], when applied to the particular case of a quadratic electro-optic effect (0 � ς � 1,
ζ = 1, and ξ = 2), reduces to

η
(1)
11 s2

2 + η
(1)
22 s2

1 − 2η
(1)
12 s1s2 + η

(1)
11 s2

3 + η
(1)
33 s2

1 − 2η
(1)
13 s1s3 + η

(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3 = 0[

η
(1)
11 s2

2 + η
(1)
22 s2

1 − 2η
(1)
12 s1s2

]
η

(0)
33 + [

η
(1)
11 s2

3 + η
(1)
33 s2

1 − 2η
(1)
13 s1s3

]
η

(0)
22 + [

η
(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3

]
η

(0)
11 = 0[

η
(1)
11 s2

2 + η
(1)
22 s2

1 − 2η
(1)
12 s1s2

]
η

(1)
33 + [

η
(1)
11 s2

3 + η
(1)
33 s2

1 − 2η
(1)
13 s1s3

]
η

(1)
22 + [

η
(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3

]
η

(1)
11

− [
η

(1)
22 η

(1)
33 + η

(1)
23 η

(1)
23

]
s2

1 − [
η

(1)
11 η

(1)
33 + η

(1)
13 η

(1)
13

]
s2

2 − [
η

(1)
11 η

(1)
22 + η

(1)
12 η

(1)
12

]
s2

3+2η
(1)
13 η

(1)
23 s1s2 + 2η

(1)
12 η

(1)
23 s1s3 + 2η

(1)
12 η

(1)
13 s2s3 = 0.

(21)

Not considering electro-optic terms higher than quadratic, the system above provides the necessary and sufficient set of
conditions that would allow for the eigenindexes of refraction to depend only on Kerr terms without any Pockels ones in optically
anisotropic crystals. The third equation allows for the elimination of all false quadratic terms. In the case of biaxial crystals
(η(0)

11 �= η
(0)
22 �= η

(0)
33 �= η

(0)
11 ) the system above [Eq. (21)] becomes

η
(1)
11 s2

2 + η
(1)
22 s2

1 − 2η
(1)
12 s1s2 = 0

η
(1)
11 s2

3 + η
(1)
33 s2

1 − 2η
(1)
13 s1s3 = 0

η
(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3 = 0[

η
(1)
22 η

(1)
33 + η

(1)
23 η

(1)
23

]
s2

1 + [
η

(1)
11 η

(1)
33 + η

(1)
13 η

(1)
13

]
s2

2 + [
η

(1)
11 η

(1)
22 + η

(1)
12 η

(1)
12

]
s2

3 − 2η
(1)
13 η

(1)
23 s1s2 − 2η

(1)
12 η

(1)
23 s1s3 − 2η

(1)
12 η

(1)
13 s2s3 = 0. (22)

For uniaxial materials (η(0)
11 = η

(0)
22 �= η

(0)
33 �= η

(0)
11 ), that same system of equations reduces to

η
(1)
11 s2

2 + η
(1)
22 s2

1 − 2η
(1)
12 s1s2 = 0

η
(1)
11 s2

3 + η
(1)
33 s2

1 − 2η
(1)
13 s1s3 + η

(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3 = 0[

η
(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3

][
η

(1)
22 − η

(1)
11

] + [
η

(1)
22 η

(1)
33 + η

(1)
23 η

(1)
23

]
s2

1 + [
η

(1)
11 η

(1)
33 + η

(1)
13 η

(1)
13

]
s2

2

+ [
η

(1)
11 η

(1)
22 + η

(1)
12 η

(1)
12

]
s2

3 − 2η
(1)
13 η

(1)
23 s1s2 − 2η

(1)
12 η

(1)
23 s1s3 − 2η

(1)
12 η

(1)
13 s2s3 = 0. (23)

Finally, for the anaxial media (η(0)
11 = η

(0)
22 = η

(0)
33 ), we have

η
(1)
11 s2

2 + η
(1)
22 s2

1 − 2η
(1)
12 s1s2 + η

(1)
11 s2

3 + η
(1)
33 s2

1 − 2η
(1)
13 s1s3 + η

(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3 = 0[

η
(1)
11 s2

3 + η
(1)
33 s2

1 − 2η
(1)
13 s1s3

][
η

(1)
33 − η

(1)
22

] + [
η

(1)
22 s2

3 + η
(1)
33 s2

2 − 2η
(1)
23 s2s3

][
η

(1)
33 − η

(1)
11

]
+ [

η
(1)
22 η

(1)
33 + η

(1)
23 η

(1)
23

]
s2

1 + [
η

(1)
11 η

(1)
33 + η

(1)
13 η

(1)
13

]
s2

2 + [
η

(1)
11 η

(1)
22 + η

(1)
12 η

(1)
12

]
s2

3

− 2η
(1)
13 η

(1)
23 s1s2 − 2η

(1)
12 η

(1)
23 s1s3 − 2η

(1)
12 η

(1)
13 s2s3 = 0. (24)
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The last equation in each one of the two systems above [Eqs. (23) and (24)] can be further simplified depending on the relation-
ships between the η

(1)
11 , η(1)

22 , and η
(1)
33 terms characteristic to each particular point group class of symmetry. The optical configurations

satisfying the above system of conditions [Eq. (21)] have been already determined and tabulated in a previous work [5].

IV. DISCUSSION AND CONCLUSION

A. dc externally induced birefringence

The general treatment developed in this work may be adapted to other optical phenomena for which the property in Eq. (2)
remains valid. For example, the treatment of the externally induced linear birefringence may be extended to include the
circular birefringence (dc electrogyration effect) by making the following substitutions in the general treatment from Sec. I:
ŝ → ŝ, Ñpq → η̃pq , Lpq → ηpq = n−2

pq , Cpq → η′
pq = Vη,ŝGpq , L → η, C → η′, NL,C,ŝ → ηη,η′,ŝ = n−2

η,η′,ŝ = (
uη,η′,ŝ

c
)2, and

N±
L,C,ŝ → η±

η,η′,ŝ = (n±
η,η′,ŝ)

−2 = (
u±

η,η′,ŝ
c

)2. The nη,η′,ŝ and n±
η,η′,ŝ’s are the index and eigenindexes of refraction, respectively. The

uη,η′,ŝ and u±
η,η′,ŝ’s are the propagation (phase) speed and eigenspeeds, respectively; c is the speed of light. Gpq’s are the elements

of a real, antisymmetric gyration vector �G = (G1s1 + G2s2 + G3s3)ŝ and are related to the components gpq of a second-rank
axial gyration tensor through the relationship given by⎛

⎝G1

G2

G3

⎞
⎠ =

⎛
⎝ G32

−G31

G21

⎞
⎠ =

⎛
⎝−G23

G13

−G12

⎞
⎠ =

⎛
⎝g11 g12 g13

g12 g22 g23

g13 g23 g33

⎞
⎠

⎛
⎝s1

s2

s3

⎞
⎠. (25)

The symmetric real terms gpq can be written as a perturbation series in the components of the electric field: gpq = g(0)
pq +

g(1)
pq + g(2)

pq + · · · , with g(0)
pq describing the natural activity, g(1)

pq = ∑3
j=1 γ

(1)
pqjEj and g(2)

pq = ∑3
j,k=1 γ

(2)
pqjkEjEk . The quantities γ

(1)
pqj

and γ
(2)
pqjk are the linear and quadratic electrogyration coefficients, respectively.

The general Fresnel equation and its (eigen) solutions, when both field-induced linear and circular birefringence are considered
in Eqs. (9)–(13), are given by

n−4
η,η′,ŝ − Uη,ŝn

−2
η,η′,ŝ + Vη,ŝ − [

Vη,ŝ

(
g11s

2
1 + g22s

2
2 + g33s

2
3 + 2g12s1s2 + 2g13s1s3 + 2g23s2s3

)]2 = 0, (26)

and

(n±
η,η′,ŝ)

−2 = 1

2
Uη,ŝ ±

√
1

4
U 2

η,ŝ − Vη,ŝ + [
Vη,ŝ

(
g11s

2
1 + g22s

2
2 + g33s

2
3 + 2g12s1s2 + 2g13s1s3 + 2g23s2s3

)]2
, (27)

respectively. The term Vη,ŝ = V
(0)
η,ŝ + V

(1)
η,ŝ + V

(2)
η,ŝ + · · · is provided by Eq. (11) when replacing the Lpq’s with ηpq’s. In the more

accurate expression above, η′
pq = Vη,ŝGpq , both Vη,ŝ and Gpq are indirectly field dependent through the ηpq and gpq terms that

they contain, respectively. In practical applications, however, it has become customary to approximate Vη,ŝ by its zeroth-order
term V

(0)
η,ŝ , thus making it field independent. That way, all the measured changes in η′

pq 	 V
(0)
η,ŝ Gpq will be associated only with

changes in the gpq’s by default [7,12,13]. Taking into account this approximation, the two expressions above [Eqs. (26) and (27)]
reduce to

n−4
η,η′,ŝ − Uη,ŝn

−2
η,η′,ŝ + Vη,ŝ − [

V
(0)
η,ŝ

(
g11s

2
1 + g22s

2
2 + g33s

2
3 + 2g12s1s2 + 2g13s1s3 + 2g23s2s3

)]2 	 0, (28)

and

(n±
η,η′,ŝ)

−2 	 1

2
Uη,ŝ ±

√
1

4
U 2

η,ŝ − Vη,ŝ + [
V

(0)
η,ŝ

(
g11s

2
1 + g22s

2
2 + g33s

2
3 + 2g12s1s2 + 2g13s1s3 + 2g23s2s3

)]2
, (29)

respectively.

B. dc externally induced absorption

The dc electroabsorption effect may also be quantified using
the same general treatment from Sec. I by making the following
substitutions: ŝ → σ̂ , Ñpq → α̃pq , Lpq → αpq , Cpq → α′

pq ,
L → α, C → α′, NL,C,ŝ → αα,α′,σ̂ , and N±

L,C,ŝ → α±
α,α′,σ̂ . The

real, symmetric matrix [αpq]3×3 describes the linear absorption
while the real antisymmetric one [α′

pq]3×3 is associated
with the circular dichroism. The term αα,α′,σ̂ represents
the absorption coefficient. The two terms α±

α,α′,σ̂ are the
absorption eigenvalues in a constant-amplitude plane that
is perpendicular to the unit vector σ̂ = σ1x̂1 + σ2x̂2 + σ3x̂3

denoting the attenuation direction. Boundary conditions show

that σ̂ is also normal to the interface separating the medium
of incidence from the medium of refraction which, in this
case, constitutes the anisotropic crystal. In the most general
case, at oblique incidence, the plane wave inside the material
becomes inhomogeneous and ŝ and σ̂ inhomogeneous

plane wave
are not

parallel (σ̂ inhomogeneous
plane wave

�= ŝ) [19]. In most of the interferometric

experimental configurations, however, the incoming wave is
normally incident on the surface of the crystal and, therefore,
may be modeled theoretically by a homogeneous plane wave
having its σ̂ homogeneous

plane wave
collinear with ŝ (σ̂ homogeneous

plane wave
= ŝ). The

complex Hermitian absorption ellipsoid
∑3

p,q=1 α̃pqxpxq = 1
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and the complex Hermitian index ellipsoid
∑3

p,q=1 η̃pqxpxq =
1 are always concentric but their principal axes are not
necessarily coaxial, especially for the lower symmetry point

groups [14,15,24]. The slowness bivector �̃K�s,σ̂ is of the type
�̃Kŝ,σ̂ = �kŝ + i�κσ̂ , with �kŝ and �κσ̂ in the directions of ŝ and σ̂ ,

respectively [17,19,20,23–27]. Modeling field-induced linear
and circular birefringence together with linear and circular
absorption is still an ongoing topic of research in crystal optics.
Many interesting approaches to deal with this theoretical
challenge have been proposed over the years [23–35].

Taking into account the above substitutions in Eqs.
(9)–(13), the general Fresnel equation and its corresponding
eigenvalues, for field-induced absorption, are given by

α2
α,α′,σ̂ − Uα,σ̂ αα,α′,σ̂ + Vα,σ̂ − Wα′,σ̂ = 0, (30)

and

α±
α,α′,σ̂ = 1

2
Uα,σ̂ ±

√
1

4
U 2

α,σ̂ − Vα,σ̂ + Wα′,σ̂ , (31)

respectively. These expressions take into account the effects
of both linear and circular dichroism.

C. dc externally induced ray or energy propagation

The propagation of electromagnetic energy inside a ma-
terial may also be described with the general formalism
in Sec. I. In this case the following substitutions are in
order: ŝ → Ŝ, Ñpq → ε̃pq , Lpq → εpq , Cpq → ε′

pq , L → ε,
C → ε′, NL,C,ŝ → εε,ε′,Ŝ = ( c

vε,ε′ ,Ŝ
)2, and N±

L,C,ŝ → ε±
ε,ε′,Ŝ

=
( c

v±
ε,ε′ ,Ŝ

)2. The vε,ε′,Ŝ and v±
ε,ε′,Ŝ

’s are the ray (group) speed and

eigenspeeds, respectively. The Ŝ represents the unit vector
associated with the Poynting vector. The angle between Ŝ and
ŝ is the same as the angle between the electric field vector
and the electric displacement vector for the same type of
polarization of the probing electromagnetic wave inside the
anisotropic material. The complex Hermitian Fresnel (ray)
ellipsoid

∑3
p,q=1 ε̃pqxpxq = 1 is always concentric with both

the indicatrix and absorption ellipsoid but its principal axes are
collinear only with the principal axes of the index ellipsoid for
a monochromatic probing wave [21]. If temporal dispersion is
present, then the Fresnel ellipsoid is only concentric with the
indicatrix.

When the substitutions above are inserted into
Eqs. (9)–(13), one obtains a general Fresnel equation and its

corresponding (eigen) solutions associated with the speeds of
the ray (energy) propagation in anisotropic crystals, respec-
tively:

v−4
ε,ε′,Ŝ

− c−2Uε,Ŝv
−2
ε,ε′,Ŝ

+ c−4(Vε,Ŝ − Wε′,Ŝ) = 0, (32)

and

(v±
ε,ε′,Ŝ

)−2 =
1
2Uε,Ŝ ±

√
1
4U 2

ε,Ŝ
− Vε,Ŝ + Wε′,Ŝ

c2
. (33)

D. Conclusion

In the present work the authors have put forward a general
theoretical treatment of low-power single-beam optical effects
in anisotropic crystals induced by externally applied static
or quasistatic (dc) external fields. This phenomenological
formalism may also be applied to other similar optical
effects induced by various kinds of dc vector fields such
as magnetic, mechanical, thermal, or concentration gradient
fields. The work does not involve any multiple-beam high-
intensity nonlinear optics effects induced by optical (ac) fields.
The general set of expressions and the system of necessary
and sufficient conditions derived for direct detection of true
higher-order effects without the interference of any false
lower-order ones are used in detail for the particular case
of the dc quadratic electro-optic effect which constitutes the
main topic of application of this work. These conditions
depend on the optical experimental configuration and the
point group symmetry of the anisotropic crystal in question.
Other similar effects, such as the dc electrogyration, dc
linear electroabsorption, dc circular electrodichroism, and dc
externally induced energy propagation are mentioned. The
current treatment can be adapted to describe (separately) the
optical effects of dc field-induced birefringence, absorption,
and ray propagation in anisotropic crystals for configurations
associated with both the linear and/or circular polarizations
of a single yet arbitrarily propagating low-intensity plane
electromagnetic wave. Finally, the current authors hope that the
theoretical findings of their present work will be very helpful
in guiding future experimentalists in their quest for the direct
determination, measurement, and tabulation of pure quadratic
or higher-order optical coefficients of anisotropic crystals
under the effects of externally applied dc vector fields. The
experimental values of these pure quadratic or higher-order
coefficients are very scarce, if almost nonexistent, especially
for noncentrosymmetric optical media.
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