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General model of optical frequency conversion in homogeneous media: Application
to second-harmonic generation in an ε-near-zero waveguide
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Traditional optical frequency conversion model is well improved in this work. In terms of the dyadic Green’s
function method, a set of coupled-amplitude equations is reduced under a proposed transition layer assumption,
accompanying the simultaneous integral equations. The model, as a generalization of the current frequency
conversion theory, is aimed at any one-dimensional thin film or bulk nonlinear structure, allowing for arbitrary
optical anisotropy and absorption without pumping and propagating limitations. The assumption reasonably
simplifies the strict nonlinear boundary conditions and enables the equations to yield exact radiative field
solutions. A field-enhanced phase-matching configuration is designed for second harmonic generation in a lossy
ε-near-zero material. The high contrast of refractive indices between a substrate (silicon) and the material traps
the harmonic wave inside and constructs a natural mirror reflection waveguide. A simulation in the lowest guided
mode predicts an efficiency enhancement proportional to the relative wave impedance to the fifth power under a
resonant condition.
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I. INTRODUCTION

Nonlinear optics has rapidly developed since it started in
the early 1960s after the laser emerged. Optical frequency
conversion (FC), as a kind of representative nonlinear pro-
cess, e.g., harmonic generation, frequency mixing, and in
a broad sense stimulated optical scattering, was found and
substantially applied to laser technology. FC, specifically
harmonic generation, in a single film is mainly for nonlinearity
measurement to characterize new materials and applications
in surface optical microscopy and sensing [1–3]. Apart
from applications in film coating, multilayer heterogenous
films have richer functions originating from a combination
of nonlinearity and Fabry-Pérot effect. With the advent of
photonic crystals [4], nonlinear optics in photonic band-gap
structures and microcavity structures were of interest due
to light confinement or field enhancement realized by the
increased mode density at band edges [4–8]. The nonlinearity
boost opened a way to create miniature photonic devices.
Moreover, the field enhancement can be greatly stimulated
in metamaterials by localized surface plasmons and surface
plasmon polaritons [9–11], and commonly is in accordance
with the near-zero permittivity (ε), permeability (μ), or both,
which interestingly produce a near-zero refractive index. The
ε-near-zero (ENZ) artificial materials were especially found
to demonstrate numerous extreme optical properties [12,13],
such as optical tunneling [14–16], perfect absorption [17–
19], enhanced emission [20–22], optical cloaking [23–25],
enhanced optical nonlinearities [26–31], and so on. Generally,
the Drude- or Lorentz-type model of permittivity demonstrates
an ε = 0 crossing point near the cutoff frequency (ENZ
frequency) in metals and some semiconductors, like indium
tin oxide, which show a plasma-like behavior [27,32–34].
Nanotechnology offers an abundant of routes to tailor ma-
terial parameters, including ε. Up to now, silicon-based
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photonic crystals and/or dielectric metamaterials [35–37] and
plasma-based metamaterials [38–40] are the most promising
candidates for nonlinear ENZ nanostructures. In these ENZ
materials, the field enhancement comes from the magnification
of the longitudinal electric field of a TM-polarized wave at
oblique incidence, based on the continuity of the longitudinal
electric displacement across an interface [41]. Harmonic
generation stimulated by field enhancement has created a large
rise in efficiency on the order of 102 in experiments [42–44].
Importantly, a phase-mismatch-free scheme was realized in
a zero-index multilayer metamaterial in 2013 [45]. It was
an important advance in application of bulk metamaterials
and found omnidirectional FC without phase matching (PM).
Another ideal design is to locate the FC at Dirac points (zero
Bloch vector at the � point) in nonlinear photonic crystals
[46], expected to be realized in practice. Though the zero-index
condition is not satisfied in the ENZ case, it still has the ability
to raise FC efficiency under a quite loose PM condition. It
is found in this paper that the conversion efficiency can be
enhanced further in the ENZ waveguide under a PM condition
during multipass second harmonic generation (SHG).

For these subwavelength nanostructures, the effective
medium approximation can be well applied [47–51], in
which the medium is homogenized as a normal bulk or
layered material with retrieved effective parameters (linear and
nonlinear susceptibilities). Therefore, a theoretical treatment
on the FC is accessible without resorting to any complicated
model associated with their internal constructions. The FC
process was first modeled by a set of coupled-wave equations,
governed by nonlinear polarization, which successfully un-
covered nonlinear optical phenomena in various bulk materials
[1,52]. In the infinite plane wave case of weak absorption, they
turn into coupled-amplitude equations (CAE, which we call
the standard model), as are widely applied now. In addition, a
few other methods have been developed for the FC in nonlinear
films. The first is to solve the nonlinear wave equations directly
through an inversion method given known wave vectors. The
solution is formulated as a superposition of particular solutions
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and homogeneous solutions [53–57]. The second is by the
dyadic [58–61] or matrix [62] Green’s function skill, based
on Berreman equations [63], to describe the solution as an
integral. In particular, Sipe got an exact result in the isotropic
case [59], which was used in simple ENZ materials [43,44].
However, for the nanostructures, the foregoing methods are
incapable of or too complicated for, in many cases, describing
new extreme optical phenomena, in that the ENZ materials
possibly take on large energy losses (like perfect absorption),
high anisotropy [64–67], and abnormal interfaces [5,68–70]. A
theoretical refinement is requisite in the face of these extreme
situations. Because of the following reasons, we start with
the standard model to further the FC theory by stages. First,
it demonstrates the principle of FC in by far the clearest
and easiest way. The foremost concept in nonlinear optics,
PM, is explicitly derived from the simple solution of a CAE
[52], which also holds in a quite small-sized material. The
CAE is quite easy to use for any pumping strength since it
presents a propagating FC process with simple mathematics:
the first-order differential equation. The standard model is the
best candidate for representing dynamic behaviors in a FC
process and for visualizing wave interaction and transmission.

At the microscopic scale, some phase-mismatched pro-
cesses become noticeable for the final FC as well. In a thin
film, the FC is a bidirectional process and can be divided
into a forward frequency conversion (FFC) and a backward
frequency conversion (BFC) [1,71–73]. The traditional CAE
does not include the BFC due to the well-known slowly varying
amplitude approximation (SVAA), and so cannot be directly
applied in wavelength-level materials. The BFC, obscured by
the SVAA, plays an important role in nonlinear materials
in the range of less than one wavelength. Hence, an exact
application of the CAE should take in the BFC. Recently,
it has been implemented for the third harmonic generation
in layer structures by an intuitive extension [72,73]. Another
limitation of the standard model is the normal incidence, as
this is the very reason it has to be abandoned in oblique
harmonic generation [74]. Oblique incidence is required for
generality and practice; e.g., a field-enhanced mode in an ENZ
metamaterial is near grazing incidence inside [41]. Finally,
the transmission of frequency converted waves is subjected
to strict nonlinear boundary conditions (BCs). The strict BCs
take account of all fields induced by the nonlinearity on the
boundaries. They were first considered by Bloembergen et al.,
who investigated the transmission of harmonic waves [54],
i.e., the reflection and refraction through an interface. But now
in most cases, they are directly replaced by the simple BCs
confined to the free electromagnetic waves. The legitimacy of
the a priori application should be evaluated in current theories.
The problems addressed above have to been considered in a
different model, and so become the central issues in this paper.

We therefore in this paper scrutinize the FC in a nonlinear
medium and present an application of SHG in a simplified
ENZ waveguide. The transmission modes in bidirectional FC
are analyzed in Sec. II, where the transition-layer assumption
of ignoring the nonlinear source at the interfaces is given as
well. A set of CAEs is derived in Sec. III by the dyadic Green’s
function method, exhibiting a form similar to the original CAE.
Subsequent discussions are conducted on the supplementary
BCs and the nonradiative (NR) field. Importantly, the CAEs

are extended to include a general permittivity tensor in Sec. IV.
The SHG in a nonlinear planar ENZ waveguide, formed
by silicon slabs, is expounded under the improved CAEs in
Sec. V, where the harmonic wave, as a lowest guided mode,
is selected at the ENZ wavelength. It is found that the SHG
possesses a noncollinear PM in a nearly counterpropagating
geometry. A simulation in PM configuration shows that the
conversion efficiency can be enhanced from the third to the fifth
power of the relative wave impedance in the weak absorption
case, where, however, only a square enhancement exists for a
wavelength-thick nonlinear ENZ material without PM.

II. THEORY PREPARATION

A. Nonlinear wave equations

Nonlinear optics was established by introducing a nonlinear
polarization vector PNL (radiating source), which can be
expanded as a power series of electric field [1]. It is a driving
source to activate various radiations and excitations. The FC
is a radiation process controlled by the nonlinear polarization
and yields electromagnetic waves at the same frequency. We
now consider a linearly polarized nonlinear source inside a
homogeneous film, ignoring the optical activity effect, whose
strength oscillates in accordance with a wave vector kP. The
Maxwell’s equations of electromagnetic fields with the angular
frequency ω are

∇ × E = iωB, (1a)

∇ × H = −iω(DL + PNL), (1b)

∇ · DL = −∇ · PNL, (1c)

∇ · B = 0, (1d)

where E, D, H, and B are the electric field, electric displace-
ment, magnetic vector, and magnetic induction, respectively.
In Eqs. (1), a definition D ≡ DL + PNL is used where the super-
script L denotes the linear part of the electric displacement and
NL denotes the nonlinear polarization. The term about current
density is simply folded into the linear electric displacement.
Compared to the typical Maxwell’s equations in a conducting
medium, the term −iωPNL can be regarded as a nonlinear
polarization current density J, and at the same time −∇ · PNL

is a nonlinear polarization charge density ρC. The continuity
condition ∇ · J + ∂tρC = 0 is naturally satisfied. So the film
is a special conducting material carrying prescribed current
and charge distributions. Therefore, solving Eqs. (1), in some
sense, is a radiation problem.

Through a direct derivation from Maxwell’s Eqs. (1) [75],
the electrical field E obeys the equations

(∇ × ∇ × E) − k2
0ε · E = k2

0

ε0
PNL, (2a)

ε0∇ · (ε · E) = −∇ · PNL, (2b)

where ε0 is the vacuum permittivity constant, ε is the
permittivity tensor, c is the light speed in vacuum, and a
convenient definition k2

0 ≡ μω2/c2 is used with the relative
permeability μ, a constant. A complex-valued extension of
ε, of course, predicts ohmic loss in a metallic medium, as
will be considered in the next section. Equation (2b) just is
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Eq. (1c) or the divergence of Eq. (2a), revealing the origin of
polarization charges from the irrotational part of the nonlinear
polarization. The electric field E is commonly expressed as a
radiative field ER (electromagnetic wave) adding a NR field
ENR. Field description will abide by the complex analytic
signal representation, where a real-valued field strength can
be represented as 2Re(E) = E+c.c. Besides, the time factor
exp(−iωt) is dropped as a convention which will be taken
throughout the paper.

It is suggested that if a nonlinear magnetization is consid-
ered, a nonlinear term iμ0ω∇ × MNL will appear on the right-
hand side of Eq. (2a), where μ0 is the vacuum permeability
and MNL is the nonlinear magnetization vector. Essentially the
extra term does not change the mathematics in Eqs. (2), so the
ensuing treatment is extendable.

B. Eigenmodes of forward and backward transmission modes

Without losing generality, the medium can be taken as an
anisotropic crystalline slab with a thickness l and two smooth
parallel surfaces. In a situation of general oblique propagating,
field symmetry strongly constrains the propagating directions
of free waves [59]. It is a consequence of light interference and
propagation. The following results are suitable for uniaxial
and biaxial media without a directional limitation on optic
axes. However, we still stipulate a simple situation for a better
illustration. In this way, the film is supposed to be a uniaxial
crystal-like medium with the optic axis being in the plane of
incidence, shown in Fig. 1(a) where an acute angle θ0 is made
by kP with the z direction.

It is appropriate to accept that the film system (including
the shape of the film, the nonlinear source, and the initial
and boundary conditions) possesses a space translational
symmetry in the x direction [1]. Therefore, the FC, as a
part of the system, has the same symmetry and must own a
wave vector whose x component is kx = kP cos θ0 for both the
forward and backward branches, where the “forward” indicates
a propagating direction close to kP and the “backward”
represents one in a reflected direction. It is well known in
crystal optics that there are two kinds of permitted eigenmodes:
One mode is the extraordinary light having a refractive index
related to its propagating direction and having a walk-off
effect, while the other is the ordinary light having a fixed
refractive index. Considering these transmission modes, there
are two sets of wave vectors (kF1, kF2) and (kB1, kB2), where the
subscript 1 is for the transverse magnetic (TM) or extraordinary
light and 2 for the transverse electric (TE) or ordinary with
polarizations perpendicular to each other indicated by âF1

(âF2) and âB1 (âB2), in which F and B denote FFC and BFC,
respectively. In this case, the backward wave vector kB, not
like the case of normal incidence, is not the inversion of
the forward one kF, since they have the same wave-vector
component kx . The Huygens principle in optics helps us to
understand the paired orientation. It regards every point in a
slice located at an arbitrary position (z = z′) as a secondary
radiating source [75], emitting a spherical wave, as sketched
in the middle of Fig. 1(a). Hence, the wave fronts formed by
the envelopes suggest the forward- and backward-propagating
directions. The above results are for a source with a fixed
wave vector. When there are several nonlinear sources with
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FIG. 1. Schematic of the eigenmodes of the electromagnetic
waves generated in a FC process, driven by a planar sheet nonlinear
source at z′ with a fixed wave vector kP, where the forward and
backward wave vectors of the four possible modes are illustrated (a)
with seriate spherical wavefronts radiated at the sampled secondary
source points. The geometries of the transmission modes in the plane
of incidence (b) and of the modes (c) in three-dimensional (3D)
coordinates are shown, where â2 for âF2 or âB2, S for a Poynting
vector.

wave vectors having different kx , more eigenmodes will be
involved, as is possible for multiple reflection inside or for an
artificially patterned structure [5,69], where the engineered
surface permits numerous spatial frequencies of different
orders.

The polarization is taken as the total electric moment per
unit volume, e.g., in a dielectric material, which comes from
massive molecule dipoles. So a molecule dipole, as the basic
unit of polarization source, radiates electromagnetic waves
in all directions. Numerous aligned molecules radiate as an
antenna array does. The wave vectors thereby exist in all direc-
tions. In this sense, a superposition of various electromagnetic
radiations from a phased array of dipoles enables an effective
FC, which only takes place in some directions of interference
enhancement, such as kF, kB in our case.

C. Transition layer assumption

As the boundaries are concerned, there is a surface nonlin-
earity at the interface due to a breaking of spatial symmetry
of nonlinearity in the normal direction and a discontinuity of
field distribution [3,58]. The surface nonlinearity can be added
into bulk terms and will not be considered separately.

The strict BCs are inconvenient to apply for differential
and integral equations since they relate to all nonlinear
fields. The boundary issue, nevertheless, can be circumvented
by a transitional process without incurring an appreciable
influence. As Fig. 2 shows, we assume there is an extremely
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FIG. 2. Transition layer of an infinitely small thickness δh in
which the nonlinear polarization grows quickly to the normal from
a linear medium to a nonlinear medium. One similar transition layer
is on the other side, where the nonlinear polarization goes quickly
down to zero.

thin transition layer on each surface, where the nonlinear
susceptibility rises (falls) quickly from zero (the normal) and
reaches the normal (zero) when light goes past the layer. The
layers will then not affect the reflection and refraction of free
waves.

At the beginning of the transition layer z = 0− or l+, there
will not be any FC process. The layer thickness δh is far
less than l so it will not bring a detectable disturbance in the
entire FC process and we can formally let δh → 0 to gradually
remove the influence of the transition layers. Since the FC
is an accumulated radiating process, it will be described as
an integration over all sheet sources along the propagating
direction. The possible errors, relying on the variation of
radiant flux generated from the transition region, decrease with
the layer size. So, the transition layer assumption is expected to
predict an exact result when close to the limitation. In this way,
an effective field point is confined in the interior sandwiched
by the two transition layers, which removes the influence of
interface effect and makes the BCs easy to apply. In summary,
we briefly recap the transition layer assumption as three points:
(i) the derivative of the amplitude A of a radiative field and
induced NR fields are zero:

∂A
∂z

= 0, ENR = HNR = 0, (3)

at z = 0 and l, which are the supplementary BCs; (ii) a field
point is within the slab interior 0+ < z < l−; and (iii) the
radiative fields can be taken as free waves on the boundaries,
as a deduction of point (i).

Actually, the assumption seems more like an equivalent
relation than an approximative condition, so it gives rise to
exact solutions of a FC, based on the supplementary BCs. This
assumption was directly used by Shen to explain BFC [1] and
was implicitly applied in standard [52] and integral models
[59] by accepting assumption point (iii). The validity of the
assumption is associated with the resulting NR field and will
be discussed in Sec. III C.

III. MODELING

A. Dyadic Green’s function

We now consider the oblique propagation of infinite plane
waves as that in Sec. II B and simply let the optic axis of
the uniaxial film be in the plane of incidence, the x-z plane.
Variations of fields will then be limited in the (x, z) domain.
For convenience, all hatted letters below denote unit vectors
associated with some related physical quantities in use.

The formulation below will adhere to the dyadic Green’s
function method from Eq. (2a), which will demonstrate an
intuitive physics from its clear analytic representation. In terms
of Eq. (2a), the involved Green’s function G can be written
as [76]

(∇×∇×G)−k2
0ε · G = I exp[ikx(x − x ′)]δ(z − z′), (4)

where G = G(r,r′) with r = xx̂ + zẑ and r′ = x ′x̂ + z′ẑ
represents a particular dyadic field at the field position r,
generated at the source position r′ (see Fig. 1), δ(·) is the
Dirac function. G commonly includes all the wave components
radiated by the highly localized planar source at z′ multiplied
by the unit dyadic (matrix) I , whose element Gij denotes
the ith component of the radiative field produced by a unit
nonlinear source polarized along the j th coordinate axis. Out
of the exchange symmetry of Green’s function between the two
points r and r′, it must contain the phasor exp[ikx(x − x ′)],
which is the phase distribution on the source plane. For the
orientation of the optic axis in the given reference system, ε

has a simple matrix form⎡
⎢⎣

ε11 0 ε13

0 ε22 0

ε31 0 ε33

⎤
⎥⎦, (5)

where the subscripts 1, 2, 3 correspond to x, y, z coordinates,
respectively. Since the permittivity tensor must be symmetric,
we have ε13 = ε31. To convert Eq. (4) into a matrix equation,
we first use the identity

∇×∇×G = (∇∇ − ∇2 I) · G (6)

to transfer the operations of cross product into ones of dot
product. Second, the operator on the left-hand side of Eq. (4)
should be organized as a symmetrical matrix⎡

⎢⎣
− ∂2

∂z2 − k2
0ε11 0 ikx

∂
∂z

− k2
0ε13

0 k2
x − ∂2

∂z2 − k2
0ε22 0

ikx
∂
∂z

− k2
0ε31 0 k2

x − k2
0ε33

⎤
⎥⎦ (7)

by use of matrix (5) and identity (6). Here, the replacement
∂/∂x → ikx is performed due to the mentioned phasor. From
now on, the phasor will be dropped out in Gij for a concise
manipulation except in its dyadic representation. Finally, a
matrix equation results from Eq. (4) by insertion of matrix (5).
It is found that the TE component in G with the polarization
normal to the paper is independent of other components. That
means the dyadic Green’s function can be decomposed into a
direct sum of G22 and a 2 × 2 submatrix Gt belonging to the
(x,z) subspace, i.e., G = G22⊕Gt (G22ŷŷ + Gt in a dyadic
form), ensured by the similar decomposition ε = ε22⊕εt. From
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matrix (7), G22 satisfies(
∂2

∂z2
− k2

x + k2
2

)
G22 = −δ(z − z′). (8)

In this case, the forward and backward waves have the same
wave constant kF2 = kB2 = k2. Just like that in an isotropic
medium, a planar source at z′ will radiate symmetrically and
the electromagnetic waves radiate forward and backward with
the same amplitude. Via a standard method, the solution of
Eq. (8) can be obtained by a combination of homogeneous
solutions, i.e.,

G22(z,z′) = i

2k2z

{
(z − z′) exp[ik2z(z − z′)]

+ 
(z′ − z) exp[−ik2z(z−z′)]}, (9)

where k2z = k2 · ẑ, k2
0ε22 = k2

2, and 
 is the Heaviside func-
tion. Note that the bidirectional radiative fields possess the
same wave-vector component kx . For Gt, Eq. (4) gives rise to
two TM modes propagating along kF1 and kB1 illustrated by
the sketch in Fig. 1. Combining matrix (7) and Eq. (4) reduces
into Eq. (8) plus a 2 × 2 matrix equation of Gt with a form[

∂2

∂z2 + k2
0ε11 k2

0ε13 − ikx
∂
∂z

k2
0ε31 − ikx

∂
∂z

k2
0ε33 − k2

x

][
G11 G13

G31 G33

]

= −δ(z − z′)
[

1 0

0 1

]
. (10)

On equating each matrix element in the two sides of Eq. (10),
we get four differential equations. They are two homogeneous
equations from the off-diagonal elements(

k2
0ε31−ikx

∂

∂z

)
G11+

(
k2

0ε33−k2
x

)
G31 =0, (11a)

(
∂2

∂z2
+k2

0ε11

)
G13+

(
k2

0ε13−ikx

∂

∂z

)
G33 =0, (11b)

and two nonhomogeneous ones from the diagonal elements(
ikx

∂

∂z
− k2

0ε31

)
G13 + (

k2
x − k2

0ε33
)
G33 = δ(z − z′),

(12a)(
ikx

∂

∂z
− k2

0ε13

)
G31 −

(
∂2

∂z2
+ k2

0ε11

)
G11 = δ(z − z′).

(12b)

Since G31 = G13 due to the symmetry of Eq. (10), only three
of them are independent. It is easy to find that if G11 is known,
then G13 and G33 can be determined step by step. Eliminating
the off-diagonal components by grouping Eqs. (11a) and (12b)
leads to[

ε33
∂2

∂z2
+ 2ikxε13

∂

∂z
+ k2

0 det(ε) − ε11k
2
x

]
G11

= −ξ0δ(z − z′) (13)

with ξ0 = ε33k
2
0 − k2

x . The homogeneous solutions are of
bidirectional electromagnetic waves with the wave vectors kF

and kB, where the subscript 1 denoting the first eigenmode

is omitted for concision and the longitudinal components
of the two wave vectors are kFz = kF · ẑ and kBz = −kB · ẑ,
respectively. By use of the relation ∂/∂z → ikFz or −ikBz, the
resulting wave constant is

kFz/Bz = ε−1
33 [

√
ξ0 det(εt) ∓ kxε13] (14)

with “−” for F and “+” for B, as can alternatively be achieved
by the Fresnel equation in crystal optics. As such, a related
polarization direction âF/B can be determined. The nonhomo-
geneous solution of Eq. (13) represents the x component of
the electric field radiated by the same x component of the
planar source at z′. For the component of source along x̂, the
source plane can be taken as an interface with zero thickness.
Thus, the continuity condition of the in-plane (x̂) field across
the interface requires an identical radiative field component
for bidirectional FC. Hence, we can introduce a tentative form
similar to solution (9)

G11 = G0[PhF(z,z′) + PhB(z,z′)], (15)

where Phn(z,z′) ≡ 
[±(z − z′)] exp[ ±iknz(z − z′)] repre-
sents a unidirectional wave with n = F in the “+” case or
B in the “−” case, and the constant G0 will be determined
by a direct algebraic calculation when putting the ansatz into
Eq. (13). At last, we have

G0 = iξ0

k2
0ε33(kFz + kBz)

= i
âF · x̂

2kF · ŝF
= i

âB · x̂
2kB · ŝB

(16)

with the help of Eq. (14) and Eqs. (A6), (A8), and (A9) in
Appendix A. Here, ŝ indicates the unit vector of the time-
averaged complex Poynting vector S = E× H∗, perpendicular
to the polarization direction âF/B according to the definition of
energy flux density. Evidently, only the eigenmodes with a
polarization direction having a nonzero x component can be
generated. Finally, the whole solutions are as follows:

G11 = 1

2

∑
n=F,B

±i(ân · x̂)2

(k · ŝŝ)n · ẑ
Phn(z,z′), (17a)

G13 = 1

2

∑
n=F,B

±iân ·x̂ân ·ẑ
(k · ŝŝ)n · ẑ

Phn(z,z′), (17b)

G33 = 1

2

∑
n=F,B

±i(ân · ẑ)2

(k · ŝŝ)n · ẑ
Phn(z,z′) − δ(z − z′)

k2
0ε33

, (17c)

where “+” for n = F and “−” for n = B, and Eq. (A9) is used
to form the Green’s function fields. In the derivation process,
the relations used in Eqs. (17) are regulated in Appendix A.
Each component of the dyadic Green’s function in Eqs. (17)
demonstrates a clear bidirectional radiation process of the
simultaneous FFC and BFC. The factor (k · ŝŝ)n · ẑ = kn ·
ŝnŝn · ẑ in the denominators can be written as ân× (kn× ân) · ẑ,
illustrating the energy flux density of an electromagnetic wave
of a unit amplitude through the x-y plane. The singular
distribution including δ(z−z′) in G33 represents an induced
local field, formed by an extremely thin dipole layer, the planar
NR source. The nonlinear area polarization charges produce
an electric field normal to the layer. The Green’s function will
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FIG. 3. Clockwise-directed curve L over the film section S, a
rectangle, which is divided into four parts as L1 and L3 with a length
2w along the x direction, L2 and L4 with a length l along the z

direction, respectively.

turn into the same expression as that of Sipe’s formulation,←→
G EP in original Eq. (2.43) [59], when neglecting anisotropy.

B. Coupled-amplitude equations

To acquire a radiative field solution, the Green’s integral
formula should be carried out over an area through the film.
Let us see a narrow rectangular area S as a section of the film,
shown in Fig. 3, where S is bounded by a closed curve L with
an outward unit vector n̂. Accordingly, the electric field E can
be described as an area integral over the source space S and a
close line integral around its boundary L

2wE(r) = k2
0

ε0

∫
S

G(r,r′) · PNL(r′)dS

+
∮
L

(G × ∇′ × E′ − E′ × ∇′ × G) · n̂ dL,

(18)

where E′ = E(r′) and the primed derivative ∇′ applies at the
source point r′. Equation (18) comes from the Green’s vector
identity

∫
S

[ E′ · (∇′ × ∇′ × G) − G · (∇′ × ∇′ × E′) ]dS

=
∮
L

(G × ∇′ × E′ − E′ × ∇′ × G) · n̂ dL (19)

in terms of the exchange symmetry E′ · ε · G = G · ε · E′. The
closed line integral is evaluated along the curve L, around
a rectangle area S, in the outward direction denoted by the
unit vector n̂, which is −ẑ at z′ = 0 and ẑ at z′ = l. When
pushing w to infinity, the integrals on the paths L2, L4 are
small enough compared with those on the paths L1, L3, and
so can be neglected in Eq. (19). In addition, the integrands
are independent of the variable x ′, so the integrals on the two
lines (L1 and L3) can be taken easily for an arbitrary vector
function F: (2w)−1

∫ w

−w
Fdx ′ = F, which is used in Eq. (18).

A similar case exists in the area integral over S. So, Eq. (18)
can be further written as

E(r) = k2
0

ε0

∫ l

0
G(r,r′) · PNL(r′)dz′

+ [(∇′× E′) · (n̂×G) − (n̂×E′) · (∇′×G)]|z′=l
z′=0.

(20)

Given all the transmission modes, independent of each other,
the electric field and the nonlinear polarization can be factored
as

E(r) =
∑
n,m

Anm(z) exp(iknm ·r)ânm+ENR(r), (21a)

PNL(r) = ε0PNL(z) exp(ikP · r)p̂, (21b)

where ENR is the NR field, having the same phasor as the
nonlinear polarization, n indicates F or B, m = 1,2 represent
different polarization modes of the coupling waves. According
to point (iii) in the transition layer assumption, we have ∇′ →
±iknm. Hence, inserting Green’s functions (17) into Eq. (20)
yields

AFm(z) = AFm(0) + ik2
0 âFm · p̂

2(k · ŝŝ)Fm · ẑ

×
∫ z

0
PNL(z′) exp(i�kFmz′)dz′, (22a)

ABm(z) = ABm(l) − ik2
0 âBm · p̂

2(k · ŝŝ)Bm · ẑ

×
∫ l

z

PNL(z′) exp(i�kBmz′)dz′ (22b)

with the phase mismatch

�knm ≡ (kP − knm) · ẑ, (23)

where supplementary BCs (3) and assumption point (ii) are
imposed. The factor (k · ŝŝ)nm · ẑ in the denominators, for ease
of computation, can be written as knm cos β cos θs [the angles
β and θs are shown in Fig. 1(b)]. The initial amplitudes AFm(0)
and ABm(l) will be determined by the BCs. On the ground of
the physical implication of the Green’s function, Eqs. (22) are,
in essence, the superposition of dephased free electromagnetic
waves. The integral equations, equivalently, correspond to the
following differential equations:

dAnm

dz
= ik2

0 ân · p̂
2(k · ŝŝ)nm · ẑ

PNL(z) exp(i�knmz). (24)

The equations are able to describe a complete FC process
instead, each of which formally has an expression similar to
the original CAE. In practice, the nonlinear source may include
a number of wave vectors, in the presence of diverse nonlinear
coupling processes or multiple light pumping. Hence, the
equations above can be immediately extended to a general
form

dAnm

dz
=

∑
kP

ik2
0 ânm · p̂(kP)

2(k · ŝŝ)nm · ẑ
PNL(z,kP)

× exp[ i�knm(kP)z], (25)
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where all kPs must have the mutual component kx in the x

direction. If there are different values of kx , like noncollinear
pumping and diffraction from structured interfaces [5,69],
more CAEs belonging to different kx should be built in an
analogous way. It can be seen that there is an obvious obliquity
effect, i.e., the PM takes place in the normal direction denoted
by Eq. (23), and the obliquity factor ŝ · ẑ = cos θs shows that
an effective light interaction is along the direction of the energy
flux, not that of the wave vector. For a specific FC process, the
term in the numerator of the CAEs is commonly written as a
well-known form in the electric dipole approximation

â · p̂PNL = â · χ (q)(ω = ∑
ωi)(

q

· )B1(ω1) · · · Bq(ωq)Dq

= â · χ (q)(q· )b̂1 · · · b̂qB1 · · ·BqDq

= χ
(q)
eff B1 · · ·BqDq (26)

for a qth-order nonlinear process, where (q· ) denotes q times
contractions or dot products, Bi = b̂iBi are the pumping fields
in specified polarization directions, and Dq is the degeneracy
factor. The calculation of the effective susceptibility should be
taken in the crystallographic axis coordinate system, where
the nonlinearity possesses a simplest form due to space
symmetry. Thus a determination of the effective susceptibility
χ

(q)
eff is pivotal to a FC process. Equations (25) are rigorous,

which will be discussed in the next subsection, and can
be applied in any scale FC. The nonlinear magnetization
can be considered in the equations without effort, and is
omitted here. This is the central result in this paper, indicative
of a generalization of the standard model to the oblique
propagation without SVAA. In Sec. IV, it will be confirmed
that Eq. (25) hold in a general case, e.g., a case in which the
optic axis is not in the plane of incidence or the medium
has an optical biaxial symmetry, where the triad (k̂, ŝ, ẑ)
is possibly a noncoplanar orientation. Under the transition
layer assumption, the transmission through boundaries with a
pumping from outside can be readily handled through a known
method, like the matrix optics.

The final equations are also suitable for lossy media
by introducing a complex permittivity tensor, which gives
rise to the complex wave vectors kP and k. The phase
distribution k · r includes an imaginary part proportional to
z [75]. In this case, the constant amplitude surface, parallel
to the interface, generally does not coincide with that of
the constant phase front, so the complex wave vector k
can be equivalently factored as a real part kR = ωc−1nRk̂R

adding an imaginary component ki = ki ẑ = ωc−1ni ẑ, which,
by k = ωc−1ñ, denotes a complex vector index of refraction

ñ ≡ nx x̂ + (nz + ini)ẑ = nx x̂ + ñzẑ

= nRk̂R + ini ẑ. (27)

Hence, all development in this paper can straightforwardly
be extended to lossy media with a complex index component
ñz. For a light ray, k i in fact is an effective coefficient of
absorption (σ ) in the z direction. The refractive indices in this
case generally have a directional dependence on θ , as will be
shown later.

There are remarkable features for the renewed model in the
lossy media. The unit vectors ŝ, â, defined in Appendix A,
and p̂ become complex valued for the TM waves (similar
in the TE case), which brings additional phase factors in
fields. Therefore, a longitudinal component is present in
the electromagnetic field, which no longer is an ordinary
linear polarization. This peculiar polarization state is wholly
represented by the complex unit vector â. Specifically, it is
proportionate to ñzx̂ − nx ẑ due to ñ · â = 0 in the isotropic
approximation. So the electric field has a relation

E ∝ â = ax x̂ + azẑ = (ñzx̂ − nx ẑ)(ñ · ñ)−1/2

= [|ñz|eiφx (θ)x̂ + nxe
iφz(θ)ẑ]|ñ · ñ|−1/2, (28)

which demonstrates that the fields in the x and z components
carry different phases. For instance, the nonlinear source â ·
P in a second-order nonlinear process leads to an effective
susceptibility

χ
(2)
eff = â · χ (2)(ω = ω1 + ω2) : b̂1b̂2

=
∑
i,j,k

aiχ
(2)
ijkb1j b2k, (29)

where b̂1/2 represents the polarization directions of two
pumping fields. Expression (29) implies that the complex
components from â and b̂ will cause various interferences
by superposition, which is more complicated than that of
a loss-free medium. In addition, the factor k · ŝŝ · ẑ reduces
to ωc−1ñz in the isotropic case. In an ENZ material, the
complex refractive index ñz will play an important role in
the enhanced nonlinearity. Comparatively, the original model
is only associated with a real refractive index nR in a normal
incidence case, the difference in which will be attributed to the
weak absorption approximation. It should be noted that the
amplitude in this case is not A but

A(z) ≡ A(z) exp(−k iz), (30)

according to a general definition. It can be proved that a real
Poynting vector can be expressed as

SR ≡ S + S∗ = 2nR(μ0μc)−1|A|2ŝR, (31)

where the real flux direction ŝR �= k̂R, exhibiting the anisotropy
in another way.

C. Nonradiative field and boundary conditions

The last term in solution (17c) gives rise to the rest part of
the particular solution

ENR(r) = − 1

ε0ε33

∑
kP

PNL(z,kP) · ẑẑ. (32)

This NR field is along the normal direction to the film,
independent of the direction of polarization. It can be taken
as an inductive electric field in response to the nonlinear
polarization current and/or charge density. From the point
of view of energetics, the radiated energy is continuously
transformed from the nonlinear polarization energy formed
by a pumping process [1], whereas a fraction of the energy is
stored in the medium to form a bound field. It is found from
the Poynting vector that the stored polarization energy seems
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to flow and to be guided in the film, carried by the rotational
component of the NR field. In fact, it will be seen that the
energy flux is canceled off by the growing radiative fields.
One may not pay attention to the local field inside the film, but
it has to be considered in reflection and transmittance through
the boundaries. However, equivalently in physics, we can use
the transition layer assumption to reasonably wipe out the NR
field. Hence, the BCs are still suitable for the radiative fields,
but with supplementary condition (3). This conclusion will be
justified below.

Two widely used field BCs are

ẑ × δE = 0, ẑ × δH = 0, (33)

where δE and δH are the differences of the electric fields and
magnetic vectors across a boundary, respectively, which means
the continuity of their tangential components. The radiative
field can be taken as a superposition of free electromagnetic
waves locally, so they satisfy the first boundary condition in
Eqs. (33) automatically. There is no NR field outside, so it
can be well understood that the continuity of the tangential
component of radiative fields on the boundary makes the NR
field survival only in the normal direction inside, so it is absent
in the first equation of Eqs. (33). Since the boundary terms in
Eq. (20) are a collection of forward and backward free waves
and can be absorbed into AFm(0) and ABm(l), the general
solution forms as Eqs. (22) still hold without assumption (3)
and will be used in a subsequent analysis, for it does not lose
a generality.

We can decompose the total field E into three kinds of
electric fields as EFm, EBm, and ENR with a clear indication by
the subscripts as usual. It is known that the magnetic vector
H is a curl of the electric field, i.e., (iωμ0μ)−1∇ × E, so the
magnetic vector within the nonlinear medium relates to

∇ × E = i
∑
n,m

knm × Enm + ikP × ENR

+ ẑ ×
∑
n,m

∂Anm

∂z
exp(iknm · r)ânm (34)

by a constant, where the relation ∇×ENR = ikP×ENR is
applied, as directly follows from Eq. (32). On the right-hand
side of Eq. (34), the first � term represents the sum of the
propagable magnetic field components of all transmission
modes, the second term is the local (or bound) magnetic field
induced by the local electric field, and the last � indicates
another kind of local magnetic field inspired by the radiative
fields. Next, we will prove via Eq. (25) that all the local
magnetic fields with the wave vector kP vanish, i.e.,

ikP×ENR + ẑ×
∑
n,m

∂Anm

∂z
exp(iknm · r)ânm = 0, (35)

so Eq. (34) will become

∇ × E = i
∑
n,m

knm × Enm. (36)

In such a way, the local field does contribute but does not
appear in the magnetic vector formula which renders a sound
property that the strict nonlinear BCs are formally irrelevant
to the NR field. For the sake of brevity, the second subscript

m for different modes are simply omitted until the end of this
subsection.

The x component of Eq. (35), pertinent to the TE light
polarized along the ŷ direction, turns into

p̂ ·
(

âFâF

kF · ŝFŝF · ẑ
+ âBâB

kB · ŝBŝB · ẑ

)
× ẑ = 0. (37)

Owing to the identities âF = âB, k̂F/B = ŝF/B, and kF · ẑ =
−kB · ẑ, the validity of Eq. (37) is straightforward. The y

component of Eq. (35) is about the TM light polarized in the
x-z plane and gives rise to

p̂ ·
[
k2

0

(
âF

2kF · ŝF
− âB

2kB · ŝB

)
+ kx

ε33
ẑ
]

= 0, (38)

where the relations |ẑ × âF| = ŝF · ẑ, |ẑ × âB| = −ŝB · ẑ are
used. Substituting Eqs. (A6) and (A8) into Eq. (38) makes it
hold for an arbitrary p̂, so the proof ends.

Equations (35) or (36) can be developed into two exact
nonhomogeneous BCs at z = 0, l, suitable for integral solution
(20). However, they are still difficult to apply in CAEs. In most
cases, the radiative field solutions are concerned only, so we
can make a finer simplification on magnetic fields to readily
figure out the boundary problem without breaking condition
(35). The cheapest way is to negate each term in Eq. (35) by
setting the nonlinear source zero at the interfaces. It follows
that the radiative fields propagate like free electromagnetic
waves with constant amplitudes near the boundaries, which
is just what the transition layer assumption amounts to.
Hence, the simple BCs, a combination of conditions (33) and
supplementary conditions (3), thoroughly solve the boundary
issue. Equation (36) also shows the vanishing of the total local
magnetic field and therefore an absence of local energy flux
inside the film.

In another way without the transition layer assumption, by
applying condition (36) to the boundaries, Eq. (20) generates
the same solutions as Eqs. (22) and (32), where a reduction
of the curl of the dyadic Green’s function, a crucial step
to derive Eqs. (22) from condition (36), is elaborated in
Appendix B. This formulation further validates the transition
layer assumption by the uniqueness theorem of time-varying
electromagnetic field.

Certainly, conditions (3) differ from Eq. (35) in that the
latter still demands a growing field amplitude but the former
leads to a locally invariant one near the boundaries. However,
assumptive conditions (3) are more convenient to use if we
can make a little sacrifice of the exactness on surfaces. It
should be mentioned that in the traditional standard model, an
approximation is hidden behind the nonlinear polarization, in
which

PNL
R (ω) = ε0χ

(2) : ER(ω1)ER(ω2) + · · · , ω = ω1 ± ω2,

is addressed to replace the well-known expansion of the
nonlinear polarization

PNL(ω) = ε0χ
(2) : E(ω1)E(ω2) + · · ·

= ε0χ
(2) : [ER(ω1)ER(ω2) + ENR(ω1)ENR(ω2)

+ ER(ω1)ENR(ω2) + ENR(ω1)ER(ω2)] + · · · .
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To be more exact, they are different since the last expression
permits some nonlinear interactions associated with the NR
fields. For the second-order χ (2) process in nonlinear optics,
the ordinary frequency converted radiative field is only
related to the leading term including ER(ω1)ER(ω2). However,
there are other polarization sources proportional to, such
as ENR(ω1)ENR(ω2), inducing classic dipole electromagnetic
radiation, ER(ω1)ENR(ω2) and ENR(ω1)ER(ω2), leading to a
coupling between the two kinds of fields. These radiation pro-
cesses together, requiring some special nonzero components of
χ (2), produce a real total radiative field ER(ω). They will play
a role in intense field physics or in nonlinear ENZ materials. In
particular, for ENZ materials with ε33 → 0, ENR may produce
a stronger interaction and broaden a nonlinear process by like
producing cascaded harmonic generation.

IV. GREEN’S FUNCTION FOR A GENERAL
PERMITTIVITY TENSOR

For a general permittivity tensor ε without vanishing
elements, it becomes complicated to handle the equation of the
dyadic Green’s function. However, the FC mechanism, i.e., the
nonlinear source’s bidirectional radiation of four transmission
modes, does not change in essence. Here, we only discuss a
physical generalization of the Green’s function and the CAEs.

An arbitrary dyadic Green’s function can be expanded as

G(r,r′) = GNRδ(z − z′) exp[ikx(x−x ′)]

+
∑
n,m

GnmPhnm(r,r′), (39)

where the definition Phnm(r,r′) ≡ 
[±(z−z′)] exp[iknm ·(r−
r′)] is the like of Phn(z,z′) in Eq. (15), Gnm represents a single
dyad being associated with the radiative field polarized along
ânm, and GNR is a dyad element of the NR field. ânm still
denotes an eigenmode of four kinds of electromagnetic waves,
which are commonly classified as “slow” and “fast” modes
according to their refractive indices. In terms of the meaning
of the Green’s function, they satisfy

Gnm · p̂ ∝ ânm, GNR · p̂ ∝ ẑ (40)

for an arbitrary unit vector p̂, denoting the direction of the
nonlinear polarization. The last relation in Eq. (40) holds
because the NR field must be normal to the film surface, along
the z axis, as a nonpropagating field. It can be proved that there
are two kinds of unit vectors: â⊥1

nm and â⊥2
nm, and they should be

perpendicular to ânm and so to Gnm, i.e.,

â⊥1,2
nm · ânm = 0, â⊥1,2

nm · Gnm = 0. (41)

In an analogous way, we have

x̂ · GNR = 0, ŷ · GNR = 0. (42)

All these lead to

Gnm ∝ ânmâ′
nm, GNR ∝ ẑN̂ (43)

since the rank of Gnm and GNR is 1, where â′
nm and N̂ are

two unknown unit vectors, but are fixed by the symmetry of
G. Based on a 3 × 3 matrix equation, similar to Eq. (10),
it can be found that the Green’s function still is a symmet-
rical dyadic function for the forward (z > z′) and backward

(z < z′) radiation and for the NR case (z = z′), so there is
only one suggestion consistent to Eq. (B1) in Appendix B, i.e.,
â′

nm = ânm, N̂ = ẑ. Consequently, Eq. (39) can be rewritten as

G(r,r′) =
∑
n,m

CnmânmânmPhnm(r,r′)

+ CNRδ(z − z′)ẑẑ exp[ikx(x−x ′)], (44)

where knm and ânm can be determined in the crystal optics
method and the coefficients Cnm and CNR need to be figured out.
Certainly, a formal solution (44) must obey Eqs. (4) and (20).
By inserting Green’s function (44) into Eq. (20), we obtain

E(r) = k2
0

∑
m=1,2

[
CFm

∫ z

0
PNL(z′) exp(i�kFmz′)dz′

× exp(ikFm · r)âFmâFm · p̂

+ exp(ikBm · r)âBmâBm · p̂

× CBm

∫ l

z

PNL(z′) exp(i�kBmz′)dz′
]

+ CNRPNL(r) · ẑẑ + EEM(r). (45)

The terms in the square bracket of Eq. (45) are the radiative
fields with varying amplitudes, characterizing the FFC and
BFC processes. EEM comes from the boundary terms in
Eq. (20), i.e.,

EEM(r) = [(∇′× E′) · (n̂×G)−(n̂×E′) · (∇′×G)]|z′=l
z′=0,

(46)

which is the propagating form of free electromagnetic waves.
It can therefore be written as another form:

EEM(r) ≡
∑
n,m

A′
nm exp(iknm ·r)ânm. (47)

From the expression of EEM and Eq. (45), it is found that A′
nm

must be the radiative field amplitude on the boundaries. So,
we have

A′
Fm = AFm(0), A′

Bm = ABm(l). (48)

However, there are some cross terms of the four transmission
modes in Eq. (46). These cross terms imply that the variation
of the electromagnetic wave of one eigenmode influences the
propagation of the others. This should not happen since all the
transmission modes are independent. Then we have to accept
the following relation,

[ânm× (k× â)n′m′ + ân′m′ × (k× â)nm] · ẑ = 0, (49)

to remove the cross terms, where at least n �= n′ or m �= m′. The
verification of relation (49) is shown in Appendix C. Denoted
by Eq. (C7), this condition is equivalent to the fact that the
Poynting vectors of different transmission modes present no
interference to each other in the normal direction. According
to the transition layer assumption and the relation

[â× (k× â) = k · ŝŝ]nm, (50)

we obtain

Cnm = ±i[2(k · ŝŝ)nm · ẑ]−1 (51)
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again through Eqs. (46) and (48), where “+” denotes the FFC
and “−” denotes the BFC. Then, Eqs. (22) and (25) hold in a
general case.

The NR field can be found without the transition layer
assumption. The radiative fields propagate and reflect through
the film interfaces as electromagnetic waves do. Besides, any
free wave with the same magnitude and eigenmode as the
radiative field must satisfy conditions (33), so we conclude
that the dyadic Green’s function does not produce any local
magnetic field; otherwise, it will break the magnetic BC in
(33). This yields

ẑ ×
∑

m=1,2

(CFmâFmâFm − CBmâBmâBm) − ikxCNRŷẑ = 0.

(52)

Relation (52), as a generalized form of Eqs. (37) and (38),
does not restrict itself on the boundaries. In fact, relation (52)
is consistent to Eqs. (48) and also is a necessary condition
in Eq. (4) to get rid of the derivative of the Dirac δ function
δ′(z−z′), where the details are omitted here. At the same time,
identity (36) can result again by this relation.

Now, to acquire the coefficient CNR, let us see the z

component of Eq. (2a)

ε0ẑ · (∇×∇×E) − ε0k
2
0 ẑ · ε · E = k2

0 ẑ · PNL, (53)

where the curl of the magnetic field can be expressed as

∇×∇×E =
∑
n,m

(
iẑ

∂

∂z
− knm

)
× (k× âA)nm (54)

by insertion of identity (36). Substituting Eqs. (54) and (C1)
into Eq. (53), we get

−ε0ẑ · ε · ENR = ẑ · PNL. (55)

It is just Eq. (32) for a fixed kP and directly leads to CNR =
−(k2

0ε33)−1.
Green’s function (44) can be taken as projection operators

onto different transmission modes due to its symmetrical
dyads. It makes Eq. (25) universal to deal with an arbitrarily
oriented nonlinear source.

V. APPLICATION TO SHG IN A NONLINEAR
ENZ WAVEGUIDE

A. Phase matching and waveguide amplification

Nonlinear materials exhibiting ENZ properties are in a
position to stimulate nonlinearity, such as the second and third
harmonic generations [26,27]. The strong field enhancement
due to the ENZ mode was reported to account for a highly effi-
cient conversion process. To estimate the conversion efficiency
inside an ENZ material, we consider the SHG in a simple
isotropic slab of thickness l. For convenience, we regularize
the field intensity [Eq. (31)] as I = 2|E|2/(Z0Zr), where
Z0 = √

μ0/ε0 ≈ 377� is the wave impedance in vacuum
and Zr ≡ √

μ/ε with ε = ε I is the relative impedance in
the ENZ material. Simply excluding resonance, absorption,
phase mismatch, and BFC in the slab, the harmonic amplitude,

according to Eqs. (25), has an estimation of

A ≈ k2
0χeff

2k2 cos θ
B2l ≈ ωχeff

4c cos θ
Z0Zr1Zr2I1l, (56)

where the subscript “1” indicates the fundamental wave whose
amplitude shows as B, “2” indicates the harmonic wave, χeff

is the effective second-order susceptibility as Eq. (29), and
relations k2 = √

με2 and Zr1/2 = √
μ/ε1/2) are used with the

definitions ε1 ≡ ε(ω/2) and ε2 ≡ ε(ω). As shown in Fig. 1(b),
cos θ is made by k̂ with respect to ẑ. Hence, the total efficiency
ηtol can be estimated as

ηtol = I2/I0 ≈ Z0ω
2

8c2 cos2 θ
|χeff|2l2Z2

r1Zr2I0η
2
1ηext (57)

with the injection efficiency η1 = I1/I0 (I0 is the pumping
intensity) and the light extraction efficiency ηext, as the energy
efficiency of harmonic wave from inside to outside. If we
situate the fundamental frequency at the ENZ mode, the high
wave impedance Zr1 (ε1 ≈ 0) will produce a FC enhancement.
The high impedance commonly stops light injection except
for the pseudo-Brewster (PB) geometry of a TM fundamental
wave (see Ref. [29] and the references therein). At the special
PB angle of incidence, the longitudinal field will be amplified
according to the BC along the normal electric displacement
vector. It can be called ENZ pump, which has been greatly
attracted recently [26,27,42–44].

From Eq. (57), of interest is that the match between
the harmonic wave and the ENZ mode also promises an
enhancement of SHG, even though it only presents a linear
growth with Zr2 (ε2 ≈ 0), where we call it ENZ output for
short. It can be seen in Eq. (56), the efficiency enhancement
is due to the enlarged coupling coefficient, an extreme
nonlinearity, as is different from the ENZ pump. So, this
mode boosts SHG inside the material without discriminating
between the TM and TE modes at the doubled frequency.
In addition, we find that this kind of SHG owns a PM
configuration by nearly counterpropagating pumping, a type
of noncollinear PM, which is shown in Fig. 4. The forward
fundamental wave EF1 with kF1 and the backward one EB1

with kB1 will produce three nonlinear polarizations with wave
vectors kF

p = 2kF1, kB
P = 2kB1, and kM

P = kF1 + kB1, through
the nonlinear sources of χ :EF1EF1, χ :EB1EB1, and the mixing
one χ :EF1EB1, respectively. Here, the mixing wave vector kM

P
is small due to vector cancellation. It can just be matched by
one of the two transmission modes of the harmonic wave,
e.g., the forward mode in Fig. 4. Besides, if a negative
refractive index results at the pumping wavelength by a normal
dispersion, the PM configuration will not be damaged. When
ε2 → 0, the counterpropagating pumping waves will generate
nearly phase mismatch-free configuration; i.e., harmonic wave
will grow in all possible directions. The special PM ability can
get access to a practical conversion efficiency via bulk ENZ
materials.

However, for a large impedance mismatch between the
material and substrate or air, the TE mode harmonic field
generally is hard to be led out without any special treatment,
as is easy for the TM mode with a high transmittance at
the PB angle of incidence. In addition, they may be guided
out by some flux modulation techniques, like the tunneling
effect [14]. The extraction of harmonic wave is so subtle

013836-10



GENERAL MODEL OF OPTICAL FREQUENCY CONVERSION . . . PHYSICAL REVIEW A 96, 013836 (2017)

kF1

kB1

 

kx
BkP

FkP

k  B k  =F
MkP kFx

k z
 

kF

FIG. 4. Schematic of the PM geometry of SHG, shown in the
upper diagram, where one harmonic wave vector of two transmission
modes, denoted by kF, is phase matched by the wave vectors kF1

and kB1 from two pumping waves, respectively. The lower diagram
demonstrates the three wave vectors of nonlinear polarizations,
formed by the two pumping waves.

and sophisticated that should be examined elsewhere. One
interesting case, with which we will deal below, is that the
harmonic wave is trapped in a waveguide and undergoes
consecutive amplification. Owing to the weak energy loss
by the high reflectivity and ENZ property, the waveguide
carries a high Q and a much lower threshold. The geometry
of light path is demonstrated in Fig. 5. To simplify a later
elaboration, we strip off nonessentials to assume that (i) a
mirror waveguide shown in Fig. 5 permits guiding the lowest
mode by cos θ = λ/(2l) with the wavelength λ inside the
waveguide [77], where the self-consistency condition has a
small change if absorption is considered (reflection induces
weak changes of phase and then the reflection angle θ ), as
is ignored here; (ii) the reflection and absorption of pumping
waves inside the waveguide are neglected since only a single
pass is considered; (iii) the effective length of the waveguide
is equal to the beam width of the side pumping waves with the
satisfaction of w � λ and therefore the plane wave theory is
applicable; and (iv) the ENZ material is presumed to have the
nonvanishing second-order susceptibility χijk and to have an
isotropic complex ε2 = ε′ + iε′′ at the harmonic wavelength,
which actually induces an anisotropy of refractive index. In
such a background, a quantitative estimation can be carried
out. We use here a silicon substrate and set the harmonic
wavelength at the communication channel: λ0 = 1.55 μm
(ENZ wavelength) relating to the wavelength λ by λ0 = nRλ,
where nR is the real refractive index. Although an undepleted-
pump approximation will be succinctly applied below, a pump
depletion in demand can be processed.

The generated harmonic wave propagates in a zig-zag path
limited in the waveguide and grows the way a parametric
amplification does in a resonant cavity. The first generation
from the left (z = 0) to the right (z = l) boundary as in Fig. 5
yields an amplitude A1(z), which becomes r2A1(l) exp(−σ l)
when it returns to the left after a round trip, where r is the
amplitude reflectivity and σ is the absorption coefficient along
the z direction. From now on, the practical amplitude A in

ENZ Material

θ 

r  j
y z

x

=0
1r  

1

j

z=0

j-1r  e -σl2

z=l

w

A

A
A

A

AA

FIG. 5. Planar mirror waveguide with a size w for the SHG of
the ENZ output, where the ENZ slab with a thickness l � w is
sandwiched by the substrate with high refractive index, and the
harmonic wave grows in the PM direction but at the same time endures
slight energy loss in absorption and transmittance.

Eq. (30) is used for better understanding. In fact, the backward
field radiated by the nonlinear polarization does not rise due
to phase mismatch and always goes down to zero at the
waveguide boundaries under the self-consistency condition.
So, the BFC will not be included in the following derivation.
Likewise, the second generating process gives

A2(z) = A1(z) + r2A1(l) exp[−σ (z + l)], (58)

which directly implies

Aj (z) = A1(z) + r2Aj−1(l) exp[−σ (z + l)]

= A1(z) + r2A1(l) exp[−2σ l − σ (z − l)]

+ r4A1(l) exp[−4σ l − σ (z − l)] + · · ·
+ r2(j−1)A1(l) exp[−2(j − 1)σ l − σ (z − l)]

= A1(z) + A1(l)
ρ − ρj

1 − ρ
exp[−σ (z − l)] (59)

in the j th trip and

ρ = exp[−2(σ l − ln r)]. (60)

According to Eq. (25), the amplitude A1 under PM condition
is

A1(z) = μωχeff

cσ ñz

B1B2[1 − exp(−σz)], (61)

where B1/2 represents the amplitudes of two pumping waves
and ñz = nz + i ni is the complex refractive index in the z

direction. The refractive indices and the absorption coefficient
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are complicated compared with a nonabsorbing medium, so
they need to be determined with respect to the direction.
Certainly, they depend on θ and the complex permittivity
ε2. From the condition ñ · ñ = μ(ε′ + iε′′) [Eq. (A2)] and
Eq. (27), we can get the following real refractive indices:

n2
R = n2

x + n2
z = 2−1μ(ε′ +

√
ε′2 + ε′′2 sec2 θ ), (62a)

ni =
√

n2
R − με′, nz = με′′(2ni)

−1, σ = ωni/c. (62b)

nR, as an apparent refractive index, determines a real-valued
angle of refraction by Snell’s law. Since nx is not greater than√

με′, the angle θ is limited to a maximum

θmax = arctan(
√

2ε′/ε′′). (63)

This will limit the application of the PB angle of incidence
for the TM mode to some extent. The above expressions
of refractive indices are consistent with those in Ref. [75]
(Chap. Optics in Metal). The reflectivity r in optics can
be directly applied, but with the complex refractive index
ñE = nR + ini sec θ for the TE mode and ñM = nR + ini cos θ

for the TM mode, respectively [78]. Eventually, the internal
conversion efficiency in the waveguide can be expressed as
η in = η0g, where η0 is the basic conversion efficiency, i.e.,

η0 = Z0Z
2
r1

(
ωχeffλ0

8c cos θ

)2 2Ip1Ip2

Ip1 + Ip2
η1η2, (64)

which represents the conversion efficiency in a λ0/2 thick slab
with a hypothetic refractive index, equal to that in vacuum.
Ip1 and Ip2 are the pumping intensities of the two fundamental
waves, whose injection efficiencies are η1 and η2, respectively.
g is the gain and is a product of a single-pass gain gs and a
multiple-pass gain gmp with g = gsgmp, which are

gs = Zr2

∣∣∣∣1 − exp(−σ l)

ñzσ l

∣∣∣∣
2

, Zr2 = μ/nR, (65a)

gmp =
∣∣∣∣1 − ρjmax

1 − ρ

∣∣∣∣
2

, jmax = WnR cot θ cos θ, (65b)

where W = w/λ0, and jmax is the maximal number of round
trips that the waveguide size w can sustain.

B. Simulation and discussion

At ε′ = 0.01 with μ = 1, the dependence of the gains g

and gs on θ , ε′′, and W is computed and related contour plots
are shown in Fig. 6. For a better illustration, the integer jmax

is treated as a continuous variable and only the harmonic
wave with jmax > 1 is considered as an effective guided
mode. The TE and TM modes each achieve a considerable
increase and exhibit a similar pattern in the contour view. The
conversion obtains a high gain for small angle propagation
which maximizes in an intermediate angle for the TE and
in a nearly zero angle for the TM mode. Bouncing in the
waveguide at a small angle will greatly increase the effective
propagating path inside according to Eq. (65b). That accounts

FIG. 6. Contour plots of the gain g scaled by 10−5 for TE (a)
and TM (b) modes with ε′ = 10−2 over θ -ε′′ space, and similar plots
for TE (c) and TM (d) modes with W = 100, ε′′ = 10−4 over θ -W
space, followed with the plots of the logarithmic single-pass gain
log10 gs in the current model (e) and in the extended old model (f).
The considered region is limited by θ < θmax and jmax > 1, where the
ineffective region is uniformly colored in.

for the angular distribution of the gain. With a rise of the width
W , the optimal angle approaches a larger value for the TE mode
[see Fig. 6(c)], since it has an increasing reflectivity with θ and
coupling with the pump waves. However, the reflectivity in the
TM mode decreases when going towards the PB angle (near 90
deg). It is also shown that the optimal gain has an insensitive
dependence on θ , so it renders a relaxed angular tolerance
which can be used to improve injection efficiency in practice.
Especially for the TE mode, it shows a higher gain region over
θ -ε′′-W space. For small ε′′/ε′ (�1), the restriction to the
gain comes from the loss of transmittance through waveguide
boundaries. The single-pass gain gs mainly relies on Zr2 and
|ñz| ≈ nR cos θ , i.e.,

gs ≈ Z3
r2 sec2 θ/μ2. (66)

We see that the single-pass gain contributes an enhancement of
Z3

r2, in which the coupling coefficient provides Zr2; the other
enhancements of Z2

r2 are attributed to the increased waveguide
thickness l. From Fig. 6(e), we see that it has an angle-related
decrease with a growing ε′′. The multiple-pass gain has a weak
dependence on the absorption σ at a not very large angle, and is
then determined by the reflectivity. In this case, the amplitude
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reflectivity r has an approximate form

r ≈
{−1 + 2 cos θ ñE /nsi, for TE,

+1 − 2 sec θ ñM/nsi, for TM,
(67)

where nsi is the refractive index of silicon at the harmonic
wavelength. If the SHG is totally balanced by the multiple
reflection and absorption, the harmonic wave will reach a
steady distribution, the resonance mode, which is required
to meet a condition

f ≡ −jmax ln ρ > 1 (68)

with negligible absorption. Therefore, gmp ≈ 1/|(1 − ρ)|2,
which leads to the following estimation:

g ≈
{

n2
siZ

5
r2 sec4 θ/(2μ)4, for TE,

n2
siZ

5
r2/(2μ)4, for TM.

(69)

So gmp contributes another enhancement Z2
r2 due to a further

path enlargement inside the waveguide. According to the ENZ
setting ε′ = 0.01, we have Zr2 ≈ 10, which gives rise to a
nearly 105 enhancement. Equation (69) presents an estimation
of the maximal gain. The high-gain regions in Figs. 6(a) and
6(b), displayed in red, just fall in the resonance regime. Even
though the width factor W does not appear in Eq. (69), it
is the driving force to push up the optimal angle in the TE
mode and to relax the angular tolerance. W can be effectively
enhanced in a sealed waveguide so as to reach the resonant
condition. Under a nonresonant condition f � 1,gmp ≈ j 2

max,
which yields

g ≈ W 2Zr2 cot2 θ. (70)

It is evident that the gain is taken over by W and is strongly
modulated by cot2 θ for both the TE and TM modes. On the
other hand, for a large imaginary ε2: ε′′/ε′ (>1), the absorption
dominates the loss, leading to gmp ≈ 1. The waveguide thereby
fails to boost the nonlinear process. The single-pass gain gs

represents the total gain

g ≈ gs ≈ Z3
r2μ

2 cos2 θ
∣∣π(

ε2Z
2
r2 − μ2

)∣∣−2
. (71)

It seriously depends on ε′′ and gradually loses its advantage.
In this simulation, the anisotropy and BFC are excluded

according to the previous simplification. Thus, the original
CAE in a weak absorption condition may work well in the
resonance mode, in which the absorption should be enough
small to meet condition (68). To have access to the oblique
incidence case, we ought to put the obliquity factor cos θ in
the original CAE as an intuitive extension. The only difference,
if the exact absorption coefficient and reflectivity are still used,
is the complex refractive index ñz in Eq. (61), which will be
nz or nR cos θ in an extended old CAE. They are illustrated in
Figs. 6(e) and 6(f) as a demonstration of the single-pass gain.
It is shown that they have a similar overall distribution but
also denote an observable difference in the high-loss regime.
In practice, the original CAE must be used carefully for lossy
bulk materials or metal-based metamaterials.

It should be noted that the optimal gain does not coincide
with the maximal total conversion efficiency, since there is an
angular factor sec2 θ in Eq. (64) of η0 and an undetermined
angular relation in the injection efficiency η1η2, which may

raise the optimal angle. A practical pumping geometry has to
be a trade-off between a desired configuration and engineering
availability. The analysis of the gains above does not include
the difference of the effective susceptibility between the
TM and TE modes in harmonics, e.g., a χzzz-dominated
nonlinearity in a metal-based metamaterial may only benefit
the SHG of the TM mode. Certainly, the conversion efficiency
cannot increase unlimitedly. Temperature variation and Kerr
nonlinearity will eventually variate Zr2, in which case, a steady
output is expected.

VI. CONCLUSIONS

The general CAEs of the four transmission modes are
derived in the plane-wave FC case, together with the integral
equations, a generalization of Sipe’s integral scheme. There
are comparatively three fundamental features in the CAEs.
The first is the simultaneous bidirectional FC (FFC and BFC).
This is for certain an outcome of abandoning the SVAA. The
second is the obliquity effect, which leads inevitably to the
noncollinear phase mismatch owing to the space translational
symmetry. Besides, the obliquity factor in the denominator
accounts for a rise of interaction distance and for a walk-off
effect due to the anisotropy. Finally, the absorption, carried
by the complex refractive indices, presents transmission
properties other than those in the loss-free media. In addition
to the CAEs, it is also found that the NR field is negligible
in the boundary issue. Therefore, the plausible common
practice (the simple BCs) is legitimized and can substitute
for the complicated nonlinear BCs. As a general model, it is
thereby applicable to a homogenized nonlinear medium even
with extreme parameters. For instance, the singular harmonic
generation in ENZ materials can be examined in the effective
medium approximation. In this paper, the CAEs are applied in
a nonlinear ENZ waveguide with a sufficient simplification.
It is found that the field-enhanced conversion resides in
the mismatch of the wave impedance, and importantly, the
near-zero index stands a chance for PM in up-conversion
processes, as is very possible for the SHG in the so-called ENZ
output case. By a simulation, the SHG is boosted in a mirror re-
flection waveguide by the resonance in combination with field
enhancement, indicative of a maximal gain to the fifth power
of the relative wave impedance. It is then expected to acquire
further applications in micron-level high-Q photonic cavities.
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APPENDIX A: WAVE VECTORS AND POLARIZATION
OF THE TM EIGENMODE

We restrict our discussions in the (x,z) subspace, suitable
for the TM eigenmode.The permitted wave constants kF and
kB come from an algebraic equation pertinent to a matrix

M ≡ kk − k2 I + k2
0εt, (A1)
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where k represents kF or kB. Crystal optics requires that the
wave vector of k satisfies

det(M) = 0. (A2)

It will lead to the same result as Eq. (14). Expanding the
determinant of M shows

det(M) = k4
0 det(εt) − k2

0k · εt · k, (A3)

which directly leads to

k2
0 det(εt) = k · εt · k = k−2

0 k · M · k, (A4)

where Eq. (A1) and k · (kk − k2 I) · k = 0 are used in the
second identity. In detail, M can be written as

MF/B =
[

k2
0ε11 − k2

Fz/Bz k2
0ε13 ± kFz/Bzkx

k2
0ε31 ± kFz/Bzkx k2

0ε33 − k2
x

]

≡
[
ξ 2

F/Bξ−1
0 ξF/B

ξF/B ξ0

]
, (A5)

where the plus sign is for kF, the minus sign is for kB, and
Eq. (A2) is used in the definition. Next, we define two unit
vectors in the form of matrix

ŝF/B ≡±
[
ξF/B
ξ0

]
√

ξ 2
F/B + ξ 2

0

, âF/B ≡
[

ξ0
−ξF/B

]
√

ξ 2
F/B + ξ 2

0

, (A6)

which are perpendicular to each other. It is easy to check
that the relation kF/B · εt · âF/B = 0 holds and infers that ŝ is
along the Poynting vector S and â denotes the electric field
polarization direction. Unsurprisingly, the two unit vectors
just are the same ones used in the foregoing paragraphs.
Furthermore, MF/B can be rewritten as a dyadic function

MF/B = ξ−1
0

(
ξ 2

F/B + ξ 2
0

)
ŝF/BŝF/B. (A7)

Returning to Eq. (16), G0 can be expressed as an explicit form
associated with polarization directions. From Eqs. (14), we
have

kFz + kBz = 2

ε33

√
ξ0 det(εt) = 2

k2
0ε33

√
ξ0k · M · k

= 2

k2
0ε33

√
ξ 2

F/B + ξ 2
0 (kF/B · ŝF/B), (A8)

where Eqs. (A4), (A6), and (A7) are used. Equation (16) is
thus verified. In addition, from Eq. (A6) it is easily found that

âF/B · x̂ = ±ŝF/B · ẑ. (A9)

With these results, the coefficients in Eqs. (17) are finally
determined. Solution (17) seems redundant but can simplify
Eq. (20). The definitions in Eqs. (A6) will be complex valued
due to a complex wave vector. The normalization â · â = 1,
ŝ · ŝ = 1 still holds in this case. There also is another equivalent
definition of â and ŝ by setting â∗ · â = 1, ŝ∗ · ŝ = 1.

APPENDIX B: CURL OF GREEN’S FUNCTION
ON THE BOUNDARIES

Collecting all the components of the Green’s function from
Eqs. (9) and (17), it can be rewritten as a dyadic form

G(r,r′) =
∑
n,m

[G(r,r′) ââ]nm + GNRδ(z−z′)ẑẑ (B1)

with ân2 = â2 = −ŷ according to the geometry in Fig. 1 and

Gnm(r,r′) ≡ ± iPhnm(r,r′)
2(k · ŝŝ)nm · ẑ

, (B2a)

GNR(r,r′) ≡ − 1

k2
0ε33

exp[ikx(x−x ′)], (B2b)

where the upper sign is for the forward fields and the lower
sign is for the backward ones (the same for the expressions
below). According to integral formula (20), the electric fields
on the boundaries are related to the curl of the dyadic Green’s
function. We present here a straightforward deduction of the
curl step by step, where 0 � z,z′ � l is generally considered
without the transition layers. First, the curl of the radiative
dyadic fields in Eq. (B1) can be expressed as

∇′Gn1 × ân1ân1 = −[ikn1 ± ẑδ
−1
± ] × ân1ân1Gn1

= ∓[ikn1 · ŝn1 + ân1 · x̂δ
−1
± ]ŷân1Gn1,

(B3a)

∇′Gn2 × â2â2 = −[ikn2 ± ẑδ
−1
± ] × â2â2Gn2

= −[ik2ĥn2â2 ± x̂δ
−1
± ]Gn2 (B3b)

with 
± = 
(±z ∓ z′), δ = δ(z−z′) and ĥn2 = k̂n2 × â2,
denoting the directions of related magnetic vectors. Second,
the curl of the NR field has a simple form as

[∇′GNRδ] × ẑẑ = [−ikx x̂δ + ẑδ′] × ẑẑGNR = ikxδŷẑGNR,

(B4)

where the first prime symbol in δ′ indicates a derivative of
the Dirac function. Then, an addition of all the coefficients of
δ(z−z′) is

ŷ(âB1 · x̂âB1GB1 + ikx ẑGNR − âF1 · x̂âF1GF1)

− x̂â2(GF2 − GB2) (B5)

with a drop of some Heaviside functions. In terms of Eqs. (37)
and (38), it is zero at r = r′. Finally, the curl of the dyadic
Green’s field can be written as

∇′ × G(r,r′) = i(GB1kB1 · ŝB1ŷâB1 − k2GB2ĥB2â2)

− i(k2GF2ĥF2â2 + GF1kF1 · ŝF1ŷâF1). (B6)

It is seen that Eq. (B6) does not present singularity, as expected,
which is consistent with the results from the transition layer
assumption. By Eqs. (36) and (B6), the expressions on the
boundaries in Eq. (20) can be simplified without an effort.
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APPENDIX C: INDEPENDENCE
OF TRANSMISSION MODES

The propagating equation of the free electromagnetic wave
Enm with the transmission mode nm is

(k× k× E)nm + k2
0ε · Enm = 0. (C1)

When it multiplies the complex conjugate of another free
electromagnetic wave En′m′ , Eq. (C1) becomes

E∗
n′m′ · (k× k× E)nm + k2

0E∗
n′m′ · ε · Enm = 0. (C2)

Similarly, we also have

Enm · (k× k× E∗)n′m′ + k2
0Enm · ε · E∗

n′m′ = 0. (C3)

Subtraction of Eq. (C3) from Eq. (C2) leads to

E∗
n′m′ · (k×k×E)nm = Enm · (k×k×E∗)n′m′ , (C4)

where the symmetry of ε is applied. It can be transformed into

(E∗
n′m′ ×knm×Enm) · knm = (Enm×kn′m′ ×E∗

n′m′) · kn′m′ .

(C5)

By use of the identity as follows,

(E∗
n′m′ ×knm×Enm) · kn′m′ = (Enm×kn′m′ ×E∗

n′m′) · knm,

(C6)

we get

[E∗
n′m′ ×(k×E)nm+Enm×(k×E∗)n′m′ ] · Dk=0, (C7)

where Dk = knm − kn′m′ ∝ ẑ. It then becomes Eq. (49) if
dropping the same amplitudes and phasors in Eq. (C7).
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