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Extreme-value statistics of intensities in a cw-pumped random fiber laser
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We report on the extreme-value statistics of output intensities in a one-dimensional cw-pumped erbium-doped
random fiber laser, with a strongly scattering disordered medium consisting of randomly spaced Bragg gratings.
The experimental findings from the analysis of a large number of emission spectra are well described by the
Gumbel distribution below and above the laser threshold, whereas the Fréchet distribution, typical of strongly
fluctuating extreme events with heavy power-law probability tails, provides a nice support to the data near the
threshold. We establish a close connection, relying on theoretical arguments, between the reported extreme-value
statistics and the shifts in the statistics of intensity fluctuations, from the Gaussian to the Lévy distribution at the
threshold and back to the Gaussian well above threshold.

DOI: 10.1103/PhysRevA.96.013834

I. INTRODUCTION

Extreme events in optics and photonics, arising from
rare intensity fluctuations, have been investigated intensively
in the last decade in diverse linear and nonlinear optical
phenomena and devices [1–18]. In fact, the evidence of
statistically uncommon optical events in rogue waves, freak
waves, instabilities, and breathers have been reviewed in
[19,20]. These studies followed earlier works that reported
on analog extreme events that take place in various natural
environments, such as sea waves [21], DNA [22], multifractal
systems [23], solar wind [24], and astrophysical bodies [25].

Among the optical systems, lasers and fiber lasers have
been some of the most explored devices due both to their
experimental access and control, as well as to their reported
complex behavior [3,7,10,12,17,18]. In contrast to conven-
tional lasers, in which cavities bounded by mirrors provide
the optical feedback that sustains the oscillation in the gain
medium, random lasers [26–28] and random fiber lasers
[29,30] constitute a special class of open (cavity-less) complex
systems whereby the feedback is related to the presence of a
gain medium in a disordered scattering environment. These
ingredients can actually be present both in the same particles,
such as in ZnO, or rare-earth-doped three-dimensional (3D)
crystal powders [31,32].

In the case of one-dimensional (1D) random fiber lasers,
we remark that the system investigated in [33–35] differs
markedly from the one used by the authors of Ref. [13]
for both the scattering and gain media. Indeed, in [13] the
optical gain arises from stimulated Raman scattering, and the
Rayleigh scattering due to refractive index fluctuations acts as
random distributed feedback reflectors. On the other hand, the
system employed in [33–35], as well as in the present work, is
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formed by an erbium-based gain medium, with the scattering
originating from a specially designed fiber Bragg grating [36].

The above features led random lasers and random fiber
lasers to be explored both experimentally and theoretically
in the past few years as platforms to study several complex
phenomena, such as Bose-Einstein condensation [37], astro-
physical lasers [38], spin-glass analogy [33–35,39–47], Lévy
statistics [34,35,46–56], and turbulence [57–60]. Recently, the
occurrence of rare events was also reported in random lasers
and random fiber lasers, leading to extreme-value statistics
(EVS) of optical observables [8,9,13–15]. Indeed, on the one
hand extreme-value analysis has been applied [8,9] to sets of
coupled fiber lasers to study the distribution of phase locking
levels [8], with the Gaussian regime related to the Gumbel
density function, as well as to describe the statistics of the
combined output power, which was shown [9] to agree with the
Tracy-Widom, Majumdar-Vergassola, and Vivo-Majumdar-
Bohigas distributions of the largest eigenvalue of Wishart
random matrices.

On the other hand, in 2015 the pioneer works by Gorbunov
et al. [13] and Uppu and Mujumdar [14,15] investigated
extreme events related to the emission intensity in single
random laser and random fiber laser systems. In [13], the fast-
intensity dynamics of random distributed feedback fiber lasers
was shown to exhibit pronounced fluctuations that deviate from
the Gaussian behavior depending on the excitation power. We
mention, however, that, although probability functions with
power-law behavior in the large-intensity regime have been
demonstrated in [13], no attempt was made to relate the
experimental results to the theory of generalized extreme-value
distributions, such as Gumbel and Fréchet. Moreover, the
statistics of extreme intensity events has also been studied
[14,15] in a 3D random laser with a double pulsed pump
source. The characterization of the statistical regimes of
maximum intensities in terms of the Gumbel or Fréchet
distribution has been particularly performed in [15], even
though the relatively small number (5000) of emission spectra
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analyzed has possibly hindered the extreme-value analysis of
intensity measurements, as we argue below.

In this work, we report on the observation of extreme
intensity events in a 1D cw-pumped random fiber laser.
The gain medium is formed by erbium ions, so that the
process of single-photon induced nonlinear absorption, with
microscopic origin in the erbium electronic levels, constitutes
the mechanism underlying the optical nonlinearity. The strong
disorder in this erbium-based random fiber laser (Er-RFL)
is provided by a large number of customized random Bragg
grating scatterers inscribed with a random spacing along the
doped fiber [36]. A very large number (150 000) of emission
spectra was collected for each excitation power in the regimes
below, near, and above the random laser threshold. The system
is the same studied in Ref. [60]. However, while in [60]
photonic turbulence was investigated relying on a hierarchical
stochastic model, here, in contrast, extreme intensity events
are analyzed with basis on the EVS theory. Indeed, the
present study complies nicely with the theoretical predictions
related to the generalized extreme-value distributions. More
specifically, depending on the excitation power regime, we
find that the EVS of maximum intensities is well described by
the Gumbel and Fréchet distributions, respectively, away and
near the threshold. In particular, the Fréchet regime is typical of
strongly fluctuating extreme events with heavy power-law tail
in the probability function. We also obtain a good agreement,
supported by the theoretical analysis, between the distinct
regimes of intensity fluctuations (Gaussian or Lévy) and the
statistics of extreme intensity events for all excitation powers
considered.

This article is organized as follows. In Sec. II, we detail
the experimental procedure to collect the emission spectra of
the Er-RFL system in order to generate the long-time series of
maximum intensity values. The theory of EVS is reviewed in
Sec. III and particularly applied to the study of the maximum
intensity events in Er-RFL. Experimental results are presented
and their statistical analysis based on the theory of Sec. III are
discussed in Sec. IV. Finally, Sec. V displays the concluding
remarks.

II. EXPERIMENTAL PROCEDURE

The fabrication of the Er-RFL system, including the fiber
Bragg grating inscription procedure, is detailed in [36].
It suffices to say here that we employed a polarization
maintaining erbium-doped fiber with 30 cm length, fabricated
by CorActive (peak absorption 28 dB/m at 1530 nm, numerical
aperture NA = 0.25, mode field diameter of 5.7 μm), in which
a grating was written with randomly distributed phase errors,
instead of a random array of gratings as in [61]. This procedure
allowed a large number (�103) of scatterers. Consequently, the
fiber used in this work presents a high degree of randomness
due to the presence of the strongly scattering disordered gain
medium.

Figure 1 illustrates the experimental setup. A home-
assembled semiconductor laser operating in the continuous-
wave (cw) regime at 1480 nm was used as the pump source. The
maximum output power at the fiber pigtail end was 150 mW.
The output fiber was connected to the Er-RFL system using
a fiber connector. The Er-RFL output was split, through a

FIG. 1. Experimental setup of the Er-RFL system. (1) Fiber
pigtailed semiconductor pump laser operating in the cw regime, (2)
Er-RFL, (3) 1480 nm/1550 nm WDM, (4) power meter to measure the
output power at 1480 nm, (5) RFL emission out to the spectrometer,
(6) spectrometer, and (7) liquid-N2 cooled InGaAs CCD camera.

1480 nm/1550 nm wavelength-division multiplexer (WDM),
to a power meter and a spectrometer with a liquid-N2 CCD
camera of 0.1 nm resolution at 1540 nm [34].

A rather long sequence of 150 000 emission spectra was
recorded at each input excitation power, in the regimes below,
near, and above the random laser threshold. The spectra were
collected with an integration time of 50 ms. We notice that
qualitatively similar results for the intensity measurements
on the Er-RFL system were obtained in Refs. [33,34] using
an integration time of 100 ms (we remark, however, that
Refs. [33,34] did not study the extreme intensity events). The
measured threshold from the FWHM analysis of the spectra
was Pth = (16.30 ± 0.05) mW [34].

We stress that the intensity fluctuations of the pump source
of less than 5% were not correlated with the Er-RFL fluctua-
tions, as similarly found in the random laser devices considered
in [13,39] and also specifically inferred [34] in the present
experimental setup through the measurement of the normalized
standard deviation of both the pump laser and the Er-RFL
system. Indeed, while that quantity remained constant in the
pump source, it varied substantially in Er-RFL [34]. Moreover,
we also remark that the number of longitudinal modes in
Er-RFL, measured using a speckle contrast technique, was
∼204 [33], demonstrating the multimode character of this
system.

To proceed with the analysis of extreme intensity events in
the Er-RFL system, we denote as Ij the intensity value at the
wavelength of maximum output intensity of the spectrum j .
Consequently, the discrete sequence {Ij } of subsequent spectra
values gave rise to a long-time series, with j = 1,2, . . . ,N

(=150 000), at each excitation power. Each spectrum was
obtained in a 50-ms time window, and therefore the 150 000
spectra at a given power were acquired during a total time
measurement of 125 min. The stochastic nature of such
intensity values results from the intrinsic disorder related to
the strongly scattering medium with randomly spaced Bragg
gratings. Indeed, the intensity dynamics is described [46,48] by
a set of coupled Langevin equations with nonlinear disorder
terms, from which a probability density function (PDF) of
intensity values P (I ) can be determined for each power.

We next subdivided the sequence {Ij } into M blocks of
N/M intensity values each. For statistical purposes, we chose
the number of blocks such that M � 1 and N/M � 1 (see
discussion below). Therefore, a new long-time series {Imax,n}
was generated at each excitation power, with n = 1,2, . . . ,M ,
where Imax,n denotes the maximum intensity among the values
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belonging to the nth block. The distribution of Imax,n values
at a given power defines the PDF f (Imax), as well as its
corresponding cumulative density function (CDF) F (Imax) =∫ Imax

0 f (I ′
max)dI ′

max. In the next sections, the statistics of
extreme intensity events in the Er-RFL system is investigated
with basis on the analysis of the sequence {Imax,n} and its
associated CDF F (Imax) for each excitation power.

III. EVS THEORY APPLIED TO THE MAXIMUM
INTENSITY VALUES IN THE Er-RFL SYSTEM

A remarkable result from the EVS theory [62,63] is that
any CDF F (Imax) must tend asymptotically in the limit
N/M → ∞ to a stable generalized extreme-value (GEV)
distribution given by

F (Imax) = exp

{
−

[
1 + ξ

(Imax − m)

σ

]−1/ξ}
, (1)

where 1 + ξ (Imax − m)/σ > 0, and ξ ∈ (−∞,+∞), m ∈
(−∞,+∞), and σ > 0 denote, respectively, the shape, lo-
cation, and scale parameters. Moreover, the EVS theory also
states that this continuous family of GEV distributions can be
cast into three classes, depending only on the value of the shape
parameter ξ , namely [62,63], (i) Weibull, for ξ < 0 and Imax

limited to some upper cutoff value; (ii) Gumbel, for ξ → 0,
which implies

F (Imax) = exp{− exp[−(Imax − m)/σ ]}; (2)

and (iii) Fréchet, for ξ > 0. The latter two cases are related to
density functions of Imax values with no upper bound.

A formal theoretical connection can be established [62,63]
between the primary PDF P (I ) comprising all intensity values
(i.e., not only the maxima of the blocks) and the associated
asymptotic GEV distribution F (Imax) of unbounded maximum
intensity values. Indeed, if the PDF P (I ) falls off asymptoti-
cally at large I as a power-law heavy tail, P (I ) ∼ I−μ, with
μ > 1, then its corresponding GEV distribution converges
[62,63] in the limit N/M → ∞ to the Fréchet density function,
Eq. (1), with ξ = 1/(μ − 1) > 0. Conversely, if P (I ) falls off
faster than a power law, the convergence function is the ξ → 0
Gumbel CDF, Eq. (2).

This asymptotic connection of the EVS to one of the GEV
stable distributions resembles particularly the attraction of the
PDF of the sum of a large number of random variables to
one of the possible asymptotic stable distributions, namely,
the Gaussian or the Lévy α-stable family [64]. In the present
photonic context, if the stochastic values assumed by the
intensity I are identically distributed and uncorrelated over
the long (N � 1) sequence of spectra (or even if they present
finite-time correlations), and if the second moment of the PDF
P (I ) is finite, then the central limit theorem (CLT) assures
[64] that the intensity fluctuations are driven by the Brownian
(Gaussian, normal) dynamics. On the other hand, if the second
moment of P (I ) diverges, the generalized CLT states [64]
that the fluctuations are asymptotically governed by the Lévy
statistics.

The continuous family of Lévy α-stable distribution is
described [64] by the Fourier transform of the characteristic

function defined in k space,

P (k) = exp{−|ck|α[1 − iβ sgn(k)�] + ikν}. (3)

The Lévy index α ∈ (0,2] is the most important parameter,
since it drives the magnitude of the intensity fluctuations.
Indeed, whereas strong fluctuations with relevant deviations
from the Gaussian behavior are associated with values in
the range 0 < α < 2, the Gaussian statistics with relatively
weak fluctuations and the result of the CLT are recovered
for the boundary value α = 2. Thus, the parameter α, which
can be experimentally determined from the direct analysis
of the PDF P (I ), effectively works as an indicator of the
statistical regime (Gaussian or Lévy) of intensity fluctuations.
The other independent parameters describe the asymmetry
or skewness of the distribution (β ∈ [−1,1]), location [ν ∈
(−∞,+∞)], and scale [c ∈ (0,∞)], along with the function
�(k) = −(2/k) ln |k| if α = 1, whereas � = tan(πα/2) if
α �= 1.

Therefore, in addition to determining the type of EVS that
drives the maximum intensity values, the asymptotic large-I
behavior of P (I ) also defines its attraction to the result of
the CLT or the generalized CLT. In fact, if the PDF P (I ) is
power-law tailed at large I , P (I ) ∼ I−μ, then its statistical
behavior is governed [64] by the Lévy PDF with α = μ − 1,
if 1 < μ < 3 (diverging second moment). On the other hand, if
μ � 3, or alternatively when the large-I decay of P (I ) is faster
than the power law (for example, in the case of exponential
behavior), the α = 2 Gaussian statistics takes place (finite
second moment).

From the discussion above, we conclude that if the
experimental CDF F (Imax) best fits the Fréchet (ξ > 0) GEV
distribution, a large-I power-law dependence can be inferred
for the PDF P (I ), with exponent μ = 1 + 1/ξ > 1. In this
case, since the Lévy (Gaussian) regime is characterized by 1 <

μ < 3 (μ � 3), then we can define the parameter α as a further
experimental indicator of the statistics of intensity fluctuations,
which is determined from the EVS analysis of maximum
intensities, instead of from the direct analysis of P (I ) itself.
In this context, we observe that α = μ − 1 = 1/ξ < 2 if
ξ > 1/2 (Lévy regime), and α = 2 if 0 < ξ � 1/2 (Gaussian
regime). The Fréchet boundary limit ξ = 1/2 thus separates
the statistical domains with Lévy and Gaussian behaviors. In
contrast, if the best fit of the experimental F (Imax) matches the
ξ → 0 Gumbel distribution, then the α = 2 Gaussian regime
is implied. Of course, one would actually expect that α = α

in the asymptotic limit N/M → ∞, thus indicating that the
same statistics of intensity values should be obtained in this
limit either from the EVS analysis of the CDF F (Imax) (α)
or by investigating the PDF P (I ) (α). Nevertheless, in real
experimental studies this precise equivalence can be hindered,
so that one can possibly find α ≈ α from experimental data
due to a number of limitations, as argued below.

Indeed, at this point some words of caution are in order
before applying in the next section the above theoretical results
to the actual experimental data of the Er-RFL system.

On the one hand, the limitation in the numbers of spectra
(N ) and spectra blocks (M) should yield some expected
variation [24] in the fitting parameters of the GEV distribution
of maximum intensity values (notably, in the shape parameter
ξ ), as larger N and M are considered toward the asymptotic
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limits M → ∞ and N/M → ∞. In particular, since the
total number of emission spectra is fixed in this work (N =
150 000), the suitable choice of M actually becomes a quite
subtle issue. Indeed, a large number N/M of spectra per
block would imply a rather small number M of blocks,
making the calculation of the experimental CDF F (Imax) not
statistically significant. Conversely, increasing M indefinitely
would decrease very much the number of spectra per block,
undermining the statistical relevance of the maximum intensity
of the blocks. Thus, some proper compromise value of M has
to be chosen when a large N is fixed in order to satisfy both
M � 1 and N/M � 1 requirements in the EVS analysis (see
also discussion in the next section).

On the other hand, we observe that a PDF with a diverging
second moment actually represents an unphysical possibility,
either in the present case of intensity measurements or even in
any case of realistic stochastic phenomena. At first sight, this
fact would in principle prevent the experimental realization
of the asymptotic connections described above regarding the
power-law tailed PDFs with 1 < μ < 3 (diverging variance),
in the context of both the EVS analysis [Fréchet distribution
with ξ = 1/(μ − 1) > 1/2] and the generalized CLT (Lévy
distribution with 0 < α = μ − 1 < 2). Nevertheless, it has
been demonstrated [65,66] that a truncated power-law PDF,
with a large but finite second moment, behaves rather similarly
to the Lévy PDF to a considerable extent (i.e., a Lévy-like
statistical regime). In this case, the crossover to the Gaussian
dynamics predicted by the CLT is attained only in the very
long term. Theoretically justified truncation schemes have
been suitably implemented, for example, by restricting the
values of the random variable to a finite range [65–67], with
P (I ) = 0 for I > Icutoff, or by tempering the power law with
an exponential attenuation [48,53], P (I ) ∼ exp(−ηI )/Iμ.
Therefore, the experimental reports of Lévy PDFs of in-
tensities with 0 < α < 2 or the EVS analysis of maximum
intensity values described by a Fréchet GEV distribution
with ξ > 1/2 should be properly interpreted as representative
of this extensive Lévy-like statistical regime of intensity
measurements.

IV. RESULTS AND DISCUSSION

Recent experimental results in Er-RFL, as well as in other
random laser systems, have indicated that the statistics of
intensity values changes as a function of the input excitation
power [34,35,46,47,49–53,56]. In fact, the prelasing Gaussian
regime observed at low excitation power shifts to the Lévy
behavior near the threshold, and back to the Gaussian well
above threshold, consistently with the changes in the large-I
power-law dependence of the experimental PDF P (I ). As
a consequence, according to the discussion in the previous
section, we also expect that this shifting pattern will impact on
the characterization of the CDF F (Imax) of extreme intensity
values in the Er-RFL system, which is expressed below in
terms of the Gumbel or Fréchet distribution, depending on the
excitation power regime.

We begin by displaying in Fig. 2 the sequence of values {Ij }
of the maximum intensity (in arbitrary units) of the spectra
j = 1,2, . . . ,N (=150 000) emitted by the Er-RFL system.
Data are shown for four values of the excitation power P

FIG. 2. Maximum intensity value Ij (in arbitrary units) of the
spectra j = 1,2, . . . ,N (=150 000) emitted by the Er-RFL system.
Data are shown for four values of the excitation power P (normalized
by the threshold power Pth = 16.30 mW): (a) P/Pth = 0.77, (b)
P/Pth = 0.88, (c) P/Pth = 1.21, and (d) P/Pth = 1.72, correspond-
ing, respectively, to the regimes well below, just below, just above,
and well above the random laser threshold.

(normalized by the threshold power Pth = 16.30 mW): (a)
P/Pth = 0.77, (b) P/Pth = 0.88, (c) P/Pth = 1.21, and (d)
P/Pth = 1.72, which correspond, respectively, to the regimes
well below, just below, just above, and well above the threshold
of the random laser.

It is clear from these plots that a drastic change in the
fluctuation patterns of {Ij } occurs as the threshold is crossed.
For example, in the regime well below threshold at P/Pth =
0.77, just a few intensity maxima stand out [Fig. 2(a)].
However, their highest values are typically only ∼2 times
larger than the average intensity. In contrast, the many extreme
intensity values observed near the threshold, both at P/Pth =
0.88 [Fig. 2(b)] and P/Pth = 1.21 [Fig. 2(c)], can reach up to
∼22 and ∼66 times above their respective average intensities.
Although these extreme events happen not so often, they are
statistically relevant, as discussed below. At last, the pattern
shown well above threshold at P/Pth = 1.72 [Fig. 2(d)] does
not display rare extreme events, being, instead, more like the
prelasing regime of Fig. 2(a), although without the few highest
maxima [i.e., it is more similar to the fluctuation pattern
of values I � 210 in Fig. 2(a)]. These results can be better
understood as follows, with basis on the statistical study of the
intensity measurements and EVS analysis as a function of the
excitation power.

We next show in Fig. 3 the sequence {Imax,n}, with n =
1,2, . . . ,M , obtained by subdividing the time series {Ij } in
Fig. 2 into M = 800 blocks of 187 intensity values each, with
the maximum value of block n denoted as Imax,n, according
to the prescription in Sec. II. As discussed, large numbers
of blocks and spectra per block are necessary for ensuring a
significant statistical analysis. We notice in the coarse-grained
structure of Fig. 3 that patterns similar to those of Fig. 2 are
observed, as expected.
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FIG. 3. Maximum intensity value Imax,n (in arbitrary units) of
the blocks n = 1,2, . . . ,M (=800) in which the N = 150 000 spectra
displayed in Fig. 2 were divided. Data are shown for (a) P/Pth = 0.77,
(b) P/Pth = 0.88, (c) P/Pth = 1.21, and (d) P/Pth = 1.72.

The increase in the magnitude of intensity fluctuations
observed near the threshold in Figs. 2 and 3 suggests that the
PDF of intensity values P (I ) can be generally described by the
family of Lévy α-stable distributions, including both the Lévy
statistical regime if 0 < α < 2 and the Gaussian limit if α = 2,
as discussed in Sec. III. Indeed, in agreement with previous
reports in Er-RFL [34], by applying the quantile-based method
[68] to determine the best-fit parameters of the experimental
PDF P (I ) to the Fourier transform of Eq. (3), a Gaussian
regime was readily identified well below the threshold, with
the Gaussian value α = 1.98 at P/Pth = 0.77 [Fig. 4(a)] (see
also Table I). On the other hand, the exponential best fit
obtained well above threshold at P/Pth = 1.72 [Fig. 4(d)] also
assures that the PDF P (I ) is governed by the α = 2 Gaussian
statistics according to the CLT. We comment, however, that
these Gaussian regimes present important differences since,
for instance, the former corresponds to the prelasing behavior,
whereas the latter has been characterized as a random laser
regime with self-averaging of the gain [52].

In contrast to these Gaussian regimes observed far from the
threshold, the Lévy statistical behavior is clearly identified
just above the threshold, with the best-fit value α = 1.69
determined at P/Pth = 1.21 [Fig. 4(c)]. We mention that
even lower values of α can be found when the threshold is
approached from above, as reported in [34]. However, for
excitation powers very close to the threshold the intensity
fluctuates so widely that relatively stable results for the EVS
analysis in this regime would require the collection of a much
larger number of emission spectra. In this context, since in
the present work we focus on the EVS analysis of extreme
intensity values, the very proximity of the threshold regime is
not explored here.

An interesting scenario also emerges as the threshold is
approached from below. On the one hand, as discussed above
in Figs. 2 and 3, although the Er-RFL system operates in the
prelasing regime in both cases, the fluctuation pattern just

FIG. 4. PDF P (I ) of intensity values of the N = 150 000 spectra
emitted by the Er-RFL system at (a) P/Pth = 0.77, (b) P/Pth = 0.88,
(c) P/Pth = 1.21, and (d) P/Pth = 1.72. Experimental results from
the analysis of the sequences {Ij } shown in Fig. 2 are depicted in red
circles. Dashed lines in (a)–(c) indicate best-fit curves to the Lévy
α-stable distribution, whereas in (d) an exponential best fit emerges.
The Lévy statistical behavior with α = 1.69 is identified just above
the threshold in (c). Gaussian regimes are present both well below
the threshold, with the best-fit value α = 1.98, and well above, since
the exponential PDF is governed by the α = 2 Gaussian statistics,
according to the CLT. The onset of the transition from the Gaussian to
Lévy behavior, characterized by the strong enhancement of intensity
fluctuations, is observed as the threshold is approached from below
[(b) α = 1.88]. The insets show details of the main plots.

below the threshold at P/Pth = 0.88 is rather distinct from
the one in the deep Gaussian phase well below threshold at
P/Pth = 0.77. On the other hand, the best-fit value α = 1.88
found at P/Pth = 0.88 [Fig. 4(b)] can still be considered as
characteristic of the Gaussian statistical behavior. In fact, the
Lévy regime of intensity fluctuations has been experimentally
assigned in random lasers essentially when the value of α

falls below 1.8 [47]. In this respect, we actually observe that
the issue of determining precisely the Lévy index α from the
analysis of the PDF of intensities in random laser systems
is in fact a subtle one. This arises in part due to the finite
number of spectra considered in the statistical analysis. In
this sense, the precise value α = 2 that indicates Gaussian
statistical behavior of intensity fluctuations is rarely obtained,
even when the system is undoubtedly in this regime, such as
in the prelasing phase well below the threshold. Some sort of
experimental criterion for α (close to, but not exactly, 2) has
been thus necessary in order to indicate when the shift to the
Lévy regime takes place. If one looks at the dependence of the
index α on the input power (see, e.g., Ref. [52]), one generally
notices an initial gentle decrease still in the prelasing Gaussian
regime, followed by a fast decrease as the system crosses
the threshold and enters the Lévy regime. The value α ≈ 1.8
corresponds approximately to the inflection point of that curve,
after which the decrease becomes much more pronounced.
From these considerations, we thus conclude that, in spite of
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TABLE I. Index α determined from the PDF P (I ) of intensities
and shape parameter ξ , power-law exponent μ, and index α

determined from the CDF F (Imax) of extreme intensity values in the
Er-RFL system. Results were obtained using N = 150 000 emission
spectra divided into M = 800 blocks. The EVS theory leads to
α = 2 if 0 < ξ � 1/2 (Fréchet distribution) or if ξ → 0 (Gumbel
distribution), and α = 1/ξ < 2 if ξ > 1/2 (Fréchet distribution), in
the asymptotic limit N/M → ∞. The Gaussian statistical regime
corresponds to α = 2 and α = 2, whereas values 0 < α < 2 and
0 < α < 2 are indicative of Lévy behavior. Experimental Gaussian
regimes with distinct characteristics are found well below (P/Pth =
0.77) and well above (P/Pth = 1.72) the laser threshold. In the
former, values ξ ≈ 0 emerge from the nice fits both to the Gumbel
(ξ → 0) and Fréchet (ξ = 0.08) distributions. The exponent μ is
not defined well above the threshold at P/Pth = 1.72, in which the
ξ → 0 Gumbel CDF is consistent with the PDF P (I ) with exponential
decay rather than the power law. In contrast, a Lévy statistical
regime is found just above the threshold (P/Pth = 1.21), with
α = 1.69 and α = 1.61. Just below the threshold (P/Pth = 0.88),
the strong decrease of μ (if compared to the deep Gaussian regime at
P/Pth = 0.77) toward the μ = 3 Gaussian limit signalizes the onset
of the transition to the Lévy behavior. In all cases, we observe that the
result α ≈ α indicates that essentially the same statistics of intensity
values is obtained from the EVS analysis of the CDF F (Imax) (α)
or by investigating the PDF P (I ) (α). The equality α = α must hold
asymptotically as N/M → ∞.

Excitation power α ξ μ α

P/Pth = 0.77 1.98 ≈0 13.5 2
P/Pth = 0.88 1.88 0.35 3.86 2
P/Pth = 1.21 1.69 0.62 2.61 1.61
P/Pth = 1.72 2 →0 2

displaying enhanced intensity fluctuations (if compared to the
deep Gaussian behavior well below threshold), which signalize
towards the onset of the transition to the Lévy statistical
behavior, the system is still in the prelasing Gaussian regime
just below the threshold at P/Pth = 0.88.

We now turn to the analysis of the extreme intensity events
in the output spectra produced by the Er-RFL system.

From the data of the {Imax,n} sequence shown in Fig. 3,
the experimental CDF F (Imax) is determined for each input
excitation power, with the results displayed in green circles in
Fig. 5. We have tried best fits of F (Imax) to both the GEV and
Gumbel distributions, Eqs. (1) and (2), which are respectively
depicted by solid red and dashed blue lines in Fig. 5.

We start with the analysis of the Gaussian regimes far
from the threshold. Well above the threshold at P/Pth = 1.72
[Fig. 5(d)], we observe that the fit of the CDF F (Imax)
to the ξ → 0 Gumbel distribution is considerably better.
According to Sec. III, since ξ → 0 then one obtains α = 2
at P/Pth = 1.72. This result also indicates that the PDF P (I )
falls off at large I faster than a power law, consistently with
the exponential best fit shown in Fig. 4(d).

On the other hand, the Gaussian regime well below the
threshold at P/Pth = 0.77 presents in Fig. 5(a) good fits of
F (Imax) to distributions with ξ ≈ 0, either the ξ → 0 Gumbel
or the ξ = 0.08 Fréchet CDF. In the former, the Gaussian
behavior of intensity fluctuations is identified, with α = 2 as

FIG. 5. CDF F (Imax) of maximum intensity values of the M =
800 blocks of spectra emitted by the Er-RFL system at (a) P/Pth =
0.77, (b) P/Pth = 0.88, (c) P/Pth = 1.21, and (d) P/Pth = 1.72.
Experimental results from the analysis of the sequences {Imax,n}
shown in Fig. 3 are depicted in green circles. Best-fit curves to the
GEV and Gumbel distributions are indicated by solid red and dashed
blue lines, respectively. A Fréchet CDF is identified just above the
threshold [(c) ξ = 0.62 > 1/2], consistently with the Lévy statistical
behavior of intensity fluctuations. Gaussian regimes are found well
below and well above the threshold, characterized by distributions
with ξ ≈ 0, either Fréchet [(a) ξ = 0.08] or Gumbel [(a) and (d):
ξ → 0]. Just below the threshold [(b) ξ = 0.35], the strong increase
of the shape parameter toward the ξ = 1/2 Fréchet limit signalizes
the onset of the transition from the Gaussian to Lévy behavior. The
insets show details of the main plots.

discussed above. In the latter, the best-fit value of the shape
parameter is typical of a large-I power-law PDF P (I ) with
exponent μ = 1 + 1/ξ = 13.5 > 3. Therefore, this result is
equally consistent with the Gaussian statistical regime, and in
this case we also infer α = 2 since 0 < ξ � 1/2 (see Sec. III).
Once again, this finding agrees with the Gaussian value α =
1.98 obtained directly from the PDF of intensities at P/Pth =
0.77 [Fig. 4(a)].

In the Lévy statistical regime just above the threshold
at P/Pth = 1.21, we observe in Fig. 5(c) that the Fréchet
distribution provides a much better fit than the Gumbel to
the experimental CDF F (Imax). The best-fit shape parameter
ξ = 0.62 implies the values μ = 1 + 1/ξ = 2.61 < 3 for the
large-I asymptotic dependence of P (I ), and α = 1/ξ = 1.61
for the statistical behavior of intensities, since ξ > 1/2. As
displayed in Table I, this finding also compares well with the
result α = 1.69 obtained from the direct analysis of the PDF
P (I ) of intensities shown in Fig. 4(c).

Lastly, although we have seen above that the intensity
fluctuations enhance largely in the prelasing regime near the
threshold, we show in Fig. 5(b) that the experimental CDF
F (Imax) of extreme intensity events is still well fitted to the
Fréchet distribution at P/Pth = 0.88. As the best-fit value
ξ = 0.35 of the shape parameter at P/Pth = 0.88 approaches
the ξ = 1/2 Fréchet limit, the associated power-law exponent
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μ = 1 + 1/ξ = 3.86 becomes much smaller than the one
((μ = 13.5) found in the deep Gaussian regime at P/Pth =
0.77. This result also gets close to the Gaussian boundary
value μ = 3, below which the statistics of the intensity
fluctuations shifts to the Lévy regime. Therefore, while the
value ξ = 0.35 < 1/2 still implies the Gaussian index α = 2
at P/Pth = 0.88, we already observe in the strong decrease
of ξ the sign of the threshold proximity, in agreement with
the analysis of the PDF P (I ) of intensities at P/Pth = 0.88
[Fig. 4(b)].

We notice in all regimes above that the result α ≈ α

indicates that essentially the same statistics of intensity values
is obtained from the EVS analysis of the CDF F (Imax) (α) or
by directly investigating the PDF P (I ) (α), in agreement with
the discussion in Sec. III. In fact, the precise equality α = α

must hold in the asymptotic limit N/M → ∞. Moreover, as
also argued, the finding α ≈ α is sensitive to the choice of the
number of blocks M in which the emission spectra are divided
for the extreme-value analysis. For example, in the α = 1.69
Lévy regime just above the threshold at P/Pth = 1.21, we
obtained 1.6 � α � 1.8 when the number of blocks was in the
range 700 � M � 950. Values of α outside this interval were
found for either lower or higher choices of M . This variation
with M in the best-fit parameters of the GEV distribution
is actually expected [24,63] due to both the undermining of
the statistical analysis as the value of M gets much reduced
or much increased, and the need to fulfill the large-N/M

asymptotic requirement (see Sec. III).
We also observe that this sensitiveness to the choice of

M in the extreme-value analysis might be the reason why
the statistics of maximum intensity values obtained in [15]
from the EVS analysis of F (Imax) (α) was generally not
equivalent to that determined in [52] from the PDF P (I ) (α).
In those works, the authors investigated a random laser system
consisting of ZnO nanoparticles suspended in a rhodamine
6G-methanol solution, with a double pulsed Nd:YAG laser
as the pump source. In particular, we remark that Ref. [15]
seems to be, up to the present, the only statistical study
of extreme intensity events in photonic systems that relies
on the EVS theory of GEV distributions, Eqs. (1) and
(2). In [15], N = 5000 emission spectra were collected and
divided into M = 500 blocks of only N/M = 10 spectra
each, for the F (Imax) analysis. In [52], N = 2000 spectra
were employed in the study of the PDF P (I ). For example,
in the case of the sample with transport mean free path

∗ = 1500 μm, it is possible to compare the conclusion
associated with the measurement of the shape parameter ξ

and index α = 1/ξ , obtained from the nice fit of the CDF
F (Imax) to the Fréchet distribution [15], with the one related
to the parameter α determined from P (I ) [52]. In fact, one
notices in the former that the Lévy statistical regime (ξ > 1/2,
0 < α < 2) occurs for excitation pump energies in the range
0.8 � Ep � 0.9, whereas in the latter it happens (0 < α < 2)
for 0.6 � Ep � 2.0. Therefore, it might be possible that a
proper choice of M combined with the collection of a larger
set of emission spectra could lead to more similar intervals of
the pump energy Ep with Lévy behavior in the random laser
system investigated in [15,52].

We finally remark that the origin of the changes in
the statistics of the output intensity, as the pump power
is varied, is intrinsically related to the complex interplay
between the gain, nonlinearity, and the feedback mechanism
due to the disordered scatterers (in this case, the random
fiber gratings inscribed in the erbium-doped system, in a
strongly disordered regime), as the laser action takes place.
Indeed, Refs. [46,48] describe theoretically the intensity
dynamics through a set of coupled Langevin equations with
the presence of these ingredients, from which the PDF of
intensity values can be determined for each input power.
Consequently, these mechanisms have also a deep influence
on the extreme-value statistics of intensity measurements,
whose connection with the PDF of intensity values has been
described above. In particular, we observe that, due to the
complexity of the laser build up in this open cavity system,
strong intensity fluctuations emerge around the threshold
that can give rise, as demonstrated, to extreme events of
statistical significance.

V. CONCLUSIONS

In this work, we have reported on the observation of extreme
intensity events in a 1D cw-pumped erbium-based random
fiber laser, with a strongly scattering disordered medium
consisting of randomly spaced Bragg gratings.

By analyzing a large number of emission spectra in the
regimes below, near, and above the threshold, we have inferred
that the extreme-value statistics of maximum intensity values
complies nicely with the theoretical predictions based on the
stable generalized extreme-value distributions. Actually, we
have found that the extreme-value statistics of maximum
intensities is well described by the Gumbel and Fréchet
distributions, respectively, away and near the threshold, with
the latter indicating the presence of a strongly fluctuating
regime described by a probability function with heavy power-
law asymptotic tail.

A good agreement, supported by the theoretical analysis,
was also obtained between the distinct regimes of intensity
fluctuations (Gaussian or Lévy) and the statistics of extreme
intensity events for all excitation powers considered.

We hope that the present results might stimulate further
experimental and theoretical investigations of extreme events
in random laser and random fiber laser photonic systems.
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