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Quantum-statistical property of optical diode based on cavity QED
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An optical diode made of an asymmetric cavity containing a two-level atom is investigated. We focus on the
quantum-statistical property of the transmitted field with nonclassical light input. Both coherent and squeezed
light inputs have been considered. The results show that the transmitted contrast of such optical diode is
independent of the statistical properties of the incident light but is only sensitive to its intensity. On the other
hand, the quantum-statistical property, i.e., the squeezing, of the transmitted field strongly depends on the
statistical properties and directions of the incident light. For squeezed light input, the degree of the squeezing of
the transmitted field can be remarkably enhanced. Moreover, the squeezing of the amplitude quadrature of the
incident light can be transferred to the phase quadrature due to the coupling of the light and the atom.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED), where atoms
are coupled with a quantum field in a cavity, gives rise
to many fundamental, interesting effects such as vacuum
Rabi splitting [1,2], nonclassical light generation [3,4], and
optical nonlinearity [5,6]. Most of these effects have been
verified by experiments [7–12]. Besides, cavity QED enables
an increasing number of applications to quantum states trans-
fer [13,14], photon absorption [15,16], all-optical transistor
[17,18], optical bistability [19–23], optical nonreciprocity
[24–26], and so on. Optical nonreciprocity is the essence of
the optical diode [27], which is a core element in all-optical
signal processing systems. There were many theoretical and
experimental proposals based on photonic crystal [28,29], one-
dimensional waveguides [30,31] and other systems [32–34] to
achieve optical diode. However, most of them are suitable only
to a classical field input. Inspired by the progress in quantum
information, the diode operation under nonclassical light input
deserves investigation. Although there were several papers
considering optical diode at a few- and even single-photon
level [35–37], the behavior of the optical diode with the
squeezed or the coherent light input as well as the quantum-
statistical properties of the corresponding transmitted light are
rarely considered.

Quantum-statistical properties of the light emitted by the
atom in an optical cavity have been studied by many authors
[38–46], including bunching and antibunching [42,43], the
spectrum of the second-order correlation [44], photon blocking
[45], and squeezing [46]. In particular, the squeezing is
regarded as one of the most peculiar nonclassical phenomena
in quantum systems. It plays a crucial role in the precision
measurements and the noiseless communications. A variety of
schemes have been presented to generate the squeezed states
to date [47–51]. One of the proposals is the cavity system
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containing an optical nonlinear medium, i.e., a degenerate-
parametric amplifier [47,51]. The others include basic cavity
QED systems [52,53], semiconductor systems [54], and cavity
optomechanics systems [55–58]. The physics behind them
is mainly related to the nonlinear optical process. Thus one
way to improve the degree of squeezing is to enhance the
nonlinearity of the system.

In this paper, we continue the study of the optical diode
based on cavity QED reported in Ref. [23], and focus on
the quantum-statistical property of such optical diode with
the coherent and the squeezed light input. It is found that the
transmission contrast of the optical diode is independent of the
statistical properties of the incident light but sensitive to the
intensity. Furthermore, we reveal that the quantum-statistical
property of the transmitted field can be manipulated by
varying the cavity-loss rate, the direction, the intensity, and
the quantum-statistical properties of the incident light.

This paper is organized as follows. In Sec. II, we introduce
the cavity QED system, in which an asymmetric cavity
contains a two-level atom, and the basic theory to describe
the input-output relationship as well as the quantum-statistical
property of the system. In Sec. III, we analyze the optical
diode effect with the coherent and the squeezed light input.
In Sec. IV, we explore the corresponding quantum-statistical
property of the transmitted field. Finally, conclusions are
drawn in Sec. V.

II. MODEL AND BASIC THEORY

We consider an atom-asymmetric cavity coupling system
in the reservoirs, as shown in Fig. 1. There is a two-level
atom with transition frequency ω0 embedded at the center
of the single-mode cavity with frequency ωc. The cavity
mode couples to the outside continuum modes with coupling
constants g1 and g2, respectively. The difference between g1

and g2 originates from the asymmetric cavity with different
reflective walls M1 and M2. The Hamiltonian of the whole
system under a rotating-wave approximation is given as
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FIG. 1. Scheme of the atom-cavity coupling system.

follows:

H = HS + HR + HI , (1)

where

HS = h̄ω0Sz + h̄ωca
†a + h̄�(a†S− + S+a) (2)

is the Hamiltonian of the atom-cavity coupling system. The
first two terms represent the Hamiltonian of the atom and the
cavity mode, respectively. The last term represents the inter-
action between the cavity mode and the atom with a coupling
coefficient �. a (a†) is the annihilation (creation) operator of
the cavity mode. S− = |1〉〈2| and Sz = (|2〉〈2| − |1〉〈1|)/2 are
atomic operators.

HR = h̄
∑

k

ωkb
†
kbk + h̄

∑
l

ωlc
†
l cl (3)

is the Hamiltonian of the reservoirs. Here bk and cl are the
annihilation operators of the modes for port 1 and port 2,
respectively; ωk and ωl are their corresponding frequencies.

HI = h̄
∑

k

g1(b†ka + a†bk) + h̄
∑

l

g2(c†l a + a†cl) (4)

is the interaction Hamiltonian between the cavity mode and the
reservoir modes. When there is an external field input from the
left side to the right side (from M1 to M2), we call it the forward
incidence, as shown in Fig. 1. On the contrary, the backward
incidence refers to the light input from the right side (from M2

to M1). As the atom is located at the center of the cavity, the
backward input case is equivalent to the forward case by just
interchanging the values of g1 and g2.

Here we consider a monochromatic external field input
from the left side, i.e., the forward input case. According to the
Heisenberg equations ∂Ô/∂t = [Ô,Ĥ ]/ih̄, and considering
the atomic dissipation, the equations of relevant operators in
the frame rotating at the input frequency ω are obtained as [5]

Ṡ− = −(i� + γat/2)S− + 2i�Sza, (5)

Ṡz = −i�S+a + i�a†S− − γat(Sz + 1/2), (6)

ȧ = −iδa − i�S− − κa − i
√

κ1bin, (7)

bt = −i
√

κ2a. (8)

Here γat is the dissipation rate of the atom, � = ω0 − ω

(δ = ωc − ω) is the detuning between the atom (cavity) and

the input field. κ1 = |g1|2τk and κ2 = |g2|2τl are denoted as the
cavity-loss rates from port 1 and port 2, respectively, where τj

is defined by
∑

j e−iωj t = δ(t)τj , (j = k,l). κ = (κ1 + κ2)/2
represents the average cavity-loss rate. The incident and
transmitted operators are introduced as [5,59]

bin(t) = 1√
τk

∑
k

bk(t0)e−iωk (t−t0), t > t0,

(9)

bt (t) = 1√
τl

∑
l

cl(t
′
0)e−iωl (t−t ′0), t < t ′0.

The operator equations, Eqs. (5)–(8), are the starting point
of our analysis. Generally, the ratio C = 4�2/κγat can measure
all aspects of the atom-cavity interaction, and is defined as the
single atom-cavity cooperativity parameter (also called the
Purcell factor). C > 1 refers to the strong coupling, while
C � 1 refers to the weak coupling. In this work, we fix the
average cavity-loss rate κ = 500γat, and just change the value
of κ1 to achieve the asymmetric cavity. Therefore the systems
work at the same coupling regime with constant C. In addition
we set � = δ = 0 to enhance the coupling among atom, cavity
mode, and input field. In the next section we will discuss the
input-output relations with different input fields: the coherent
field and the squeezed field.

III. OPTICAL DIODE EFFECT WITH THE COHERENT
AND THE SQUEEZED FIELD INPUT

For the coherent input field, it leads to the following
expectation values as

〈bin〉 = |α|eiφ/2,

〈b†inbin〉 = |α|2, (10)

〈binbin〉 = |α|2eiφ.

Here α is a complex number with angle φ. It is the eigenvalue
of the operator bin whose eigenstate is the coherent state. |α|2
is the average photon number. For the squeezed input field, the
corresponding expectation values are

〈bin〉 = 〈b†in〉 = 0,

〈b†inbin〉 = sinh2r, (11)

〈binbin〉 = − cosh reiη sinh r.

Here r is the squeezing factor of the incident light; η is
the squeezed angle. It is clear that the average intensity of the
squeezed input field is sinh2r .

In this section, we analyze the optical diode effect with the
coherent or the squeezed light input in the steady state. Here
nt = b

†
t bt scales like a transmitted photon number per unit of

time which represents the output power, and nc = a†a is the
photon numbers in the cavity. The relations between nt and nc

can be obtained through Eq. (8) as

nt = κ2nc, (12)

and then the steady atomic dipole moment S− can be expressed
from Eq. (5) as

S− = 4i�Sza
/
γat. (13)
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Inserting Eqs. (12) and (13) into Eq. (6), we obtain the
steady atomic population Sz as

Sz = −1

2

1

1 + x
, (14)

where x = nt/Pct is the saturation parameter, in which Pct =
κ2γ

2
at/8�2 is the critical power of nt to reach Sz = −1/4.

Inserting Eq. (13) into Eq. (7), we can relate the cavity field
operator a to the input field operator bin as

(
κ − 4�2Sz

γat

)
a = −i

√
κ1bin. (15)

After multiplying their conjugation operator, the relation
between 〈nin〉 and 〈nt 〉 takes the form as

〈nin〉 = 〈nt 〉
κ1κ2

[
2�2

γat(1 + x)
+ κ

]2

, (16)

where nin = b
†
inbin scales like the input photon numbers and

represents the input power. Equation (16) indicates that the
transmitted power 〈nt 〉 directly relates to the input power 〈nin〉,
but independent of the statistical properties of the input field
(〈bin〉, 〈binbin〉). For simplification, we just use ni to represent
〈ni〉(i = in,t) in the following. Here, we restricted ourselves
to the Purcell regime (C = 4�2/κγat � 1). Furthermore, the
coupling coefficient � is larger than the dissipation rates of
the atom, but is much less than the cavity-loss rates; i.e., γat <

� � κ . We set � = 50γat and κ = 500γat as the common
parameters to perform the analysis. In the following, the input-
output relations of the system with coherent light input have
been discussed in detail.

In Fig. 2, we plot the input-output relations for both the
symmetric (κ1 = κ2 = κ) and the asymmetric (κ1 �= κ2) cavity
under the coherent light input. It is found that the transmitted
photon numbers display a counterclockwise hysteresis in all
cases, which means the appearance of the optical bistable
states. There are two threshold values to identify the bistable
regime. When the input power nin = |α|2 is smaller than the

FIG. 2. The output photon number nt as a function of input power
nin with different cavity-loss rate κ1. The red solid curve represents
the symmetric cavity with κ1 = 500γat, the green dashed, blue dotted,
blue dash-dotted, and green dash-dot-dotted curves correspond to
κ1 = 300γat,400γat,600γat, and 700γat, respectively. The common
parameter is κ = 500γat.

FIG. 3. The transmittivity (T = nt/nin) for both forward and
backward incidence as a function of input power nin with different
cavity-loss rate κ1. All the solid (dotted) curves represent the
forward (backward) incidence respectively. The red, blue, and green
vertical dashed curves correspond to the threshold values of each
optimal window with κ1 = 600γat,700γat, and 800γat, respectively.
The common parameter is κ = 500γat.

lower threshold value, the light is almost blocked; when the in-
put power is larger than the higher threshold value, the light can
transmit through the system easily. Moreover, Fig. 2 indicates
that the bistable regime can be affected by the asymmetry of
the cavity.

When κ1 > κ , i.e., κ1 = 600γat and 700γat, the bistable
regime shifts to the lower input power (see the blue dash-dotted
and green dash-dot-dotted curves). Oppositely, when κ1 < κ ,
i.e., κ1 = 400γat and 300γat, the bistable regime moves to the
higher input power (see the blue dotted and green dashed
curves).

If we define κ1 > κ as the forward incidence, then the cases
of κ1 < κ are equivalent to the backward incidence. In Fig. 3,
we plot the transmissivity (T = nt/nin) for both the forward
and the backward incident light as a function of the input
power nin. It shows that the bistable regimes of the forward
input are separated from those of the backward input due to the
asymmetry of the cavity. When the input power falls into the
range between these two bistable regimes, the input light can
only transmit through the system in the forward direction. For
example, in the case of κ1 = 600γat, when the input power falls
into the regime [0.78,1.11], T > 0.3 for the forward incidence,
while T < 0.02 for the backward incidence (see the red solid
and dashed curves in Fig. 3). This means that the separation
of the bistable regimes leads to the optical diode effect.

Furthermore, Fig. 3 indicates clearly that the width of the
optimal window can be significantly affected by the asymmetry
of the cavity, i.e., the difference among the cavity-loss rates
(|κ1 − κ2|). With the increasing of |κ1 − κ2|, the width of the
optimal window can be enlarged (see the blue solid, dashed
curves and green solid, dashed curves, respectively), and
the transmitted contrast for each window will be enhanced
accordingly, which will be discussed in the following.

In Fig. 4, we plot the transmitted contrast, CT =
10|log10(Tf /Tb)|, as a function of the input power with
different cavity-loss rate κ1 within the corresponding optimal
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FIG. 4. The transmitted contrast CT = 10|log10(Tf /Tb)| as a
function of the input power with different cavity-loss rate κ1.The
red, blue, and green vertical dashed curves refer to the threshold
values of each optimal window with κ1 = 600γat,700γat, and 800γat,
respectively. The common parameter is κ = 500γat.

operation power windows. It is found that the optical diode
works with a high transmitted contrast and low input power
within each optimal input window. The transmitted contrast
increases to its maximal at first, and then decreases with the
input power. Moreover, the transmit contrast is also affected by
the cavity-loss rate κ1. The larger the cavity-loss rate κ1 is, the
wider the optimal input window, and the higher the transmit
contrast accordingly.

From the above discussions, it is clear that an optical
diode can be realized based on the single atom-asymmetrical
cavity coupling system with coherent light input. Actually,
the input-output relations with squeezed light input also have
been investigated. It is confirmed that the diode effect is
regained and the results are the same as the coherent input case,
except that the intensity of the squeezed input is expressed
by nin = sinh2r . Obviously, the behavior of the diode only
depends on the average power of the input field, and does not
relate to the quantum-statistics character of the input field,
which is consistent with the previous works only considering

the classical field input [23]. However, the nonlinearity of the
system would change the state of field in general, so we will
discuss the quantum-statistical character of the transmitted
field in Sec. IV.

IV. QUANTUM-STATISTICAL PROPERTIES OF THE
OUTPUT FIELD

In this section, we proceed to analyze the squeezing
properties of the transmitted field. The cavity field variance
can be obtained from Eqs. (5)–(7) by using the notation
〈A,B〉 = 〈AB〉 − 〈A〉〈B〉, read as

〈a,a〉 = κ1[2�2 − κγat(1 + x)]

κ2[2�2 + κγat(1 + x)]
〈bin,bin〉

+ 4κ1�
4

κ2[2�2 + κγat(1 + x)]2 〈bin〉2, (17)

〈a†,a〉 = − κ1[2�2 − κγat(1 + x)]

κ2[2�2 + κγat(1 + x)]
〈b†in,bin〉

− 4κ1�
4

κ2[2�2 + κγat(1 + x)]2 〈b†in〉〈bin〉 + �2x

2κ2(1 + x)
.

(18)

The variance of the transmitted field operator can be
obtained by using the input-output relation, Eq. (8), read as [60]

〈bt ,bt 〉 = −κ2〈a,a〉, (19)

〈b†t ,bt 〉 = κ2〈a†,a〉. (20)

To measure the squeezing, the output field must be
expressed in terms of the quadrature components. For example,
the Hermitian operator bt should be divided into two quadra-
ture components as [60]

bt = eiθ/2(T1 + iT2). (21)

These two components T1 and T2 satisfy the commutation
relation as [T1,T2] = i/2. θ/2 is the axes rotating angle
between T1 and T2. Then the variance of these two quadrature
components of the transmitted field takes the following forms:

〈
: δT 2

1 :
〉 = −κ1κ2

4κ2

({
2�2 − κγat(1 + x)

2�2 + κγat(1 + x)
〈bin,bin〉 + 4�4

[2�2 + κγat(1 + x)]2 〈bin〉2

}
e−iθ + c.c.

)

− κ1κ2[2�2 − κγat(1 + x)]

2κ2[2�2 + κγat(1 + x)]
〈b†in,bin〉 − 2κ1κ2�

4

κ2[2�2 + κγat(1 + x)]2 〈b†in〉〈bin〉 + κ2�
2x

4κ2(1 + x)
, (22)

〈
: δT 2

2 :
〉 = κ1κ2

4κ2

{
2�2 − κγat(1 + x)

2�2 + κγat(1 + x)
〈bin,bin〉 + 4�4

[2�2 + κγat(1 + x)]2 〈bin〉2e−iθ + c.c.

}
− κ1κ2[2�2 − κγat(1 + x)]

2κ2[2�2 + κγat(1 + x)]
〈b†in,bin〉

− 2κ1κ2�
4

κ2[2�2 + κγat(1 + x)]2 〈b†in〉〈bin〉 + κ2�
2x

4κ2(1 + x)
. (23)

The above variances originate from the definition of
〈: δT 2

i :〉 = 〈Ti,Ti〉 − 1
4 , i = 1,2. If 〈: δT 2

i :〉 is negative, the
output field exhibits quadrature squeezing. In detail, 〈: δT 2

1 :〉
measures the amplitude quadrature squeezing, while 〈: δT 2

2 :〉

measures the phase quadrature squeezing. According to
the definition of 〈A,B〉 = 〈AB〉 − 〈A〉〈B〉, it is clear from
Eqs. (22) and (23) that the squeezing properties of the
transmitted field relate to not only the average intensity
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〈b†inbin〉 but also the statistical properties (〈bin〉, 〈binbin〉) of the
input fields. Besides, the squeezing depends on the system’s
parameters, i.e., γat,�,κ,κ1,κ2. Because the coherent field
has different statistical properties from the squeezed field,
shown in Eqs. (10) and (11), the variances of these two
quadratures of the transmitted field 〈: δT 2

1 :〉 and 〈: δT 2
2 :〉

are much different between the coherent and the squeezed
input fields. This is the key point that leads to the remarkably
different quantum-statistical properties of the transmitted field
in these two cases, which are discussed below.

A. Coherent light input

In this part, we analyze the squeezing properties of the
output field with the coherent light input. According to
Eqs. (22) and (23) and combining with Eq. (10), the variances
of the output field are obtained as follows:

〈
: δT 2

1 :
〉 = − 4κ1κ2�

4|α|2
κ2[2�2 + κγat(1 + x)]2 + κ2�

2x

4κ2(1 + x)
,

(24)

〈
: δT 2

2 :
〉 = κ2�

2x

4κ2(1 + x)
. (25)

From Eq. (25), it is found that 〈: δT 2
2 :〉 is always positive;

that is, the squeezing disappears in the phase quadrature.
Therefore, we only focus on the amplitude quadrature 〈: δT 2

1 :〉
here. 〈: δT 2

1 :〉 as a function of the input power nin = |α|2
with different cavity-loss rate κ1 is shown in Fig. 5(a). It is
found that, for the forward incidence, with the increasing of
input power nin, the squeezing (〈: δT 2

1 :〉 < 0) increases to
maximal at first. Then the squeezing will decrease with further
increasing of nin, and even disappear (〈: δT 2

1 :〉 � 0) when nin

is shifted into the optimal input window. This phenomenon
relates to the nonlinear saturation of the atom. When the input
power is weak, the atom in the cavity cannot be saturated;
thus the coupling between the atom and the input light can be
enhanced with the increase of the input photons, which leads
to the enhancement of the squeezing. By further increasing the
input photons, the atom will be saturated gradually; thus the
coupling between the atom and the input light becomes weaker,

and consequently, the squeezing decreases. When the input
photon numbers fall into the optimal input window, the input
power is sufficient to saturate the atom; thus the transmitted
light will decouple from the atom completely, and as a result,
the squeezing disappears [see the solid curves in Fig. 5(a)].
For the backward incidence, the squeezing behaviors are very
similar to that of the forward incidence, except that when the
input power falls into the optimal input window, it still cannot
saturate the atom, so the squeezing remains for the backward
input even if the input power is shifted into the optimal input
window [see the dashed curves in Fig. 5(a)]. In order to show
the effect of the direction of the incident light on the squeezing
more clearly, we plot the variance 〈: δT 2

1 :〉 under each optimal
inputting window with κ1 = 600γat, 700γat, and 800γat in
Fig. 5(b). It turns out that the squeezing (〈: δT 2

1 :〉 < 0) can
only be observed for the backward case while there is no
squeezing (〈: δT 2

1 :〉 � 0) for the forward incidence.
Furthermore, when the input power is smaller than the

lower threshold value of the optimal operation power window
(i.e., nin < 0.78371 for κ1 = 600), the degree of squeezing
for the forward incidence is smaller than that for the backward
incidence [see the red solid and dashed curves in Fig. 5(a)]. For
the forward incidence, the amount of the squeezing decreases
with the increase of the cavity-loss rate κ1 [see the solid
blue and green curves in Fig. 5(a)], while for the backward
incidence, the squeezing increases [see the dotted blue and
green curves in Fig. 5(a)]. It is obvious that the squeezing of
the transmitted field for the backward incidence is much more
significant than that for the forward case.

B. Squeezed light input

Here we discuss the squeezing effects of the transmitted
field with an amplitude quadrature squeezed light input. The
variance 〈: δT 2

i :〉 of the transmitted field can be obtained from
Eqs. (22), (23), and (11) as

〈
: δT 2

1 :
〉 = κ1κ2[2�2 − κγat(1 + x)](cosh r sinh r − sinh2r)

2κ2[2�2 + κγat(1 + x)]

+ κ2�
2x

4κ2(1 + x)
, (26)

FIG. 5. The normally ordered variance 〈: δT 2
1 :〉 for both forward and backward incidence as a function of input power nin = |α|2 with

different cavity-loss rate κ1: (a) the input power ranges from 0 to 2.5; (b) the input power falls into the optimal input window. All the solid and
dotted curves represent the forward and backward incidence, respectively. The red, blue, and green vertical dashed curves correspond to the
threshold values of each optimal window with κ1 = 600γat,700γat, and 800γat, respectively. The common parameter is κ = 500γat.
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FIG. 6. The normally ordered variance 〈: δT 2
1 :〉 and 〈: δT 2

2 :〉
as a function of the input power nin with different cavity-loss
rates κ1 for the forward incidence. All the solid and dashed curves
represent 〈: δT 2

2 :〉 and 〈: δT 2
1 :〉 with κ1 = 600γat,700γat, and 800γat,

respectively. The common parameter is κ = 500γat.

〈
: δT 2

2 :
〉 = −κ1κ2[2�2 − κγat(1+x)](cosh r sinh r + sinh2r)

2κ2[2�2+κγat(1+x)]

+ κ2�
2x

4κ2(1 + x)
. (27)

In the following, we restrict ourselves to the forward
incidence and compare the squeezing of the transmitted light
with that of the incident field. We plot 〈: δT 2

1 :〉 and 〈: δT 2
2 :〉

as a function of the input power nin = sinh2r with different
cavity-loss rates κ1 for the forward incidence in Fig. 6. The
results show that the squeezing effect of the transmitted field
can be observed when the input power is low (see the solid
curves in Fig. 6), while as the input power falls into the optimal
window, there is no squeezing of the output field which is
similar to that for the coherent input case. However, from
Fig. 6, we can find that the squeezing of the transmitted field
is only exhibited in the phase quadrature, i.e., 〈: δT 2

2 :〉 < 0,
while there is no squeezing of the amplitude quadrature
〈: δT 2

1 :〉 � 0 (see the dashed curves in Fig. 6) which is very
different from the results obtained with a coherent light input.
Furthermore, we note that the input light is an amplitude
quadrature squeezed light 〈: δX2

1 :〉 < 0 (see the red dashed
curve in the inset in Fig. 6), but there is only phase quadrature
squeezing in the transmitted field, so the squeezing property
of the amplitude quadrature has been transferred to the phase
quadrature due to the coupling of the light and the atom.
Moreover, compared with the coherent light input case, the
degree of squeezing of the transmitted field with squeezed
light input is much larger [i.e., see the blue solid curve in
Figs. 5(a) and 6]. This means that the incident squeezed light
improves the amount of squeezing of the transmitted field.

Finally, we discuss the change of squeezing between the
transmitted field and the input squeezed light. The degree
of squeezing can be expressed in unite of decibels, defined
as −10log10[〈δT 2

i 〉/〈δT 2
i 〉vac]. Here 〈δT 2

i 〉vac is the quadrature
variance of the vacuum state and possesses the constant value
of 〈δT 2

i 〉vac = 1/4. The variance of the transmitted field is
defined by 〈δT 2

i 〉 = 〈: δT 2
i :〉+1/4. The degrees of squeezing

FIG. 7. The degree of the squeezing of the transmitted field and
the initial input light as a function of the input power with different
cavity-loss rates κ1 for the forward incident. The red, blue, and green
vertical dashed curves correspond to the threshold values of each
optimal window with κ1 = 600γat,700γat, and 800γat, respectively.
The common parameter is κ = 500γat.

of the input lights and their transmitted field as a function of
the input power nin are shown in Fig. 7. It is clearly indicated
that the degree of squeezing of the output field increases to its
maximal at first, and then decrease with the increasing of the
input power. In addition, the degree of the squeezing increases
with the decreasing of the cavity-loss rate, and even becomes
much larger than that of the initial input light when κ1 decreases
to a fixed value (see the red solid and blue dashed curves in
Fig. 7). The reason is that, as the squeezed light is injected
into the cavity, the input field and the cavity field gradually
become correlated over time. This correlation is helpful for the
coupling between the atom and cavity field, and then partial
fluctuations in the input field can be canceled out, which leads
to the enhancement of the squeezing of the output field [61].

From the above discussion, the squeezing effect of the
output field strongly depends on the directions of the incident
light. When the input power falls into the optimal window, the
squeezing effect can only be observed for the backward case.
Furthermore, the cavity-loss rate κ1 has a profound influence
on the squeezing of the transmitted field. Thus a high-degree
squeezing state can be obtained by adjusting the asymmetry
of the cavity.

V. CONCLUSION

In this paper, we investigate the quantum-statistical prop-
erties of the optical diode based on the cavity QED system
with nonclassical light input. It turns out that an optical
diode with high transmitted contrast and low operation
power can be realized due to the separation of the bistable
regimes. The optical diode is independent of the statistical
properties of the input light but sensitive to the intensity.
Our theoretical investigation implies a practical technique of
realizing an optical diode by adjusting the cavity-loss rate and
the intensity of the input light, which contributes to a variety of
applications of quantum information processing. Furthermore,
the quantum-statistical properties of the transmitted field
have been discussed. Both the coherent and the squeezed
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light inputs have been considered. The results show that the
quantum-statistical properties of the transmitted field can be
modified after propagating through the cavity QED system,
and depend strongly on the cavity-loss rate, the direction, and
the statistical properties of the input light. For the squeezed
light input, the degree of squeezing of the transmitted field is
much higher than that of the coherent light input. In addition,
the interaction of the atom and the squeezed light enhances the
amount of squeezing of the transmitted field and transfers the
squeezing from the amplitude quadrature of the input light to
the phase quadrature of the transmitted field.
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