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The damped driven nonlinear Schrödinger equation (NLSE) has been used to understand a range of physical
phenomena in diverse systems. Studying this equation in the context of optical hyperparametric oscillators in
anomalous-dispersion dissipative cavities, where NLSE is usually referred to as the Lugiato-Lefever equation,
we are led to a reduced nonlinear oscillator model that uncovers the essence of the spontaneous creation of
sharply peaked pulses in optical resonators. We identify attracting solutions for this model, which correspond to
stable cavity solitons and Turing patterns, and study their degree of stability. The reduced model embodies the
fundamental connection between mode synchronization and spatiotemporal pattern formation and represents a
class of self-synchronization processes in which coupling between nonlinear oscillators is governed by energy
and momentum conservation.
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I. INTRODUCTION

Self-organization is an intriguing aspect of many nonlinear
systems far from equilibrium, which leads to the emergence of
coherent spatiotemporal structures [1]. Many such nonlinear
systems have been modeled by the externally driven damped
nonlinear Schrödinger equation (NLSE). Examples include
such diverse systems as Josephson junctions, charge-density
waves, quantum Hall ferromagnets and ferromagnets in mi-
crowave fields, rf-driven plasmas, shear flows in liquid crystals,
and atmospheric and ocean waves [2]. The NLSE admits
spatiotemporal sharply peaked solutions (e.g., dissipative
solitons), but a central mystery remains: While it is understood
that such solutions occur because of phase locking, no formal
model is currently available to explain the underlying self-
synchronization mechanism. In this paper we introduce a
reduced phase model that captures the fundamental connection
between mode synchronization and pulse formation. While
the results presented here are generic from the mathematical
perspective, considering them within a specific physical
system allows a more lucid presentation and interpretation
of the results. Consequently, we consider the damped driven
NLSE in the context of frequency combs based on dissipative
optical cavities [3–5].

A high-Q (quality-factor) optical resonator made of Kerr-
nonlinear material and pumped by a continuous wave (cw)
laser forms a hyperparametric oscillator based on nonlinear
four-wave mixing (FWM) [6,7] and can generate an optical
frequency comb: an array of frequencies spaced by (an integer
multiple of) the resonator free spectral range (FSR). The gen-
eration of a frequency comb with equidistant teeth, however, is
not enough; temporal pulse generation requires also the mutual
phase locking (synchronized oscillation) of the frequency
comb teeth. Unlike pulsed lasers, pulsation in dissipative opti-
cal resonators requires neither active nor passive mode-locking
elements (e.g., modulators or saturable absorbers) [5,8].
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Rather, pulsed states arise naturally from a simple damped
driven NLSE, in this context commonly called the Lugiato-
Lefever equation (LLE) [2,4,9–13]. Two categories of stable
pulsed solutions have been identified for the LLE: stable mod-
ulation instability (also called hyperparametric oscillations or
Turing rolls) and stable cavity solitons [10–12,14–16]. Owing
to their stability, these phase-locked combs have been used
to demonstrate chip-scale low-phase-noise radio-frequency
sources [17] and high-speed coherent communication [18,19].

Phase locking in optical microresonators has been studied
in terms of the cascaded emergence of phase-locked triplets
[20] and injection locking of overlapping comb bunches [21].
Additionally, few-mode models have explained the phase
offset between the pumped mode and the rest of the comb teeth
[22,23] and have shed light on the temporal evolution of comb
harmonic phases [24]. More recently, Wen et al. [25] have
emphasized the link between oscillator synchronization, most
famously described by the Kuramoto model, and the onset of
pulsing behavior. However, while stable ultrashort pulses have
been demonstrated in a variety of platforms [7,13,26,27], their
underlying phase-locking mechanism is still unknown. The
reduced model introduced in this paper reveals the underlying
nonlinear interactions responsible for the spontaneous creation
of pulses in optical resonators with anomalous dispersion. The
modal interactions in the LLE are the result of the cubic (Kerr)
nonlinearity and their specific form reflects conservation of
energy and momentum. Consequently, the phase couplings in
our model are ternary (i.e., they involve three-variable combi-
nations) rather than binary, as in typical phase models [28]. Our
model admits attracting solutions that correspond to stable cav-
ity solitons and Turing rolls. We show that the phase stability of
steady-state LLE solutions in the strong pumping regime can
be studied easily using this model. Moreover, our model sheds
light on the role of modulational instability (MI) and chaos in
the generation and stability of Turing rolls and solitons.

II. REDUCTION OF THE LUGIATO-LEFEVER EQUATION

The creation of sharply peaked solutions in dissipative
optical cavities relies on the establishment of a fine balance
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FIG. 1. Phase locking after randomizing the phase profile of a single-soliton LLE solution. A dissipative soliton is propagated in time under
the LLE. The soliton phase profile is suddenly randomized at τ = 1. (a) Integration of the LLE is continued normally after phase randomization.
As a result of the interplay between power and phase evolution, the single-soliton state is lost but multiple solitons may appear, pointing at the
existence of a phase-locking mechanism. (b) To suppress the influence of comb power evolution on the phase recovery, the power spectrum
of a single soliton is enforced in every integration step after phase randomization and the single-soliton peak is seen to be recovered. The top
panels illustrate the temporal evolution of the intracavity waveform by color density, while the middle and bottom panels show the frequency
comb power and phase profiles, respectively.

between nonlinearity, dispersion (or, in the case of spatial
cavities, diffraction), parametric gain, and cavity loss [29].
The dynamics of this complex interaction is described by the
LLE, which is a nonlinear partial differential equation with
periodic boundary conditions for the intracavity field envelope
in a slow and a fast time variable [9,11] or, equivalently, in time
and the azimuthal angle around the whispering-gallery-mode
resonator [12]. The cubic nonlinear term in the LLE leads to
a rich interplay between the power and phase dynamics of the
comb teeth. To uncover the self-synchronization mechanism
leading to phase locking in this equation, as will become clear
in this section, we make experimentally motivated assumptions
on the power spectrum. This simplification allows us to
separate the evolution of the power spectrum from that of
the phase and arrive at a reduced model (a phase model) that
embodies the fundamental phase-locking mechanism enabled
by the nonlinearity in the LLE.

In normalized form, the LLE reads

∂ψ

∂τ
= −(1 + iα)ψ − i

d2

2

∂2ψ

∂θ2
+ i|ψ |2ψ + F, (1)

where ψ(θ,τ ) and F (θ,τ ) are the field envelope and pump
amplitude, respectively, both normalized to the sideband gen-
eration threshold, α and d2 are the pump-resonance detuning
and second-order dispersion coefficient, each normalized to
the half-linewidth of the pumped resonance, and τ is the time
normalized to half of the cavity photon lifetime [12] (d2 < 0
for anomalous dispersion). As noted earlier, the LLE has stable
dissipative soliton and Turing roll solutions. If a phase-locking
mechanism exists in the LLE, when one of its phase-locked
steady-state solutions, e.g., a single soliton, is used as initial
condition for propagation with time and its phase spectrum is
randomized, we would expect the phase-locking mechanism to
recover the soliton phase after some time (see Fig. 1). Because

of the interplay of the power and phase dynamics, more
than one local peak may appear after randomizing the phase
profile as shown in Fig. 1(a). To appreciate the influence of
separating power and phase dynamics, it is possible to enforce
the power spectrum of a single-soliton solution in every step of
integration of the LLE when propagating the solution in time.
Then the system converges to the simpler phase-locked state
of a single soliton, as can be seen in Fig. 1(b). The difference
between the smooth (before randomizing the phases) and
striped (after pulse recovery) phase profile (bottom panel)
in Fig. 1(b) stems from the linear added phase due to the
shift of the recovered soliton peak and wrapping of the phase
between −π and π . The slope of the linear phase profile, as
we will show, depends on the initial random phase profile
when the locking process kicks in and its arbitrary character
is a result of the rotational symmetry of the resonator; see the
discussion about the zero eigenvalue in Sec. IV. The phase
profile (bottom panel) of the recovered multisoliton state of
Fig. 1(a) is constant with time after the fourth peak appears
but, in contrast to the single-soliton phase profile of the bottom
panel in Fig. 1(b), does not have a regular pattern repeating
with the mode number. It is worth noting that we have used
a very extreme phase randomization in Fig. 1, i.e., random
phases chosen from a uniform distribution over (−π,π ]. If,
instead, a normal distribution with standard deviation equal to
a fraction of the period (e.g., π/4) is used, a single soliton,
rather than multiple solitons, is more likely to be recovered
even without enforcing the single-soliton power spectrum.

Figure 1 suggests that a phase-locking mechanism does
indeed underlie pulse formation in the LLE. To understand
this mechanism, we consider comb generation in the frequency
domain. The discrete-time Fourier transform of Eq. (1) (with
the azimuthal angle θ and comb mode number η as conjugate
variables [30]) yields an equivalent set of coupled nonlinear
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FIG. 2. Frequency-domain interpretation of the LLE. The LLE
[Eq. (1)] defines a grid (dotted lines) with spacing equal to the
resonator FSR at the pump frequency D1 and is written in a rotating
reference frame [12]. In the frequency domain, moving to the rotating
frame translates into removing the spacing between the grid sites by
folding the schematic of (a) such that all the dotted lines coincide.
Because of modal dispersion, the modal resonances (green) will not
all fall at the same position. Before phase locking, the different comb
teeth may be at any spectral position around their corresponding
resonance. Phase locking is established when all of the comb teeth
align with the pump and, additionally, oscillate in synchrony. Here
ση ∝ αη is the dimensional detuning of comb tooth η from its nearest
resonance.

ordinary differential equations (ODEs) [31]

dãη

dτ
= −(1 + iαη)ãη + i

∑
l,m,n

ãl ã
∗
mãnδηlmnη + F̃η (2)

for the temporal evolution of the complex comb teeth ampli-
tudes ãη (with magnitude |ãη| = aη and phase ∠ãη = φη) that
make up the spatiotemporal field envelope through ψ(θ,τ ) =∑N

η=−N ãη exp(iηθ ). In this picture, each comb mode is a
nonlinear oscillator and one of the coupled ODEs follows
the temporal evolution of its complex amplitude. In Eq. (2),
αη = α − d2η

2/2 is the detuning of comb tooth η from its
neighboring resonance, δpq (for integers p and q) is the
Kronecker delta, ηlmn = l − m + n, and l, m, and n are
integers; modes are numbered relative to the pumped mode
for which η = 0. We consider cw pumping for which F̃η =
δ0ηFP exp(iφP), FP being proportional to the pump magnitude
and φP representing its phase.

The LLE defines a grid in the frequency domain (dotted
lines in Fig. 2) where the spacing between the grid sites is
equal to the resonator FSR (D1; see Appendix A and [12])
at the pumped mode. The standard LLE [12] is written in
a rotating reference frame such that in its derivation a term
D1∂ψ/∂θ is removed from the equation to yield Eq. (1). In
the frequency domain, this change translates into removing
a term iηD1 from each of the coupled ODEs with η �= 0,
which in turn amounts to removing the spacing between the
grid sites by folding Fig. 2(a) such that all the dotted lines

coincide. Because of the resonator modal dispersion, the modal
resonances (green) will not all fall at the same position. Before
phase locking, the different comb harmonics (teeth) may be
at any spectral position around their corresponding resonance.
Phase locking is established when all of the comb lines align
with the pump and, additionally, oscillate synchronously. The
phase profile φη of the comb teeth complex amplitudes ãη

in Eq. (2) captures both the alignment and the synchronized
oscillation of the comb teeth.

Experimentally, Turing rolls arise from the intracavity
equilibrium field through modulation instability of vacuum
fluctuations and correspond, in the frequency domain, to
combs that usually have multiple-FSR spacing between their
adjacent teeth. Solitons, on the other hand, are coherent combs
with single-FSR spacing. Experimental and theoretical studies
have suggested that solitons are not accessible from the cw
intracavity field without seeding [32,33], changing the pump
frequency or power [13,15,34,35], or a suitable input pulse
[36]. In the model introduced here, we treat solitons and rolls
in a unified manner. For solitons η ∈ {0,±1, . . . ,±N}, while
for rolls η ∈ {0,±μ,±2μ, . . . ,±Nμ}, where N is a positive
integer and the integer μ � 1 is the mode number at which MI
gain peaks (the first pump sidebands are generated) [16,24,37].

Experiments and numerical simulations suggest that for
stable solutions, the power of the pumped mode is much
larger than the other modes (the strong pumping regime)
and that in the absence of third- and higher-order dispersion
[38], the power spectrum of these solutions is symmetric with
respect to the pumped mode [13,16,26] (see, e.g., the inset
curves a2

η vs mode number in Fig. 4). Therefore, we exploit
the symmetry of the power spectrum, adopt a perturbative
approach (with aη for η �= 0 as the small parameters), and
retain terms with at least one contribution from the pumped
mode a0 in the triple summations in Eq. (2). Equations of
motion for the magnitudes aη and phases φη can readily be
found by using ãη = aη exp(iφη) in the resulting truncated
equations, dividing by exp(iφη), and separating the real and
imaginary parts (see Appendix A for details). Our approach
follows that of Ref. [25], with the generalization that here the
comb teeth magnitudes are not required to be equal.

The magnitude and phase equations for the pumped mode
include no linear contributions from aη �=0 and read

d

dτ
ln(a0) = FP

a0
cos(φP − φ0) − 1, (3a)

φ̇0 = FP

a0
sin(φP − φ0) − α + a2

0 . (3b)

The solutions settle on a fast time scale to the equilibrium
intracavity field ψe = a0 exp(iφ0) [24]; subsequently, a0 and
φ0 can be treated as constants to first order in aη �=0.

Equations of motion for the centered phase averages
ζη = φ̄η − φ0, where the phase average φ̄η = (φη + φ−η)/2
is centered to the pumped mode phase φ0, can be found using
the phase equations for φ−η, φ+η, and φ0. This equation, to
lowest nonzero order in aη �=0, takes the form

d

dτ
ζη = 1

2
d2η

2 + a2
0[1 + cos(2ζη)] − FP

a0
sin(φP − φ0) (4)
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FIG. 3. Numerical solutions of Eq. (6). (a) Two examples of the PDs at the onset of integration (initial conditions). These initial PDs have
uniform probability density over (−π,π ]. (b) Steady-state PDs for the initial conditions shown in (a). It can be seen that the final PDs lie on
straight lines irrespective of the initial conditions, but different initial values lead to different slopes for these lines. The upper blue (dark gray)
line corresponds to the blue (dark gray) initial values, while the lower red (light gray) line corresponds to the red (light gray) initial values
in (a). We verify the linearity of the final PDs through fitting a straight line to them (equations on the plot) and calculating the coefficient of
determination (R2). Here R2 = 1 shows that the PDs do indeed lie on straight lines.

and can be integrated directly to give

tan ζη =
√∣∣∣∣C + 2

C

∣∣∣∣ tanh
[√|C(C + 2)|a2

0(τ − τ0)
]
. (5)

Here C = d2η
2/2a2

0 − FP sin(φP − φ0)/a3
0 and τ0 accounts for

constants of integration (or initial conditions). Equation (5)
holds when |2a2

0 − α + d2η
2/2| < a2

0 , a condition that is
automatically satisfied when MI gain exists (see Appendix A).
Because the hyperbolic function approaches unity as τ → ∞,
φ̄η reaches the same constant irrespective of the initial
conditions. Since φ̄η is fixed, each pair of phases φ±η must
take values symmetrically located relative to the constant
average. We will refer to this as phase antisymmetrization,
following the terminology of [25]. Once established, phase
antisymmetrization means each centered phase average ζη can
be treated as a constant to first order in aη �=0.

The equations of motion for the phase differences (PDs)
defined by η = (φη − φ−η)/2,

dη

dτ
= a0

∑
l

K(l,η) sin(l + η−l − η), (6)

are found by combining the phase dynamics equations for
each ±η mode pair (see Appendix A). Here K(l,η) =
a−1

η alaη−l{2 sin(ζη − ζη−l + ζl) + sin(ζη − ζη−l − ζl)} is the
coupling coefficient for the pump-nondegenerate interaction
of comb teeth labeled 0, l, η − l, and η. Equation (6) shows
that the particular value of the pumped mode power a2

0 only
amounts to a rescaling of time. This set of equations is the
model that governs the long time evolution of phases in the
system and in particular provides insight as to how it displays
spatiotemporal pulse formation. On the one hand, it is a phase
model and in this sense is a member of a familiar family of
models, like the Adler equation [39] or the Kuramoto model
[40], used to study spontaneous synchronization. On the other
hand, Eq. (6) is unfamiliar, involving ternary phase interactions
rather than binary ones. In the remainder of this paper we will

study solutions of this reduced phase model, compare them
with solutions of the LLE, and analyze their stability.

III. REDUCED EQUATION FIXED POINTS

It can readily be verified, through direct substitution, that a
family of fixed-point solutions of Eq. (6) is η = s0η + kπ ,
where s0 is an arbitrary constant and k is an integer. These
solutions imply that the phases have aligned: The slope of the
line passing through the phases of any pair of comb teeth η and
−η will be the same and equal to s0, i.e., (φη − φ−η)/2η = s0.

Numerical integration of Eq. (6) confirms the existence of
the family of solutions found analytically. Our numerous runs
of numerical integration, for different comb spans (N from
3 to 1000) with random initial PDs taken from a uniform
distribution over (−π,π ], always lead to PDs lying on straight
lines. The slope of the line depends on the initial conditions. In
Fig. 3 we show two examples, in blue (dark gray) and red (light
gray), for a comb with 201 teeth and with two different sets
of initial conditions. Figure 3(a) shows the initial conditions,
while Fig. 3(b) depicts the steady-state PDs at the end of the
simulation time vs mode number. The results shown in Fig. 3
are for a triangular power spectrum given by aη ∝ exp(−k0|η|),
with k0 = 0.05. This profile assumes a linear decay (on a
logarithmic scale) of the comb teeth power spectrum [41]
with slope proportional to −20k0 dB per increasing mode
number by unity. We found that the model is robust and the
addition of static randomness of modest relative size to the
power spectrum and coupling coefficients K(l,η) will still
lead to aligned PDs. Also, through numerical integration of
Eq. (6), we found that phase alignment occurs for a variety of
power spectrum profiles so long as the powers of the sidebands
are smaller than the pumped mode power. Additionally, we
observe that specific features such as cusp points or isolated
sharp peaks in the power spectrum envelope lead to steplike
signatures in the distribution of the steady-state PDs; this effect
is beyond the scope of the present work.
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FIG. 4. Phase alignment in (a) solitons and (b) Turing rolls in the steady-state solutions of Eqs. (1) and (2). The inset curves in red (top
corners) show the spatiotemporal waveforms and those in black (bottom corners) are the frequency spectra. For both solitons and rolls the
phases lie on straight lines of arbitrary slope (see Fig. 3). The parameter values are (a) α = 2, d2 = −0.0124, and F = 1.41 and (b) α = 0,
d2 = −0.0124, and F = 1.63. The phase profile has been unwrapped in (b).

The phase alignment predicted by the reduced phase
model of Eq. (6) is observed in the phase-locked solutions
of the LLE. Figure 4 shows two examples, in solitons and
Turing rolls, where Eq. (1) has been integrated numerically
using the split-step Fourier transform method for a typical
microresonator. In practice, the random initial phases arise
from vacuum fluctuations that seed modulation instability or
from the passage of the system through the chaotic state while
changing the pump laser power or frequency. We note that the
phase offset between the pumped mode and the rest of the
phases emerges to counter dissipation [22,25].

IV. STABILITY OF THE FIXED POINTS

Next we consider the linear stability of the solutions of
Eq. (6). This analysis shows that the comb power spectrum
profile significantly affects its stability properties [16,42]. We
note that the analysis presented here is based on the reduced
phase model and does not consider instabilities caused by
comb power fluctuations. For the case of Turing patterns with
multi-FSR spacing between adjacent comb teeth, in general
cavity modal resonances not hosting comb power can also con-
tribute to comb instability. However, because parametric gain
for these modes is absent or small (depending on parametric
gain bandwidth and the spectral distance of such modes from
power-hosting modes) and since stronger comb teeth dominate
the FWM process, such instabilities are less likely to grow. In
fact, unless pump power and detuning values place the system
close to the boundary of Turing roll and soliton existence
regions in the power vs detuning plane [16,42], Turing rolls
are monostable, in the sense that, unlike solitons, for the same
system parameters and independent of system history or initial
conditions only one Turing pattern with a unique number of
peaks around the resonator will be realized [18].

For simplicity, we take k = 0. (Stability analysis for k �= 0
follows in a similar way.) We consider a frequency comb
with 2N + 1 phase-locked teeth and temporarily ignore the
dependence of the comb teeth magnitudes on mode number,
i.e., as in Ref. [25], we take aη �=0 = a � a0. (The effect of

the mode number dependence will be included shortly.) After
phase locking, the centered phase averages ζη reach a steady-
state value independent of mode number η (since the phases
φη lie on a straight line). Therefore, the coupling coefficients
are all equal, i.e., K(l,η) = K > 0. Setting η = s0η + εη, we
linearize Eq. (6) to get ε̇ = J · ε, where ε = (ε1,ε2, . . . ,εN )T

and the Jacobian J and its eigenvalues can be expressed
in closed form for any N (see Appendix B). Except for
one zero eigenvalue, all of the eigenvalues are negative and
real, indicating asymptotic stability of the synchronized state.
The zero eigenvalue (corresponding to the Goldstone mode
associated with the translational invariance of the system in
the real space [43,44]) is forced by the rotational symmetry of
the LLE. In other words, the choice of origin for the azimuthal
angle θ is arbitrary and leads merely to an added linear phase.
This confirms the physical intuition that the slope of the phase
profile of a soliton or Turing roll, determined by random
initial conditions, is indeed arbitrary. Figure 5(a) shows the
nonzero eigenvalues of the equilibrium for increasing comb
span for the case of uniform sideband power profile. It can be
seen that the eigenvalue closest to zero (black curve) grows
more negative with increasing comb span. The stability of the
fixed points for each comb span is determined by the negative
eigenvalue of smallest size. Hence, for the case of constant
comb amplitudes, a wider comb is expected to demonstrate
superior phase stability.

The model introduced in Eq. (6) allows the comparison
of the phase stability properties of frequency combs with
different power spectra. Because the coupling coefficients
K(l,η) depend on the comb teeth magnitudes, the power
spectrum profile of a steady-state solution is expected to
influence its stability. To investigate the effect of a nonconstant
comb power spectrum, we use a triangular comb power profile
given by aη ∝ exp(−k0|η|) [41]. Though not analytically
tractable, we find numerically that again, except for a single
zero eigenvalue forced by symmetry, the eigenvalues of J all
have a negative real part. Figure 5(b) shows the eigenvalue
spectrum vs increasing comb span for the triangular power
profile. Note that as the comb span increases, the eigenvalue of
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FIG. 5. Nonzero eigenvalues of the equilibrium (the Jacobian
matrix J) vs comb span for Eq. (6) for (a) uniform and (b) mode-
number-dependent comb teeth magnitude profile of aη ∝ exp(−k0|η|)
(k0 = 0.1). The N distinct eigenvalues for each comb span are plotted
with points of the same color except the negative eigenvalue of
smallest magnitude, which is shown in black. The closest eigenvalues
to zero for different spans form the black curves. Because these
eigenvalues are dominant in determining stability, the black curves
show that as the comb widens its stability improves for constant
power spectrum, as shown in (a). For the realistic magnitude profile,
on the other hand, the stability is not expected to improve, as shown
in (b). The stability of a steady-state solution of the LLE is therefore
affected by its power profile. The effect of amplitude can be taken
into account through the coupling coefficients in Eq. (6).

smallest magnitude becomes bounded and almost independent
of N [black curve in Fig. 5(b)]. Therefore, the phase stability
of the comb does not improve or degrade with increasing
comb span when the natural mode number dependence of
the comb teeth magnitudes is taken into account. Pfeifle
et al. [18] showed that in the presence of pump power and
frequency noise, Turing rolls are more robust than solitons
in the same microresonator with comparable pump powers.
They attributed this finding partially to the smaller number
of comb teeth in Turing rolls compared to solitons (see the
Supplemental Material of [18]). The reduced phase model of
Eq. (6) is derived with the assumption that there is a priori
nonzero power in the comb teeth and therefore it does not
explicitly include the role of MI gain. Hence, our analysis here
separates the influence of phase instabilities and shows that
so far as phase fluctuations are concerned, a smaller number
of comb teeth does not enhance comb stability. Combined
with the results of Ref. [18], this study suggests that MI gain
and comb teeth power fluctuations significantly influence the
stability of Turing rolls.

V. DISCUSSION

The existence of a self-synchronization mechanism ex-
plains soliton generation by both through-chaos [13,34,45]
and chaos-avoiding [35] trajectories in the power-detuning
plane. In either case, the parameter sweep creates a comb
with single-FSR spacing. Sweeping through chaotic states
provides a diverse pool of initial conditions that increases
the odds of achieving phase-locked clusters (i.e., peaks)
that subsequently grow into solitons; however, even without
passing through chaos, the self-synchronization mechanism
can generate solitons. It is worth noting that while we have
focused on the phase-locked solutions of the LLE, this equation
displays chaotic behavior as well [16,46]. Bifurcation to chaos
in the reduced model of Eq. (6) can be understood through

randomly oscillating coupling coefficients. While the model
is robust and addition of static randomness of modest relative
size to the coupling coefficients K(l,η) will still lead to aligned
PDs, our numerical simulations show that rapid random
fluctuations of the comb teeth amplitudes (and therefore the
coupling coefficients) hinder convergence of the phases toward
a fixed point of the system. As a result, the phases will continue
to wonder chaotically around without reaching a steady state.
Studying the behavior of this model in the presence of noise
is beyond the scope of the present work.

Phase measurements of stable optical frequency combs
have shown that apart from combs with aligned phases (Fig. 4),
phase spectra with π and π/2 jumps can also arise in
microcombs [47]. We note that phase alignment governed by
the reduced model is not contradictory to these phase jumps;
combs with phase jumps have been constructed numerically
as a sum of multiple solutions of the LLE (e.g., interleaved
combs [47] or solitons on an equally spaced grid around the
resonator with one soliton removed or slightly shifted away
from its location on the equidistant grid points [48]) and
their power spectra are more complicated than the smooth
spectra of a Turing roll or soliton (as depicted in the insets
in Fig. 4) considered in this work. It has been noted that
avoided mode crossings [49] far from the pump are necessary
for the experimental demonstration (through tuning the cw
pump laser) and stabilization of such combs [48,50].

VI. SUMMARY AND OUTLOOK

In summary, we have introduced a reduced model for phase
locking and the emergence of coherent spatiotemporal patterns
in the damped, driven NLSE. This model underscores the
fundamental link between spatiotemporal pulse formation and
mode synchronization and embodies the conservation of en-
ergy and momentum through ternary phase couplings. We have
found attracting solutions of this phase model corresponding to
dissipative solitons and Turing rolls and studied their stability,
highlighting the significance of the frequency comb power
spectrum profile on it stability properties.

Although we have compared our results with micro-
resonator-based optical frequency combs, they should apply
to mode-locked laser systems as well. Gordon and Fischer’s
statistical mechanical theory describes the onset of laser
pulsations as a first-order phase transition, treating the modes
as the elementary degrees of freedom [51]. Their ordered
collective state is analogous to our synchronized dynamical
attractor. The same controlling nonlinearity appears in both
Eq. (6) and the master equation for passive mode locking based
on a saturable absorber [8], which approximates the absorber
with a cubic nonlinearity.1 We therefore expect the same
dynamical mechanism to be responsible for the creation of
sharp pulses in passively-mode-locked lasers, despite different
physical sources of optical gain (population inversion and
stimulated emission versus parametric amplification). What

1A comparison of Eq. (16) in Ref. [8] with the LLE reveals their
close similarity. In the LLE, there is an extra detuning term and the
gain term is replaced by an external drive.
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matters is the fundamental link between spatiotemporal pulse
formation and mode synchronization.
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APPENDIX A: DERIVATIONS

This Appendix details derivations leading to the equations
in Sec. II. The intracavity spatiotemporal field envelope

ψ(θ,τ ) and the complex-valued comb teeth amplitudes ãη,
η ∈ {0,±1,±2,±3, . . . }, are discrete-time Fourier transform
pairs related through the equations

ψ(θ,τ ) =
∞∑

η=−∞
ãη(τ )e+iηθ (A1)

and

ãη(τ ) = 1

2π

∫ π

−π

dθ ψ(θ,τ )e−iηθ . (A2)

The summation in Eq. (A1) is truncated and ∞ is replaced
by the positive integer N [30]. Using these equations and ex-
ploiting

∫ π

−π
dθ exp[i(η − η′)θ ] = 2πδηη′ , it is straightforward

to find the equivalent coupled nonlinear ordinary differential
equations (2) from the LLE. In the strong pumping regime
and after using ãη = aη exp(iφη) in the nonlinear ODEs, the
equations for the magnitudes aη and phases φη can be separated
to yield

d

dτ
ln(aη) = −1 + a−η

aη

a2
0 sin(φη + φ−η − 2φ0) + FP

aη

cos(φP − φη)δ0η

− a0

aη

∑
l

al{2aη+l sin(φ0 − φl + φη+l − φη) + aη−l sin(φl − φ0 + φη−l − φη)}, (A3)

d

dτ
φη = 2a2

0 − α + 1

2
d2η

2 + a−η

aη

a2
0 cos(2φ0 − φη − φ−η) + FP

aη

sin(φP − φη)δ0η

+ a0

aη

∑
l

al{2aη+l cos(φ0 − φl + φη+l − φη) + aη−l cos(φl − φ0 + φη−l − φη)}. (A4)

Using Eq. (A4) and considering the symmetry of the power spectrum, the equations of motion for the centered phase averages
ζη = (φη + φ−η)/2 − φ0 and phase differences η = (φη − φ−η)/2 can be found,

d

dτ
ζη = 1

2
d2η

2 + a2
0[1 + cos(2ζη)] − FP

aη

sin(φP − φη)δ0η

+ a0

aη

∑
l

alaη−l cos(l + η−l − η){2 cos(ζη−l − ζη − ζl) + cos(ζη−l − ζη + ζl)}, (A5)

d

dτ
η = a0

aη

∑
l

alaη−l{2 sin(ζη−l − ζη − ζl) + sin(ζη−l − ζη + ζl)} sin(l + η−l − η). (A6)

Equations (A3) and (A4) for η = 0 lead to Eqs. (3a) and
(3b) and Eq. (A6) is the same as Eq. (6), where the
coupling coefficient K(l,η) was defined. We note that the
normalized chromatic dispersion coefficient d2 is defined by
d2 = −2D2/ω0, where ω0 is the linewidth of the pumped
mode and D2 is the second-order dispersion parameter found
from the Taylor expansion of the cavity modal frequencies ωη

in the mode number η at the pumped mode ω0 through ωη =
ω0 + D1η + 1

2!D2η
2 + 1

3!D3η
3 + · · · . In the latter expression,

D1 is the resonator FSR (in rad/s) at the pumped mode.
To lowest nonzero order in aη �=0, Eq. (A5) becomes Eq. (4).

This equation is separable, i.e.,∫ ζη(τ )

ζη(τ0)

dζη

1 + C(η) + cos(2ζη)
= a2

0

∫ τ

τ0

dτ ′,

and can be integrated directly to give

1√
C(C+2)

tan−1

[√
C

C+2
tan(ζη)

]ζη(τ )

ζη(τ0)

=a2
0(τ − τ0). (A7)

In these equations C = d2η
2/2a2

0 − FP sin(φP − φ0)/a3
0 , and

τ0 accounts for constants of integration (or initial conditions).
The latter equality can be written as

tan[ζη(τ )] =
√

C + 2

C
tan

[√
C(C + 2)a2

0(τ − τ ′
0)

]
, (A8)

where τ ′
0 accounts for the constants of integration on both

sides of Eq. (A7). The parameter C appears in two combi-
nations C/(C + 2) and C(C + 2); if −2 < C < 0, then both
expressions will be negative and the tangent on the right-hand
side of Eq. (A8) changes to a hyperbolic tangent. Therefore,
one arrives at Eq. (5).

It is straightforward to show that the gain of MI for the LLE
(1) is given by [16,37]

� = Re
{−1 +

√
a4

0 − (
α − 1

2d2η2 − 2a2
0

)2}
,
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where Re{·} denotes the real part. For this expression to be
positive, the following inequality should hold:

a4
0 − 1 �

(
α − 1

2d2η
2 − 2a2

0

)2 � 0. (A9)

It can simply be shown that the condition −2 < C < 0 on C is
equivalent to a2

0 � |α − d2η
2/2 − 2a2

0 |, which is guaranteed
to hold in the presence of MI gain [cf. Eq. (A9)].

APPENDIX B: LINEAR STABILITY ANALYSIS

In this Appendix we review the stability analysis of the
reduced phase model and introduce the generic form of the
Jacobian matrix J and its eigenvalues for the case of uniform
comb amplitudes. We consider Eq. (6) for a comb with
2N + 1 phase-locked teeth. For all the indices appearing in this

equation to be in the range [−N,N ], the summation should
run from −(N − η) to N , i.e.,

dη

dτ
= a0

N∑
l=−(N−η)

K(l,η) sin(l + η−l − η).

As explained in the main text, the coupling coefficients K will
be the same for the uniform comb magnitude spectrum (where
aη �=0 = a � a0).

If each phase φη is perturbed from its steady-state value
by eη, the phase difference η = s0η will change to s0η + εη,
where εη = (eη − e−η)/2. Plugging into the above equation
[Eq. (6)] and linearizing in εη, we find the matrix equation
ε̇ = J · ε for the perturbation vector ε = (ε1,ε2, . . . ,εN )T. For
aη �=0 = a � a0 the Jacobian J and its eigenvalues can be
expressed in closed form for any integer N . For N an odd
integer,

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2N 0 · · · 0 0 0 · · · 0 2

0 −2N + 1 · · · ...
...

... · · · 2 2
0 0 · · · 0 0 0 · · · 2 2
0 0 · · · −2N − 1 + �N/2� 0 2 · · · 2 2
...

... · · · 0 −N + 1 − �N/2� 2 · · · ...
...

0 0 · · · 2 2 −N + 2 − �N/2� · · · 2 2
0 0 · · · 2 2 2 · · · 2 2

0 2 · · · ...
...

... · · · −N 2
2 2 · · · 2 2 2 · · · 2 −N + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and its eigenvalues are 0,−N − 1,−N − 2, . . . ,−N + 1 − �N/2�,−N − �N/2�,−2N − 2 + �N/2�,−2N − 3 + �N/2�, . . . ,
−2N,−2N − 1 (where �·� is the floor function). For even N , the Jacobian takes the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2N 0 · · · 0 0 · · · 0 2

0 −2N + 1 · · · ...
... · · · 2 2

0 0 · · · 0 0 · · · 2 2
...

... · · · −2N − 1 + N/2 2 · · · ...
...

0 0 · · · 2 −N + 2 − N/2 · · · 2 2
0 0 · · · 2 2 · · · 2 2

0 2 · · · ...
... · · · −N 2

2 2 · · · 2 2 · · · 2 −N + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues of this matrix are 0,−N − 1,−N −
2, . . . ,−N + 2 − N/2,−N + 1 − N/2,−2N − 2 + N/2,

−2N − 3 + N/2, . . . ,−2N,−2N − 1. It is noted that there
will always be a zero eigenvalue enforced by symmetry and

all other eigenvalues are negative. The negative eigenvalue of
smallest size (−N − 1) determines the stability of the fixed
points. These eigenvalues for different comb spans (2N + 1)
are plotted in black in Fig. 5(a).
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