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Solitons in fibers with loss beyond small perturbation
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We consider the evolution of fiber-optic solitons in the presence of loss. Localized power reduction can be cast
into a well-known form for which changes of all parameters are known explicitly. We proceed to a sequence of
such perturbations with the same total loss, so that still all parameters are known, and eventually take the limit to
infinitely many steps. This establishes the connection with distributed loss, and in the limit of vanishing loss repro-
duces the known results from perturbation theory. Outside this adiabatic limit the mechanism becomes clear that
causes deviations: interference between solitons and radiation upsets the balance of dispersive and nonlinear ef-
fects characteristic of solitons; as one consequence the soliton continually sheds energy, which goes into radiation.
We derive an expression for the radiation production rate in a lossy fiber, and predict quantitatively the distance
until the soliton finally decays. Our approach provides quantitative results for fibers with loss small or strong,
localized or distributed, and numerical results confirm predictions. It can be generalized to gain rather than loss.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) is a nonlinear
wave equation with numerous fields of application, including
certain water surface waves, plasma waves, and the dynamics
of Bose-Einstein condensates. It is also central to all modeling
of nonlinear light pulse propagation in optical fiber. Numerous
correction terms have been added for the latter case, to make
the model more precise, or more widely applicable.

The fact that the NLSE (without additional terms) is
integrable allowed Zakharov and Shabat to find its soliton
solution [1] by the inverse scattering technique: a wave of
just the right shape can propagate stably in spite of, or indeed
due to, the nonlinearity. Satsuma and Yajima [2] treated the
initial value problem associated with the soliton solution: How
do initial shape perturbations evolve? Hasegawa and Tappert
pointed out that light pulse propagation in optical fiber, a
novelty at the time, would obey the NLSE, and that there would
be stable soliton pulses [3]. A first experimental demonstration
was given [4], and approximately 20 years later the concept
was introduced to commercial fiber-optic transmission systems
with live data [5].

A real-world system is not described very accurately by
the NLSE in its original form. The first correction to it is
a loss term because there is no such thing as a perfectly
lossless fiber. Even when optical amplifiers are added, loss is
canceled on path average, but not at every point. A loss term,
however, destroys the integrability, and it is not immediately
clear what happens to the soliton concept. There have been
several studies of this question, typically with perturbation
approaches [6–11]. However, the assumption that the loss
is small is a severe restriction, and for realistic losses the
obtained prediction is inaccurate [12].

Our approach to a near soliton in a lossy environment does
not suffer from that restriction. It is applicable also to strong
loss, all the way to the decay of the soliton into radiation, and
it can also be applied to the case of gain. The core idea is that
we consider the loss along the fiber as the limit of a sequence
of very small stepwise losses in an otherwise lossless fiber.
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In this way we can cast the problem such that the Satsuma-
Yajima initial value problem can be used to predict analytically
what happens at each step. We then have to take care of the
radiation generated at each step, and the way the individual
contributions add up or interfere. To this end we present a
description of the soliton-radiation beat, which is much more
complete than the original statement of Satsuma and Yajima
[2] and later contributions [13,14], even though we still make
one approximation.

For brevity and clarity we restrict ourselves to the case
of a single soliton. We first recast the findings of Refs. [1]
and [2] into a more transparent, modern form, which follows
much of the now established terminology (as used, e.g., in
Refs. [15,16]). However, we write equations not in dimen-
sionless form but with physical parameters. While the former
is undoubtedly more elegant mathematically, the latter is more
useful to connect to physical insight.

II. KNOWN FACTS

In the nonlinear Schrödinger equation with physical quan-
tities [15,16]

i
∂

∂z
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2

∂2

∂t2
A + γ |A|2A = 0, (1)

A(z,t) is the pulse envelope referred to a frame of reference
moving with the group velocity that pertains to the optical
carrier frequency. β2 is the coefficient of group velocity
dispersion, and γ the coefficient of nonlinearity. If centered
in a comoving frame of reference, the solution now known as
the fundamental soliton takes the form
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where T0 is the pulse duration. The prefactor of the sech term
in Eq. (2) sets the peak amplitude and can be written as

Amax =
√

|β2|
γ

1

T0
=

√
P0. (3)

By convenient convention amplitudes are scaled so they can
be written as square root of power. It follows that the solution
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is constrained by

P0T
2

0 = |β2|
γ

. (4)

Integration yields the soliton energy as

Esol = 2P0T0. (5)

This energy is preserved because no loss is considered in
Eq. (1).

For later use we quote the characteristic length scales of
dispersion and nonlinearity commonly defined as

LD = T 2
0

|β2| and LNL = 1

γP0
. (6)

For a soliton, LD = LNL. From Eq. (2) it is immediately
obvious that the phase term rotates through 2π over a distance

z2π = 4πLD = 4πLNL. (7)

To quantify a deviation from the exact soliton solution we
can use the soliton order N � 0, N ∈ R. N can be inserted as
a multiplier on the right-hand side of Eq. (2); then, Eq. (4) is
modified into

P0T
2

0 = N2 |β2|
γ

. (8)

A pulse with noninteger N cannot be a pure soliton. Rather, in
such case there is a soliton plus a nonsolitonic remainder [1,2],
which propagates as a linear (purely dispersive) wave known
as radiation. If an unchirped sech-shaped pulse of the type

A(0,t) = N
√

P0 sech

(
t

T0

)
(9)

is launched, it has energy

Etot = 2N2P0T0 = N2Esol. (10)

It follows from Ref. [2] that part of this goes into radiation,
the remainder into a new soliton:

Erad = (N − 1)2 Esol and E1 = (2N − 1) Esol. (11)

The new soliton has E1 �= Esol, P1 �= P0, and T1 �= T0. Across
the interval 1/2 � N � 3/2, E1 varies linearly from 0 to 2Esol.
For N < 1/2 no soliton exists; for N > 3/2 a second one
appears. Here we restrict ourselves to N < 3/2. P1 and T1

follow from simultaneous solution of

P1T
2

1 = |β2|
γ

= P0T
2

0 (12)

and P1T1 = Etot − Erad

2
= (2N − 1)P0T0 (13)

⇒ T1 = T0

2N − 1
and P1 = (2N − 1)2 P0. (14)

By virtue of integrability of the NLSE, no energy exchange
occurs between solitons and radiation during copropagation.
While both parts copropagate, their phase evolutions are
different. The beating causes oscillations of both peak power
and duration; they gradually subside after long propagation as
the linear wave is dispersed away. Gordon [17] described this
with a perturbational approach and spoke of the emergent
soliton but emphasized that it exists from the beginning.

Reference [18] presents a variational ansatz to describe the
combination of soliton and radiation, and the damped beat
note.

We obviously need to distinguish between the pulse and
the soliton: soliton and radiation together form the pulse.
From temporal and spectral pulse shapes alone one cannot
tell the contributions apart. Direct scattering transform or DST
provides a way to obtain that information; Osborne and Boffeta
were the first to introduce a numerical version thereof [19].
That technique works on a numerically given temporal profile,
and finds the eigenvalues characterizing soliton energies and
velocities. We carefully assessed its numerical accuracy; by
informed choice of discretization one can keep both truncation
and sampling errors low. Moreover, as discussed in Ref. [20],
a fourth-order Runge-Kutta integration scheme gives further
improvement. In data shown below we obtain the energy to an
accuracy of at least 10−8 and often better.

An alternative technique to find soliton parameters is
soliton-radiation beat analysis. It works with arbitrary pulse
shapes even when the system is nonintegrable [13,21]. That
necessitates that the pulse shape used as an input to the
algorithm must be provided not just at one particular position
but over a certain representative segment of distance. By
evaluating the evolution of the beat note between soliton and
radiation both solitonic parameters and their change during
propagation can be assessed. This way the eventual breakdown
of a soliton in the presence of distributed loss was studied in
Ref. [22]. In the Appendix we provide a much more detailed
description of the beat.

III. INTRODUCING LOSS

Numerous articles were devoted to solitons in the presence
of loss, mostly using perturbative approaches [6–11]. More
recently, a Hirota approach has been presented [23], but
unfortunately that work remains silent about the distinction
between soliton and radiation.

Formally, one can insert a term +(i/2) αA on the left-hand
side of Eq. (1), with α Beer’s loss coefficient. According
to Beer’s law, the energy of a traveling pulse changes as
E(z) = E(0) e−αZ . This describes distributed loss, which acts
everywhere in the fiber. It is useful to introduce another
characteristic length scale [compare Eq. (6)], the attenuation
length

Lα = 1

α
. (15)

Perturbation analysis predicts that when a soliton propagates
through a fiber length Z and suffers an energy loss e−αZ with
|αZ| � 1, the pulse width grows and its peak power wanes
according to

Tsol = T0 e+αZ and Psol = P0 e−2αZ. (16)

This scaling was also confirmed numerically [25], but when
the loss gets stronger, the errors become large [12].

Localized loss can arise in fiber joints such as connectors
or splices, or even at sharp bends, etc.—we will speak of
splices for short. Consider a pure soliton traveling down
a loss-free fiber, hitting a splice, and thereafter moving on in
a lossless fiber again. As the interaction distance involved in a
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localized perturbation is zero, the attenuation can be described
by multiplication of the pulse shape with a real constant, which
we call �; for loss, � < 1. This assumes that the splice is
gray (same attenuation across the spectral width of the pulse).
Then we have a situation that is analytically tractable because,
in a manner of speaking, it is piecewise integrable: it can be
understood as a Satsuma-Yajima initial-value problem [2]. The
parameters of the resulting pulse are found by interpretation of
the attenuated pulse as an initial condition for the subsequent
fiber. We denote the new parameters with indices �. E� takes
the place of the total energy Etot from Eq. (10). The resulting
pulse contains a soliton and some radiation. Its total energy is
E� = �Esol, and its shape is characterized by

P� = �P0 and T� = T0. (17)

From

P�T 2
� = �P0T

2
0 = N2 |β2|

γ
(18)

we see that the resulting pulse is an N soliton with N2 = �.
This N is the value right after the splice; subsequently we
decompose into soliton and radiation, and the new soliton has
N = 1 in its own units.

We use Eqs. (10)–(11) and find that of the total remaining
energy

E
(�)
tot = N2Esol = �Esol, (19)

[in order to avoid somewhat awkward double lower indices
as in Etot,� we prefer upper indices (�)] the fraction going to
radiation is

E
(�)
rad = (

√
� − 1)2 Esol. (20)

The remaining energy

E
(�)
sol = E

(�)
tot − E

(�)
rad = (2

√
� − 1) Esol (21)

forms the new soliton, with both duration and peak power
modified from Eq. (14):

T
(�)

sol = T�

2
√

� − 1
= T0

2
√

� − 1
,x (22a)

P
(�)
sol = (2

√
� − 1)2 P� = (2

√
� − 1)2 �P0. (22b)

It follows that after stepwise energy attenuation of the initial
soliton with parameters P0, T0 by a factor � �= 1 we get a
soliton with parameters as in Eqs. (21), (22), along with some
radiation energy as in Eq. (20). It is worthwhile to emphasize
that the results for peak power and duration are different from
the perturbative prediction, which refers to distributed loss:
the latter can be written by identifying � = e−αZ with fiber
length Z and using Eq. (16) as Tsol = T0/� and Psol = �2P0.
Obviously, it does make a difference whether the loss is
distributed or localized.

We now let the loss described in the previous paragraph
occur in two steps, i.e., at two splices. To keep the total
attenuation constant, we assign each splice a loss factor of√

�. Let us pretend for the moment that the two contributions
to radiative energy can just be added to obtain the total
radiation energy after the second splice. We will return to
this assumption below, and subject it to scrutiny with some
noteworthy insights.

In the discussion of the previous section we substitute
� → √

� and apply twice. We find a soliton energy of
E

(�)
sol /Esol = (2 4

√
� − 1)2, etc. Then we move on to consider

loss occurring in a finite number n of steps. We substitute
(� → n

√
�) for each of n steps and obtain

Soliton energy E
(�)
sol = (2 2n

√
� − 1)n Esol (23)

Radiation energy E
(�)
rad = ( 2n

√
� − 1)2n Esol (24)

Soliton duration T
(�)

sol = 1

(2 2n
√

� − 1)n
T0 (25)

Soliton peak power P
(�)
sol = (2 2n

√
� − 1)2n �P0. (26)

Finally we let n → ∞ and find soliton and radiation parame-
ters. Eqs. (25), (26) yield

T (�) = 1

�
T0 and P (�) = �2 P0. (27)

Note that with � = e−αZ as above this reproduces perturbative
result, Eq. (16). The soliton energy is then

E
(�)
sol = �Esol, (28)

and the radiation energy follows from

lim
n→∞( 2n

√
� − 1)2n = 0 (29)

so that

Erad = 0. (30)

This result is quite remarkable: in the limit—and only in the
limit—the soliton carries all the energy, and radiation has zero
energy. This is so because when the number of splices n grows,
the radiated energy at each splice scales as 1/n2 [see Eq. (11)].
Then the cumulative total radiative energy scales as n × 1/n2,
which vanishes in the limit. This also confirms Ref. [24] where
a quite different ansatz yields the same pulse amplitude and
the absence of radiation if the power loss is slow.

A. An apparent contradiction

We have made no assumptions about the locations of
the splices zi , or the spatial distance �z between them. We
can therefore let these distances tend to zero, i.e., make the
transition from distributed to localized loss. This implies that
results from both cases must be equal. However, there is the
contradiction that pulse parameters in Eqs. (27) and (22) are
different, and so are soliton energies in Eqs. (21) and (28). It
is highly instructive to get to the root cause of this apparent
discrepancy.

To be sure, there are conservation laws for the lossless
fiber segments between splices. In particular, constancy of
the energies of both the soliton and the radiation, and thus
also the sum of the two, is guaranteed. However, some other
quantities are not preserved in these fiber segments. As the
pulse shape breathes in the course of the beat between soliton
and radiation, both peak power and pulse width oscillate, along
with other quantifiers such as chirp factor, etc. We need to
assess this breathing first, in order to gauge its impact. To do
so, we look at both parts—solitonic and radiative—first, then
combine the two. In the Appendix we will give an explicit
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FIG. 1. Soliton energy after the first splice (bottom trace, or after
the last of several splices (2, 3, 5, or 10 as indicated) when their
separation �z is varied. Here, � = 0.8. The strongest oscillation
is found in the case of two splices. Arrows on the right mark the
predicted asymptotic values according to Eq. (23) or, for distributed
loss (infinite number of splices), from Eq. (28). Note that all curves
start (for �z = 0) at the level pertaining to a single splice, Eq. (21).

formulation of the evolving beat amplitude. The dispersive
spreading of the radiative part gives rise to the decay of the
beat note; the shifting phases give rise to the oscillation, which
asymptotically has a spatial period of 4πLD [see Eq. (7)]. For
an accurate description, the Gouy phase shift must also be
taken into account.

When this evolving pattern arrives at the next splice,
how will it be translated into a new soliton-plus-radiation
combination? It takes many oscillation periods (4πLD) before
the oscillation amplitude has fully died down. If the next
splice occurs sooner than that, the position of the splice within
the beat pattern does have an impact on the resulting pulse
after that next splice. We find from numerical direct scattering
transform that intercepting the beat at positions of high peak
power translates to solitons with relatively lower energy, and
vice versa. (In the case of gain, instead of loss, it is the
other way around.) Therefore, the spatial distance between
one splice and the next has a profound impact on the resulting
soliton energy after the next splice.

In the case of more than two splices it may happen that
the separation of splices might equal the distance over which
the phase difference rotates through 2π . This would create
resonances as described in Ref. [26], and would lead to a
resonant enhancement of radiation. To avoid this resonance,
we cannot make the splice distances shorter: then not the next
splice but some subsequent splice would get into resonance.
We can only make the distance larger. Figure 1 shows the
evolution in the case of one or several splices. These data were
obtained as follows: from numerical simulation we find the
pulse shape after the splice and subject it to direct scattering
transform to find the energy of the resulting soliton. The
slow decay of the oscillation in the case of two splices is
clearly visible; the picture confirms that it has not died down
unless �z 	 4πLD.

If there are more than two splices, even if they are physically
equidistant, they are not equidistant with respect to the relevant
length scales as the latter also change with remaining energy.
It is therefore not surprising that for three or more splices
the oscillation dies down sooner. The situation is akin to a

reflection off a chirped grating: there is no sharp resonance.
Still, some finite minimum decay distance �z always remains;
therefore, in the limit that the number of splices diverges, the
total length—as the sum of infinitely many finite distances—
also diverges.

This shows that our result Eq. (27), which coincides with
the perturbative result, necessarily requires Lα → ∞, i.e.,
vanishing loss per finite length. The advantage of our treatment
is that we now see beyond that limit, and understand why this
condition is necessary: there must be sufficient propagation
distance for interferences to die down. We can also specify
quantitatively what happens if the loss is stronger.

All curves in Fig. 1 approach the markers (arrow on the
right) labeled with the appropriate number of splices, which
corroborates Eq. (23). As the number of splices tends to
infinity, the curves tend to �. Also, at �z = 0 (all splices
collapsed into one position) they all begin at the marker
for the single splice, 2

√
� − 1. This resolves the apparent

contradiction that stepwise and distributed loss are not the
same, but should coincide when �z is zero.

The fact that we recovered the perturbational results for
pulse peak and width is therefore coupled to the requirement
that Lα → ∞, which is the same assumption that must be
made for perturbational analysis. The recovery is therefore no
surprise. However, with our current approach we have both
a physical reason (the beat must decay before the next splice
so that radiative contributions can simply be added up) and
the means to go beyond the limiting case, into more realistic
situations.

B. An interesting observation

Finite loss represents a deviation from strict adiabaticity, or
some degree of diabaticity. We suggest to introduce the degree
of diabaticity D as the ratio of the applicable dispersion length
and the loss length. The applicable dispersion length is the one
that refers to the soliton alone; it can vary during propagation
as the total energy decays and the pulse duration adapts to that.
Thus,

D(z) = LD(z)

Lα

. (31)

With small nonzero diabaticity (D � 1) the soliton is con-
stantly askew and never quite reaches a new equilibrium be-
tween dispersive and nonlinear effects, normally the hallmark
of solitons. It is in this situation that this near soliton displays
some chirp, and radiation is produced continuously.

Figure 2 shows the generated radiation accumulated over
distance z. For this figure we numerically propagated a pulse,
which initially was an N = 1 soliton in the presence of
diabaticity as indicated. Right after starting at z = 0, the curves
rise and, as radiation quickly exceeds its initial level, grow
fastest for the strongest diabaticity. Wiggles in the curves
reflect the beating as described above. Disregarding these and
also the initial transient, the radiation seems to increase roughly
exponentially with distance as the nearly straight curves in
this semilog plot indicate. This is again a consequence of the
dynamic evolution not only of the energy, but also of LD. With

LD(z)

Lα

= LD(0)

Lα

e2z/Lα (32)
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FIG. 2. Relative amount of radiation during propagation for
different ratios of L

(0)
D /Lα . Propagation distance is scaled to Lα .

the ratio D = LD/Lα in Fig. 2 grows from launch point to
fiber end by a factor exp(2.4) ≈ 11.

Close inspection of the traces in Fig. 2 reveals that an
extrapolation of the traces back to z = 0 yields radiative
energy values, which, within accuracy limits, coincide with
the square of the respective curve’s parameter. For example,
the L

(0)
D /Lα = 1/100 curve seems to emerge from Erad/Etot =

10−4, etc. When we checked this at positions other than
z = 0, we made a remarkable empirical observation. In the
moderately diabatic case as shown in Fig. 2, disregarding the
transient and the wiggles, the fraction of accumulated radiative
energy at position z is quite closely given by

E
(z)
rad

E
(z)
tot

= (D(z))2 =
(

LD(z)

Lα

)2

. (33)

We tested this observation with numerical simulations. Starting
from initial values of D in the range 10−4 � D(0) � 10−2,
we used a split-step Fourier code to numerically propagate
solitons of order N over a distance of 3Lα . Then we performed
direct scattering analysis for 32 intermediate points of each
propagation. The results are shown in Fig. 3.

FIG. 3. Fraction of energy going into radiation. Data points
obtained from propagation simulations over a distance of 3Lα using
initial values of D: 10−4 � D(0) � 10−2. Launch condition: N = 1
soliton (left), N < 1 (right).

In the left panel of Fig. 3, an N = 1 soliton was launched
into a lossy fiber. In the other panel, pulses were launched with
N �= 1 as indicated. In each case, the diagonal lines are plots
of Eq. (33), and horizontal lines indicate the initial radiation
according to Eq. (11).

For all N �= 1 shown, the initial radiation dominates at
smallD, while radiation generated during diabatic propagation
dominates for large D. The break point indicates where the
continuously rising part begins to swamp the constant initial
value. The continuously generated radiation follows Eq. (33)
quite closely as long as one considers the near-adiabatic
regime. Once radiation becomes a sizable fraction of the total
energy, saturation sets in because the radiative fraction of the
total energy obviously cannot go beyond 100% [as Eq. (33)
seems to suggest]. The onset of saturation marks the limit of
applicability of Eq. (33).

C. Rate of generation of radiation

We calculate the local rate of generation of radiation from
the cumulative value of Eq. (33). The growth rate from position
z to z + dz is found from

dE
(z)
rad

E
(z)
tot

=
(

L
(z+dz)
D

Lα

)2

−
(

L
(z)
D

Lα

)2

. (34)

Using the change of pulse duration over infinitesimal distance
T (z+dz) ≈ eα dz T (z) in the adiabatic approximation, this leads
to

dE
(z)
rad

dz
= E

(z)
tot [D(z)]2 4

Lα

. (35)

This growth rate is proportional to the square of diabaticity,
and it is referred to Lα as its natural length scale; both
are reasonable. This has been derived for the near-adiabatic
regime, and that is why it predicts proportionality to the total
rather than the physically more plausible soliton energy. For
the same reason Eq. (35) does not reflect the saturation seen
in Fig. 3.

D. Demise of a soliton

We have argued that the degree of diabaticity increases even
when the loss factor in terms of loss per km is constant because
the relevant length scale LD keeps growing as power keeps
bleeding away from the soliton. As LD(z) becomes larger, the
loss per LD naturally increases until the loss per LD is no longer
small. Eventually, all propagation in lossy fiber must run into
the regime of strong diabaticity; it was argued in Ref. [22] that
this leads to the decay of the soliton.

Figure 4 shows the decay of Esol for variousD(0) values. All
traces have the same general structure: For some length they
remain quite close to the dashed straight line, which describes
Beer’s law and the adiabatic case, but eventually they begin
to depart from it; a little further on they plummet to zero. It
makes sense to divide the decay process into two stages, the
near-adiabatic phase over distance za, and the diabatic phase
over distance zd. The crossover point between the two remains
ill defined from inspection of Fig. 4 alone, but surely it must
be characterized by some specific value of the local degree
of diabaticity D(za), which remains to be determined below.
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FIG. 4. Decay of soliton energy in a lossy fiber, with D(0) as
a parameter. Curves for D(0) � 1 practically coincide. Dashed line
is for the adiabatic case. Decay is near adiabatic at first, but later
becomes loss dominated.

Writing D(za) in terms of D(0) and Lα , one finds

za = −Lα

2
ln

( D(0)

D(za)

)
. (36)

When entering the diabatic phase at z = za the soliton loses
its ability to adapt to the energy loss.

Considering Eq. (9) we can write its shape as

A(z,t) = N
√

P0 sech

(
t

T0

)
exp

(
−α

2
z
)
. (37)

With rapid decay the soliton is unable to reshape so that T0 is
constant; then, Eq. (3) shows that

√
P0 is also constant. The

loss term on the far right-hand side multiplies the soliton order
N to form an effective soliton order N ′:

N ′ = N exp
(
−α

2
z
)
. (38)

The soliton disappears as soon as this dips below N ′ = 1/2.
Inserting this value in Eq. (38) we have

zd = Lα ln (4) if N = 1. (39)

The entire distance from launch to demise is then za + zd, i.e.,

zdecay = Lα

[
ln (4) − 1

2
ln

( D(0)

D(za)

)]
(40)

if za � 0. If formally za < 0 there is no adiabatic phase, and
the decay length is zd alone:

zdecay = zd = Lα ln (4) if za < 0. (41)

The result of this analysis is shown together with numerical
data in Fig. 5.

The horizontal line at ln(4) represents the diabatic case
of Eq. (41). Data points in that regime are very close to the
prediction. The slanted line represents the adiabatic case of
Eq. (40). The slope agrees very well with data points. We
shifted the curve by variation of the unknown D(za) to fit
the data points. We find the best value as the location of the
intersection at D(za) = 0.33. Note that this value describes the
transition point to saturation in Fig. 3 quite well.

The interpretation of all this is that the soliton reaches a
point of no return at z = za; thereafter its decay proceeds so

FIG. 5. Decay distance of solitons when D(0) is varied. Two
regimes are clearly visible: prediction by Eq. (40) for small D(0)
and by Eq. (41) for large D(0). The crossover point is located at
D(za) = 0.33.

rapidly that it has no chance to adjust. At z = zdecay its energy
has fully been radiated off.

This analysis requires a slight modification when an N �= 1
soliton is launched. By reinserting the definition of D(0) in
Eq. (40) we see that it contains a factor T 2

0 . We are dealing
here with rapid decay in the strongly adiabatic case so that we
can use Eq. (22) to replace T0 with T0/(2N − 1)2. With that,
Eq. (40) is modified into

zdecay = Lα

[
ln (4) − 1

2
ln

( D(0)

D(za)(2N − 1)2

)]
. (42)

For the strongly diabatic case, we reconsider Eq. (38) for N �=
1 and obtain that Eq. (41) is replaced with

zdecay = Lα ln(4N2). (43)

This can be checked against the result in Ref. [22] where
an N = 1.4 soliton was considered with an initial diabaticity
value of D(0) = 7.4 × 10−4. The soliton was numerically
found to decay at zdecay ≈ 110km = 5.07 Lα . Our Eq. (42)
yields zdecay = 109.2km = 5.03Lα , which is in perfect
agreement.

IV. CONCLUSION

Solitons are defined by a dynamical equilibrium between
linear (dispersive) and nonlinear influences. As soon as the
diabaticity differs from zero, i.e., as soon as there is more than
infinitesimal loss, this equilibrium is never quite reached, and
the pulse remains off balance. Then, a continuous bleeding of
energy ultimately leads to the disappearance of the soliton. We
discussed how a soliton readjusts its properties in the presence
of slow perturbations acting on it. By carefully assessing the
interplay between soliton and radiation, we have described
the reshaping of the pulse with analytic and numeric tools. If
the diabaticity gets too large, the soliton is so much distorted
that its very concept begins to become ill defined. Our results
are checked against numerical simulation and hold very well.

Luckily the concept of solitons does not immediately
become useless when the underlying equation becomes non-
integrable. Physically, the concept of a pulse that balances
nonlinearity and dispersion makes sense even in the presence
of parameter variation, such as energy loss. Our discussion
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allows us to find the soliton’s parameters for loss weak or
strong, localized or distributed. Its eventual decay in a lossy
fiber is quantitatively determined. We point out that our
treatment can be generalized. If the modification occurs not in
pulse peak power but in, say, γ , β2, or T0 [the other quantities
in Eq. (4)], the same logic as presented here is applicable,
because any such change can be written as a modification of
N . Therefore our ansatz can address the fate of a soliton at a
joint between unlike fibers, etc.

Finally, we remark that solitons are self-stabilizing entities
distinct from their environment. They may thus serve as the
absolute minimum requirement models for living organisms,
which are entities that perpetually exchange energy and matter
with their environment, and yet are clearly distinct from it.
While organisms may be able to adapt to slow environmental
changes, they may not be able to cope with rapid change.
Our treatment demonstrates the difference between sudden
and gradual changes in a fully tractable situation, and it
highlights the key role of the rate of change. As global warming
progresses, there may be important lessons for us to be learned.
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APPENDIX: SOLITON-RADIATION BEAT AMPLITUDE

If parameters of a pulse deviate slightly from that of a
soliton, it will evolve with oscillating peak power. This fact
was first reported by Satsuma and Yajima [2] from numerical
calculations; they also showed that the oscillation amplitude
decays as 1/

√
z. The oscillation is a beat between soliton

and radiation; it evolves according to the difference in phase
evolutions of soliton and radiation. After sufficient distance
the radiation is dispersed away, and the oscillation subsides.
Then the soliton itself becomes visible [13,17,21].

Several authors have sought a description of the decaying
oscillation amplitude. In Ref. [18] a Lagrangian approach was
used to derive very approximate equations, and in Ref. [14]
expressions were found by perturbation analysis. We give a
physically motivated description, which provides more insight
than previously obtained, and is more accurate.

The scaling of the beat amplitude decay can be understood
as follows: the solitonic part has constant amplitude

√
P1. The

radiative part spreads out; in the far field (z 	 LD) it widens
linearly with distance. As its power is also preserved, its ampli-
tude at pulse center droops like 1/

√
z; that determines the beat

amplitude. This reproduces the scaling reported in Ref. [2].
The evolution of the beat note begins at the moment when

the initial soliton with peak power P0 exits the splice. At this
point we have a pulse of the same shape (sech) and chirp
(none) as the pure soliton before the attenuation because the
attenuation does not change these parameters. Initially right
after the splice the pulse now has a peak power of N2P0.
However, we know that it consists of a soliton with peak power
P1 and a nonzero contribution of radiation. In the case of loss,
in this first moment the pulse’s peak power has its global
maximum, which tells us that initially both parts, solitonic and
radiative, are in phase with each other at least in the center. In

the case of gain, it is the other way around: a global minimum
indicates opposite phase.

The radiative part is subject to dispersive broadening.
To describe its phase and amplitude evolution, we can
conveniently exploit the similarity of the dispersion with
diffraction, keeping in mind that dispersion is diffraction’s
one-dimensional counterpart. In the analogy, the pulse starts
from a position analogous to a beam waist (plane wavefronts
correspond to zero chirp). In the absence of a closed expression
for the dispersive evolution of a sech pulse, we greatly simplify
the task by one approximation: we assume the shape of
the dispersive part to be Gaussian. Then it has a dispersive
evolution of the form

U (z,t)disp = AT0√
T 2

0 − iβ2z

exp

[
− t2

2
(
T 2

0 − iβ2z
)
]

, (A1)

where the scaling factor A is given by the amplitude difference
between the initial pulse and the resulting soliton,

A = (1 − N )
√

P0. (A2)

From Eq. (A1) we obtain the amplitude and phase at the
temporal center t = 0

|Udisp(z,0)| = T0

4

√
T 4

0 + κβ2
2z2

, (A3)

ϕdisp(z,0) = − 1
2 arctan (κγP0z), (A4)

where we need to introduce a stretch factor κ to achieve
similarity of the Gaussian to the original sech shape, because
a sech(t/T0) has a quite different pulse width than a Gaussian
with width T0. The evolution of ϕdisp(z,0) describes the Gouy
phase [27], which in a single dimension amounts to one half
of its value in the more familiar case of two dimensions [28].

The dispersive part beats with the underlying soliton. The
beat note is determined by the phase difference between the
linearly evolving soliton and the dispersive part,

�ϕ(z,0) = ϕsol(z,0) − ϕdisp(z,0)

= γP1

2
z + 1

2
arctan (κγP0z). (A5)

With the scaling factor from Eq. (A2), the dispersive amplitude
Eq. (A3), and the phase difference Eq. (A5) we can write

z/LD

|U
(z

,0
)|

no
rm

al
iz

ed
 a

m
pl

itu
de

FIG. 6. Evolution of the beat pattern after the first splice. Red
line: numerical simulation; solid black line: Gaussian approximation
with empirical correction factor; dashed line: solution from Ref. [14].
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the beat amplitude evolution as that of the soliton with an
oscillating dispersive part on top of it:

|U (z,0)| =
√

P1 +
√

P0(1 − N )
T0

4

√
T 4

0 + κβ2
2z2

× cos

(
γP1

2
z + 1

2
arctan (κγP0z)

)
. (A6)

As the solitonic part has constant amplitude
√

P1, the
beat amplitude is determined by the evolution of the
radiation amplitude. As radiation disperses, it gets diluted, and

its amplitude at the overlap decays. The beat note amplitude
is proportional to the amplitude of the radiation itself, which
evolves in the far field as 1/

√
z, which, again, reproduces the

scaling in Ref. [2].
Figure 6 shows the beat note amplitude for N = 0.8.

In lieu of an exact solution, a numerical simulation (red
line) serves as the reference. Our result in the Gaussian
approximation with κ = 0.42 is shown as a black line.
Both curves start at amplitude N and asymptotically tend
to 2N − 1 as required. The agreement is very close indeed.
Also shown is the perturbative result from Ref. [14] (dashed
line); while it fails in the early phase, it is also quite good
later on.
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