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Squeezing and Einstein-Podolsky-Rosen correlation in the mirrorless
optical parametric oscillator
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This work analyses the quantum properties of counterpropagating twin beams generated by a mirrorless
optical parametric oscillator in the continuous-variable regime. Despite the lack of the filtering effect of a
cavity, we show that in the vicinity of its threshold it may generate high levels of narrowband squeezing
and Einstein-Podolsky-Rosen correlation, completely comparable to what can be obtained in standard optical
parametric oscillators.
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Backward parametric down-conversion (PDC), where one
of the twin beams back-propagates with respect to the pump
laser source (Fig. 1), is gaining increasing attention in the
quantum optics community. In the spontaneous regime it has
a natural potential to generate high-purity and narrowband
heralded single photons [1–3], a highly desirable and nontrivial
goal, which in the standard copropagating geometry can be
realized only at specific tuning points.

A second appealing feature is the presence of a threshold
pump intensity, beyond which the system makes a transition
to coherent oscillations; i.e., it behaves as a mirrorless optical
parametric oscillator (MOPO) [4]. Responsible for this critical
behavior is the feedback mechanism established by back-
propagation and stimulated down-conversion. Corti et al. [5]
analyzed the critical behavior of twin beams below threshold,
enlightening the role of the quantum correlation of photon pairs
in creating the feedback necessary to the onset of a classical
coherence above threshold.

In this work we turn our attention to the quantum properties
of the source in the continuous-variable regime, so far
unexplored, namely, its potentiality to generate Einstein-
Podolsky-Rozen (EPR)-correlated beams in the vicinity of the
threshold. EPR correlations [6–8], i.e., nonclassical correla-
tions in a pair of noncommuting field quadratures, and their
associated squeezing, are features of the two-mode squeezed
state produced by any down-conversion process (see, e.g.,
Ref. [9]). However, squeezed light generated in the standard
single-pass configuration is in general multimode, which is
often undesirable for applications [10] Moreover high levels of
squeezing are hard to generate and detect (see, e.g., Ref. [11],
but also Refs. [12,13] for recent achievements in this sense).
The typical solution is to recycle the parametric light in
an optical resonator, which at the same time enforces the
nonlinearity and produces a sharp modal filtering, i.e., to build
an optical parametric oscillator (OPO). Remarkably, this work
will show that counterpropagating twin beams, despite the
lack of the filtering effect of the cavity, exhibit high levels
of narrowband EPR correlation, completely comparable to
what can be obtained in standard subthreshold OPOs. The
role of the cavity in the MOPO is played by the distributed
feedback mechanism [5], which creates a threshold where,
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similarly to the OPO, the quantum noise in principle diverges
in some observables, allowing then noise suppression in their
conjugate observables. Once technical challenges involved in
its realization are overcome, this source may then represent a
robust and compact alternative to the OPO.

The backward geometry requires a submicrometer poling of
the χ (2) materials, which explains why after the first theoretical
prediction [14], this source had to wait 40 yr before being
realized [4]. We consider the scheme in Fig. 1, in which
the laser pump at frequency ωp and the signal at frequency
ωs copropagate along the +z axis in the nonlinear medium,
while the idler at frequency ωi = ωp − ωs back-propagates in
the −z direction. Quasi-phase matching (i.e., the generalized
momentum conservation) is realized when their corresponding
wave numbers kj = ωj nj (ωj )/c satisfy

ks − ki = kp − m
2π

�
, m = 1,3, . . . , (1)

where � is the poling period and nj are the refraction indexes.
First-order interactions then require � � λp/np.

Our quantum model for this configuration is described in
Refs. [2,5] (see also Ref. [15]). As in the former literature,
we restrict to a purely temporal description, assuming either
waveguiding or a small collection angle. Below the MOPO
threshold the depletion of the pump laser is negligible, and
it can be described as a classical field of constant amplitude
along the sample. Assuming in addition the pump field is
a continuous wave, it is simply described by its complex
amplitude αp = |αp|eiφp . The strength of the parametric
interaction is then characterized by the dimensionless gain

g =
√

2πχ |αp|lc, (2)

where χ is proportional to the χ (2) susceptibility of the medium
and lc is the crystal length. In terms of this parameter the
MOPO threshold occurs [16] at

g = gthr = π

2
. (3)

The signal and idler waves are instead described by the
quantum field operators Âs(	,z) and Âi(	,z), for two wave-
packets centered around the respective reference frequencies
ωs and ωi satisfying quasi-phase matching (1) (capital 	 is
the offset from the ωj ). As detailed in Ref. [5], the model is
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FIG. 1. Scheme of backward PDC, taking place in a χ (2) crystal
periodically poled with a submicrometer period � ≈ λp/np . Quasi-
phase matching [Eq. (1)] requires then that the idler field is generated
in the backward direction with respect to the signal and the pump.

formulated in terms of linear propagation equations coupling
only the frequency conjugate modes ωs + 	 and ωi − 	 of the
twin beams, whose solution gives a transformation linking the
output operators Âout

s = Âs(z = lc) and Âout
i = Âi(z = 0) to

the input ones (Fig. 1), assumed in the vacuum state. Notice that
in this geometry the boundary conditions are not the standard
ones, because the signal and idler fields exit from the opposite
end faces of the slab. The input-ouput relations are then the
Bogoliubov transformation, characteristic of processes where
particles are generated in pairs:

Âout
s (	) = Us(	)Âin

s (	) + Vs(	)Âin†
i (−	), (4a)

Âout
i (−	) = Ui(−	)Âin

i (−	) + Vi(−	)Âin†
s (	). (4b)

The coefficients Uj (	) and Vj (	) are the trigonometric
functions [5]:

Us(	) = eiks lc eiβ(	)φ(	), (5a)

Vs(	) = ei(ks−ki )lc geiφp
sin γ (	)

γ (	)
φ(	), (5b)

Ui(−	) = eiki lc eiβ(	)φ∗(	), (5c)

Vi(−	) = geiφp
sin γ (	)

γ (	)
φ∗(	), (5d)

with

φ(	) = 1

cos γ (	) − i D̄(	)lc
2γ (	) sin γ (	)

, (5e)

γ (	) =
√

g2 + D2(	)l2
c

4
. (5f)

In these expressions,

D(	) = ks(	) − ki(−	) − kp + kG (6)

is the phase mismatch for two frequency conjugate signal-idler
components, kj (	) being the wave number of the j th wave at
frequency ωj + 	 (j = s,i). The phase

β(	) = [ks(	) + ki(−	) − (ks + ki)]
lc

2
(7)

is a global propagation phase. Notice that the coefficients
Uj (	) and Vj (	) diverge when approaching the MOPO
threshold g = π/2, and, as can be easily checked, they

satisfy the unitarity conditions: |Uj (	)|2 − |Vj (	)|2 = 1 and
Us(	)Vi(−	) = Ui(−	)Vs(	).

Unlike the copropagating case, this configuration is charac-
terized by narrow spectral bandwidths [2,4,5]. Therefore, it is
legitimate to retain only the first order of the Taylor expansions
of the wave numbers kj (	), so that

D(	)lc
2

� lc

2
(k′

s + k′
i)	 = 	

	gvs
, (8)

β(	) � (k′
s − k′

i)
lc

2
	 = 	

	gvm
, (9)

where k′
j = dkj

d	
|	=0, and

	−1
gvs ≡ τgvs = 1

2

[
lc

vgs

+ lc

vgi

]
(10)

is a long time scale characteristic of counterpropagating
interactions, on the order of the transit time of light along
the slab, involving the sum of the inverse group velocities
vgj = 1/k′

j [2,5]. In the spontaneous regime, it defines the
correlation time of twin photons, while its inverse 	gvs gives
the narrow width of their spectrum, which becomes even
narrower in the stimulated regime and ideally shrinks to zero
on approaching threshold [5]. Conversely

	−1
gvm ≡ τgvm = lc

2vgs

− lc

2vgi

(11)

is a short time scale related to the group velocity mismatch
(GVM) and produces a small temporal offset between the
signal and idler wave-packets. Clearly, |	gvm| � 	gvs for any
tuning conditions (see Fig. 5 for a comparison in the case of
LiNbO3). Within these linear approximations the coefficients
Uj (	) and Vj (	) basically depend on the frequency only

through the ratio 	2

	2
gvs

, because γ (	) �
√

g2 + 	2

	2
gvs

, while the

phase β(	) in Eq. (9) varies on the slow scale |	gvm| � 	gvs

and remains close to zero in the spectral region where Uj (	)
and Vj (	) take nontrivial values.

Several properties of the state of the MOPO below
threshold depend solely on the Bogoliubov form (4) of the
transformation, so that they are common to any linear process
of photon-pair generation. In particular, if one introduces the
sum and difference between frequency conjugate components
of the twin beams, Ĉ±(	) = 1√

2
[Âout

s (	) ± Aout
i (−	)], then

the transformation (4) decouples into two independent squeeze
transformations [17]. The ± modes are thus individually
squeezed, and their squeezing ellipses turn out oriented along
orthogonal directions. As is well known, this implies the
simultaneous presence of correlation and anticorrelation in
two orthogonal quadrature operators of the twin beams [7,8].

In order to characterize the amount of squeezing and EPR
correlation generated in this specific configuration, let us
consider the quadrature operators for the individual signal and
idler fields in the time domain:

X̂j (t) = Âout
j (t)e−iφj + Â

out †
j (t)eiφj , (12)

Ŷj (t) = 1

i

[
Âout

j (t)e−iφj − Â
out †
j (t)eiφj

]
j = s,i. (13)
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The two orthogonal quadratures do not commute
[X̂j (t),Ŷk(t ′)] = δj,kδ(t − t ′) and represent incompatible ob-
servables. Notice that their Fourier transforms, X̂j (	) =
Âout

j (	)e−iφj + Â
out†
j (−	)eiφj (which are not Hermitian and

hence not observables), involve the two symmetric spectral
components ωj ± 	 for each field. We then introduce proper
combinations of the signal and idler quadratures:

X̂−(t) = 1√
2

[X̂s(t) − X̂i(t − �t)] (14)

Ŷ+(t) = 1√
2

[Ŷs(t) + Ŷi(t − �t)], (15)

where the delay �t between the detection of the signal and
idler arms can be used as an optimization parameter.

Next, we characterize the noise in the sum or difference
modes by the so-called squeezing spectra:

�±(	) =
∫

dτei	τ

{
〈δŶ+(t)δ̂Y+(t + τ )〉,
〈δX̂−(t)δ̂X−(t + τ )〉, (16)

where, e.g., δX̂− = X̂− − 〈X̂−〉 = X̂− because below the
threshold the field expectation values are zero. These quantities
describe the degree of correlation (“−” sign) or anticorrelation
(“+” sign) existing between the field quadrature operators
of the twin beams at the two crystal output faces. The
value “1” represents the shot-noise level, which corresponds
to two uncorrelated light beams. In the degenerate case
ωs = ωi , one may also think of physically recombining the
two counterpropagating beams on a beam splitter, in order to
produce two independently squeezed beams.

After some long but straightforward calculations, based on
the input-output relations (4), one obtains

�±(	) = 1
2 {|Us(	) − V ∗

i (−	)ei	�tei(φs+φi )|2

+|Us(−	) − V ∗
i (	)e−i	�tei(φs+φi )|2}. (17)

Up to this point we used only the Bogoliubov form of
the relations (4), so that Eq. (17) actually holds for any
PDC process. As expected for the EPR state, the degree of
correlation and anticorrelation in orthogonal quadratures are
identical: �−(	) = �+(	). The two spectral terms on the
right-hand side of Eq. (17) are present because detection of
the temporal quadratures (12) probes the noise at ωj ± 	 for
each field. In the MOPO, these terms can be made identical by
setting �t = τgvm, which exactly compensates the temporal
offset of the twin beams. However, even in the absence of such
optimization, the two terms are minimized by choosing

φs + φi = 2θ (±	) = arg [Us(±	)Vi(∓	)] (18)

� kslc + φp + arg[sincγ (	)] ± 	

	gvm
(19)

� kslc + φp + arg[sincγ (	)], (20)

where the second line uses the linear approximations (8)
and (9) and the last line holds because 	/	gvm ≈ 0 within
the spectral region of interest. With this choice �±(	) →
[|Us(	)| − |Vi(−	)|]2 reaches its minimum value at any
frequency, and the noise never goes above the shot-noise level
“1”. The degree of EPR correlation and anticorrelation �∓(	)

FIG. 2. Squeezing spectra �±(	) (17), and degree of EPR
correlation between the MOPO twin beams, as a function of 	/	gvs,
for φs + φi fixed as in Eq. (21). �t = 0. (b) Detail of the minima.

is instead plotted in Fig. 2 for fixed phase angles, namely,

φs + φi := 2θ (0) = kslc + φp. (21)

In this case, the noise passes from below to above the shot noise
at 	 = ±	gvs

√
π2 − g2, where sincγ (	) changes sign. These

values can be used to define a bandwidth of squeezing �	 =
	gvs

√
π2 − g2 ≈ 2.7	gvs close to threshold. Some remarks

are in order. (i) The EPR correlation becomes asymptotically
perfect as the MOPO threshold is approached, which can be
realized only close to a critical point, because the noise in
the quiet quadrature can be suppressed only at the expense
of a diverging level of noise in the orthogonal one. (ii) The
squeezing remains significant at rather large distances from
threshold, �±(0) � 0.09 for g = 1, which is 36% below the
MOPO threshold. (iii) Excellent levels of squeezing are present
in the whole emission bandwidth, which we remind the reader
is smaller than 	gvs [5]. This is in sharp contrast with the
single-pass copropagating geometry, where high squeezing is
difficult to observe [12] and the orientation of the squeezing
ellipses varies rapidly inside the PDC bandwidth [17]. In
contrast, for the MOPO the orientation of the ellipses, defined
by θ (±	), remains practically constant inside the bandwidth
	gvs [see Eqs. (18)–(20)]. This can be viewed as a consequence
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FIG. 3. Antisqueezing spectra �±(	) (17) as a function of
	/	gvs, for phase angles orthogonal to those in Fig. 2. The curves in
panel (b) are normalized inside (0,1).

of the long (τgvs) and short (τgvm) time scales involved in the
counterpropagating geometry.

Figure 3 shows the antisqueezing of the sum or difference
modes, which occurs for quadrature phases orthogonal to those
in Fig. 2. In this case the noise diverges upon approach-
ing threshold, which is clearly reminiscent of the critical
divergence of the MOPO spectra analyzed in Ref. [5]. The
bandwidth of the antisqueezing spectra shrinks getting close to
threshold [Fig. 3(b)], which again reflects the shrinking of the
spectra and the critical slowing down of temporal fluctuations
close to the MOPO threshold [5].

The curves in Figs. 2 and 3 are in a sense universal for the
MOPO, when plotted as a function of 	

	gvs
, and to a very good

approximation hold for any material and tuning conditions.
This can be more clearly seen by deriving explicit expressions
of the noise spectra. By inserting the coefficients (5) into the
general result (17), using the linear approximation (8) and
neglecting the contribution of the slow phase β(	), when
φs + φi is fixed as in Eq. (21), the squeezing spectra can be
written as

� S
± (	) =

√
g2 + 	̃2 − g sin

√
g2 + 	̃2√

g2 + 	̃2 + g sin
√

g2 + 	̃2
, (22)

FIG. 4. Comparison between the exact results in Eq. (17) and the
approximated ones in Eq. (23). Squeezing spectra (a) as a function
of frequency and (b) at zero frequency as a function of the distance
from threshold.

where 	̃ = 	/	gvs. The antisqueezing spectra, for phases
orthogonal to those in Eq. (21), are just the inverse, �A

±(	) =
1/�S

±(	). This expressions take a particularly simple form
in the neighborhood of threshold and for small frequencies.
Let us define a distance from threshold, ε = gthr − g, and let
us consider the limit ε 
 1 and |	̃| 
 g. By expanding the
various functions in Eq. (22) around ε = 0 and 	̃/g = 0, and
keeping terms at most quadratic in the small quantities, we
obtain

�S
±(	) −→

ε
1
|	̃|
g

1

4

(
ε2 + 	̃2

g2
thr

)
. (23)

This function is a parabola which reaches its minimum at
�S

±(0) = ε2

4 → 0 as ε → 0, and of width �	̃ ≈ 2gthr constant
close to threshold. In the same limit, the antisqueezing spectra
become

�A
±(	) −→

ε
1
|	̃|
g

4

ε2 + 	̃2

g2
thr

, (24)

which represents a Lorentzian peak of diverging height 4
ε2 →

∞ and of vanishing width �	̃ = εgthr → 0, as threshold is
approached. These approximated formulas nicely reproduce
the minima and the maxima in Figs. 2 and 3, respectively,
when not too far from threshold, and are actually valid for
rather large distances from threshold, as shown by Fig. 4.

We notice that such behaviors of the squeezing spectra are
completely comparable to what can be obtained in standard
cavity OPOs below threshold (see, e.g., Ref. [18], formula
(7.59), p. 131). Here, in the degenerate case, the spectrum of
squeezing has the form

�OPO(	) =
(
Athr

p − Ap

)2 + 	̄2(
Athr

p + Ap

)2 + 	̄2
→

|	̄|
2

1

4
(ε2 + 	̄2), (25)

where Ap is a cavity gain parameter, proportional to the pump
amplitude, the χ (2) susceptibility, and the photon lifetime in the
cavity; 	̄ is the frequency normalized to the cavity linewidth;
the OPO threshold is at Ap = Athr

p = 1; and ε = Athr
p − Ap
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FIG. 5. Comparison between the two spectral scales of the MOPO
for PPLN pumped at 800 nm, lc = 1 cm. (a) 	gvs = 2

lc
(k′

s + k′
i)

−1 �
10 Ghz is the narrow MOPO bandwidth. (b) 	gvm = 2

lc
(k′

s − k′
i)

−1 in
the range 5 Thz or more is the broader GVM bandwidth. For each λs

and λi the poling period is chosen to realize phase matching according
to Eq. (1).

defines also in the OPO case the dimensionless distance from
threshold. Remarkably, in both MOPO and OPO cases, the
behavior ∼ε2/4 with the distance from threshold indicates

that an excellent level of squeezing can be obtained even at
rather large distances below the threshold.

As a final point, we remark that the spectra in Figs. 2
and 3 were calculated in the specific case of periodically
poled lithium niobate (PPLN), pumped at 800 nm, with
� = 368 nm, suitable to phase match the type 0 process at
λs = λi (Fig. 5). The wave numbers were evaluated using the
complete Sellmeier relations in Ref. [19]. However, we did not
notice appreciable differences (unless at very large frequencies
of 	 � 15	gvs) in the linearly approximated results (22),
nor in the curves obtained for different materials or tuning
conditions, which confirms that our results are completely
general for any MOPO configuration.

In conclusion, the MOPO below threshold is a source of
EPR entangled beams over a wide range of light frequencies,
including telecom wavelengths. Our analysis has shown that
this cavityless configuration of PDC can reach the same
narrowband, high level, and robust correlation characteristic
of the cavity OPO, which represents the golden standard for
EPR beams. As such, it can be used as an alternative to the
OPO, meeting the increasing demand for monolithic devices
in the field of integrated quantum optics.
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