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Twisted molecular excitons as mediators for changing the angular momentum of light
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Molecules with CN or CNh symmetry can absorb quanta of optical angular momentum to generate twisted
excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such
interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus
be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single
angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing
the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on
higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and
demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended
to a time-dependent density functional theory setting where the key results are shown to hold in a many-body,
multilevel setting.
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I. INTRODUCTION

Angular momentum (AM) about a fixed point is conserved
in isolated systems characterized by a rotationally symmetric
Lagrangian [1]. The eigenstates of atomic electrons exemplify
this, and the AM of the collective light-matter system is
conserved in association with their spontaneous orbital decay
[2]. For systems with less symmetry, though, there is no
expectation that a one-to-one correspondence should exist
between the electronic and photonic units of AM in light-
matter interactions [3,4].

Of course individual photons, bosonic field excitations,
have a well-defined helicity of unit magnitude [5]. In addition,
electromagnetic radiation fields described by the time-ordered
superpositions of such excitations can also have a photonic
angular momentum (PAM) even when full rotational symmetry
is not present. A Gaussian beam of circularly polarized light
is composed of photons of the same helicity and has a PAM
of ±1 in units of h̄. Within the paraxial approximation, optical
vortices [6] also have a quantized AM per photon that are
eigenvalues of an operator that does not depend on gauge or
frame [5,7,8]. A circularly polarized Laguerre-Gaussian beam
of azimuthal index l, for instance, has PAM = ±1 + l within
the paraxial approximation. These AM measures are possible
because the radiation has an axis of symmetry and a negligibly
small radial gradient.

A molecular axis of symmetry facilitates the assignment of
a meaningful AM to the electronic state of specially designed
molecules as well. These have a discrete rotational symmetry
group of either CN or CNh, such as those shown in Fig. 1, and
their repeated subunits are referred to as arms. These may
radiate outward as chiral spokes, as in triphenylphosphine
(Ph3P) and hexaphenylbenzene, or may compose a planar
arrangement, as found in porphyrin and coronene structures.

The associated molecular eigenstates can be expressed as
a phase-shifted superposition of the lowest-energy excitons
associated with each of the arms. These collective states are
identifiable by the phase shift 2πqe/N between neighboring
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arms in the superpositions [9,10]. The integer qe is just the
number of 2π windings of the phase accumulated in traversing
the circuit of arms and so can be interpreted as the number of
units of an excitonic, quasiangular momentum.

Quasimomenta are encountered in any material system
that exhibits a discrete symmetry. For instance, solid-state
lattices have a quasilinear momentum that is distinct from
the particle momentum of the ions and electrons of which
it is composed. This momentum is the conserved quantity
associated with a discrete translational symmetry of the lattice
[11]. An analogous application of discrete rotational invariance
has been used to explain how particle angular momentum can
be transferred to a quasiangular momentum for a variety of
quasiparticles [12]. When the lattice points fall on a circle, as
with the molecular arms of centrosymmetric molecules, this
quasiangular momentum is simply the product of an effective
radius R with excitonic quasimomentum h̄kex. Azimuthal
periodicity then implies that kexR is an integer qe. In analogy to
their photonic counterparts [13,14], these electronic states are
referred to here as twisted excitons with an excitonic angular
momentum (EAM) of qe. Each molecular eigenstate has a
distinct EAM and there is a one-to-one relationship between
the eigenenergies and the magnitude of EAM.

Electronic decay of these molecules results in the gen-
eration of an optical vortex [9] in which both energy and
AM are transferred between excitonic and optical forms. The
same is true for absorption events in which this process
is reversed and, in fact, for a sequence of such absorption
events. Subsequent emission, either spontaneous or stimulated,
can produce radiation with the accumulated EAM. In this
way, the excitons play the role of an angular momentum
bank in which PAM can be deposited and withdrawn in
different increments. The concept, illustrated in Fig. 2, offers
a means of changing the AM of light that does not rely
on higher-order susceptibilities [15–21]. Angular momentum
is conserved in these light-matter interactions and a one-to-
one correspondence between excitonic and photonic angular
momentum therefore exists in this special setting.

This particular form of AM conservation is in contrast to
that associated with the excitation or decay of a single-electron
state for hydrogenlike atoms lying on the axis of an optical
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FIG. 1. Molecules with CN or CNh symmetry. The three planar molecules shown are among many polycyclic aromatic hydrocarbons for
which there exists conjugation between adjacent arms. Three-dimensional molecules, such as triphenylphosphine and hexaphenylbenzene, may
also offer sufficiently strong coupling between arms.

vortex. Suppose that a static magnetic field makes absorption
and emission preferred in one direction, and consider a
right-circularly polarized Laguerre-Gaussian beam, within
the paraxial approximation, of azimuthal index l = 1 that is
aligned with it. The electromagnetic radiation therefore has
PAM = 2p. Even though the electric-field intensity is zero
along the symmetry axis, it has a nonzero gradient, and the
light-matter quadrupole coupling, M = Q · ∇E, is finite. Here,
Q is the transition quadrupole tensor between the 1s and 3d2

states. Two units of AM can therefore be transferred from
beam to electron as has only recently been experimentally
confirmed [22]. Here the electrons have a continuous azimuthal
symmetry as opposed to the discrete excitonic symmetry of
centrosymmetric molecules.

FIG. 2. Changing the angular momentum of light using twisted
excitons. Two laser pulses, each with a PAM = 1p , are sequentially
absorbed by a molecular assembly resulting in an EAM = 2e. The
radiation subsequently emitted has a PAM = 2p .

Electromagnetic radiation composed of a superposition of
photons of both helicities exhibits AM conservation in each
of its components. A second single-electron example makes
this clear and the idea extends to the molecular setting as well.
The same Laguerre-Gaussian beam of azimuthal index l = 1,
but now linearly polarized, interacts with the atomic ground
state and the electron can once again be raised to the 3d2

state. This would seem to violate AM conservation because
the aggregate input beam has PAM = 1p and results in an
EAM = 2e state. However, the beam is actually composed of
a superposition of right- and left-circularly polarized optical
vortices that have AM of 2 and 0, respectively. The AM of
each individual interaction is conserved: 1ps + 1pl → 2e and
−1ps + 1pl → 0p. Here subscripts p and e indicate photonic
and excitonic manifestations, while subscript s and l denote
polarization and vortex origins. For such mixed state beams,
electronic occupation probability must be included in the AM
algebra: 1p → 1

2 2e + 1
2 (−1ps + 1pl).

We examine AM banking in association with centrosym-
metric molecules using a combination of theory and compu-
tation. A tight-binding (TB) paradigm is used to analytically
prove that AM is conserved in association with sequences of
absorption and emission. Numerical implementations demon-
strate this within a time-dependent setting. The associated
Hamiltonian is then replaced with one that does not rely on
prescribed transition dipoles and for which electron excitations
are treated as many-body events with exchange energies
and correlation effects included. Twisted excitons are no
longer just superpositions of two-level excitations on each
molecular subunit, but AM conservation emerges nonetheless.
This time-domain density functional theory (TD-DFT) setting
is used to simulate the dynamics of AM transfer between
photonic and excitonic manifestations, and simple additions
and subtractions are once again demonstrated. In both TB
and TD-DFT settings, the underlying processes are linear in
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the sense that only first-order electric dipole interactions are
necessary. This is in contrast to the nonlinear optics strategy
for up- and down-converting angular momentum using higher-
order susceptibilities. There is a tradeoff, certainly, because
the AM banking scheme presumes that exciton relaxations and
decoherence processes occur on a time scale slower than that of
the AM manipulations. For the sake of clarity in exploring this
alternative methodology, though, exciton-phonon coupling
and dynamic disorder are disregarded.

II. TIGHT-BINDING PARADIGM

First consider a molecular Hamiltonian in the absence of
light-matter coupling. The requisite CN or CNh symmetry is
provided by an N-arm molecule in which arm j supports two
energy levels: ground state |ξ j,0〉 and excited state |ξ j,1〉. The
tight-binding (TB) Hamiltonian is taken to be

Ĥ0 =
N∑

j=1

�ĉ
†
j ĉj +

N∑
<i,j>

(τ ĉ
†
j ĉi + H.c.). (1)

Here, � is the excited-state energy of each arm, τ is the
coupling between nearest arms, and ĉ

†
j is the creation operator

for arm j . It is straightforward to show [9] that the ground
state is |0〉 = ∏N

j=1 |ξ j,0〉, while the N excited states are

|vqe
〉 =

N∑
j=1

ε(j−1)qe

√
N

|ej 〉 , (2)

with ε = eı2π/N and |ej 〉 = |ξ j,1〉 ∏N
m�=j |ξm,0〉. The EAM qe is

an integer with values bounded by −1
2 (N − 1) and 1

2 (N − 1).
The corresponding energies are

Eqe
= � + 2τ cos

(
2πqe

N

)
, (3)

with p = qe for qe � 0 and p = qe + N for qe < 0. A hollow
E will be used to distinguish exciton energy from electric
field, E.

Now introduce semiclassical light-matter coupling via two
Hamiltonians: Ĥ1 that governs light-mediated interactions
between the ground state and each molecular eigenstate, and
Ĥ2 that governs the analogous laser interactions that mediate
transitions between eigenstates. The angular momentum of
incident electric fields may be manifested as a circular
polarization, a vector vortex, or a linear polarization with a
scalar vortex, but we restrict our attention to the first two types.
An electric dipole approximation is made and the discrete
rotational symmetry ensures that a rotation of the molecule
about its axis by 2π/N maps one dipole into the next. Under
these conditions, the details of the electric-field structure
and dipole orientations are irrelevant, and the light-matter
interactions are well captured by the following Hamiltonians,
which are functions of the PAM of the incident light qp:

Ĥ1(qp) = −μ∗
0E

∑
j

ε−qp(j−1)ĉ
†
j ĉ0 + H.c.,

Ĥ2(qp) = −μ∗
hopE

∑
j

ε−qp(j−1)ĉ
†
mod(j )+1ĉj + H.c. (4)

The mod function returns its argument modulo N and use
has been made of the fact that ε−qp[mod(j )−1] = ε−qp(j−1). The
scalars μ∗

0E and μ∗
hopE represent the inner product of electric

transition dipole moments with a time-dependent electric field.
The total Hamiltonian Ĥ (qp) = Ĥ0 + Ĥ1(qp) + Ĥ2(qp) is

then applied to the Schrödinger equation with solutions
assumed to be of the form

|�(t)〉 = A0(t) |0〉 +
N∑

n=1

An(t) |en〉 . (5)

This results in a set of N + 1 coupled ordinary differential
equations that can be solved numerically for a prescribed
electric field and initial state. The evolving state can then
be projected onto each excitonic eigenstate to determine the
population of each AM, qe, as a function of time:

ρqe
(t) := | 〈�(t)|v(qe)〉 |2 =

[
N∑

n=1

A∗
n(t)

ε(n−1)qe

√
N

]2

. (6)

A. Conservation of angular momentum

Suppose that the molecule is initially in eigenstate |vIe
〉,

where subscript Ie indicates an initial EAM of I . A beam
with PAM = qp is incident on the molecule, exciting it into
eigenstate |vFe

〉. Subscripts p and e delineate photonic and
excitonic manifestations, while F is the EAM of the final
state. A necessary condition for this transition to occur is that
HIF := 〈vFe

| Ĥ |vIe
〉 �= 0. Assuming that Ie �= Fe, Eqs. (2) and

(4) imply that

HIF = −μ∗
hopE

(∑
i

ε−(i−1)Fe

√
N

〈ei |
)

×
(∑

j

ε−(j−1)qp ĉ
†
mod(j )+1ĉj

)(∑
k

ε(k−1)Ie

√
N

|ek〉
)

, (7)

which can be easily reduced to

HIF = −μ∗
hopEε−Fe

N

(∑
j

ε−(j−1)(Ie−qp−Fe)

)

× − μ∗
hopEεIe

N

(∑
j

ε−(j−1)(Ie+qp−Fe)

)
. (8)

The following cyclic sum orthogonality property of periodic
exponentials is then useful:∑

j

ε−(m−n)j = Nδm,n. (9)

It is applied to both terms in Eq. (8) to give

HIF = −μ∗
hopEε−FeδIe,qp+Fe

− μ∗
hopEεIeδIe+qp,Fe

. (10)

Resonant illumination implies that exactly one of the two
Kronecker δ functions will be nonzero. We therefore have the
following statements of AM conservation:

EIe
< EFe

→ Ie + qp = Fe,

EIe
> EFe

→ Ie = Fe + qp. (11)
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If the initial exciton energy is lower than that of the final
state, absorption results in an increase in the quasiangular
momentum of the molecule. The converse is also true in
association with radiation. Since the sign of the PAM can be
either positive or negative, this allows for a number of ways in
which the electromagnetic field can be used to manipulate the
level of excitonic angular momentum. It also offers a strategy
for withdrawing angular momentum from the molecule in
a range of denominations. This is illustrated next in two
applications.

B. Tight-binding implementations of angular
momentum conservation

As a first proof of concept, a 7-arm molecule with an
EAM = 2e is subjected to windowed, continuous-wave (cw)
lasers with a PAM = −1p and the following scalar wave form:

E(t) = E0 sin[(EFe
− EIe

)t/h̄]. (12)

As usual, Ie and Fe are the initial and final AM of the exciton
with corresponding energies, EIe

and EFe
, given by Eq. (3).

TABLE I. Exciton energies and AM associated with 7-arm
molecule used for all TB simulations. The following parameters were
used (atomic units): E0 = 2 × 10−4, μ0 = 1, � = 1, τ = 0.067,
and a radial distance to the center of each arm of 0.6. Here, μ0 ≡ μhop

is the strength of the transition dipole. Proportional changes to these
parameters do not affect the results.

EAM −3e 3e −2e 2e −1e 1e 0e

Energy (Ha) 0.880 0.880 0.970 0.970 1.083 1.083 1.133

The parameters used, and the resulting molecular eigenstate
energies and EAM values, are given in Table I.

The top plots of Fig. 3 show how the AM can be transferred
from a laser to the molecule. Two scenarios are considered, and
the associated AM conservations are listed above each plot. In
both, the molecule has an initial EAM = 2e and the associated
exciton energy is 0.970 Ha. A laser of the form of Eq. (12)
is applied. In the left plot, the laser has a PAM = −1p and
its frequency is set to the difference between the energies of
states for which EAM = 2e and EAM = 1e, i.e., 0.113/h̄ Ha.
Energy conservation then prevents any meaningful increases
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FIG. 3. Addition and subtraction of EAM on a 7-arm molecule. (a) Left: Laser energy is the difference between the second and first
eigenstates and results in the absorption of radiation. Right: Laser energy is the difference between the second and third eigenstates and results
in the emission of radiation. In both cases, the laser is applied throughout the entire simulation shown. All parameters are listed in Table I.
(b) Phase progression between neighboring arms for both cases as detailed in the text. The color legends of the top panels identify the populations
of each EAM state.
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in the population of states other than those for which EAM =
±1e. However, angular momentum conservation prevents the
growth of the EAM = −1e state. The result is that radiation
is absorbed, the exciton energy is increased to 1.083 Ha, and
the EAM is reduced to a value of 1. It is worth emphasizing
that energy increases are associated with EAM decreases (see
Table I).

The top-right plot in Fig. 3 demonstrates how a change
to the laser frequency can cause radiation to be emitted
instead. Here the frequency is set to the difference between
the energies of states for which EAM = 2e and EAM = 3e,
i.e., 0.09/h̄ Ha. As in the left plot, the laser PAM is set to
−1p. Energy conservation then allows the growth of only
the EAM = ±3e states, but angular momentum conservation
prevents the growth in population of the state for which
EAM = −3e. The result is that radiation is emitted, the exciton
energy is decreased to 0.880 Ha, and the EAM is increased to
a value of 3e. These examples demonstrate that a combination
of laser frequency and AM is sufficient to either add or subtract
AM from the exciton.

The bottom plot in Fig. 3 is a composite of results from
both simulations which shows the phase relationship between
two adjacent arms before and after application of the laser
pulses. The horizontal axis was obtained by rigidly translating
sections of the plots of amplitude versus time so that they
appear in the same time interval. Then time was mapped into
phase through multiplication with the associated frequencies
of light. In this form, the phase relation between two arms
can be easily measured by comparing the amplitude of one
arm (solid curve) with its neighbor (dashed curve). The initial
phase progression should be 4π/7, from Eq. (2), and this is
confirmed in the solid black and dashed black curves. The
addition of PAM results in an EAM = 1e and the measured
phase between the red and dashed red curves exhibits the
expected progression of 2π/7. Likewise, the subtraction of
PAM leaves the molecule with EAM = 3e and the anticipated
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FIG. 4. PAM doubling. 7-arm molecule initially in ground state
(GS) is subjected to a sequence of three lasers. The excitonic-state
populations evolve in accordance with conservation of AM, as noted
at the top of the plot. Two 1p pulses are absorbed and one 2p radiation
results. The color legend identifies the populations of each EAM state.
Note that the dark green curve and dashed lines are associated with
the exciton energy with the scale at right.

phase progression of 6π/7 between arms, shown in blue and
dashed blue curves.

A second TB simulation, shown in Fig. 4, carries out a
sequence of AM addition and subtraction that starts and ends
in the ground state (GS). The same 7-arm molecule (Table I)
is subjected to three windowed, cw laser pulses. The first laser
(t1 � t2) has PAM = 1p and an energy equal to that of the
eigenstate for an EAM = 1e. The second laser (t3 � t4) has
the same PAM, but with an energy equal to the difference of
excitonic states associated with EAM = 1e and 2e. The PAM
of the third laser is −2p with an energy equal to that of the
eigenstate for which EAM = 2e. The AM balances associated
with each laser are given in the figure to more easily interpret
the data plotted. These plots also show how the excitonic
energy evolves as a function of time, becoming asymptotic to
the appropriate eigenenergies after each laser pulse is applied.
The simulation shows that a sequence of absorption events can
be followed by a single emission, with the latter having a PAM
equal to the sum of the input PAMs.

III. ANGULAR MOMENTUM TRANSFERS WITH
TIME-DOMAIN DENSITY FUNCTIONAL THEORY

Many of the idealizations associated with the TB paradigm
can be removed by reconsidering the light-matter dynamics
using time-domain density functional theory (TD-DFT). Un-
like standard ground-state density functional theory (DFT),
TD-DFT captures the nonequilibrium response of material to
an externally applied, time-varying electric field. Such real-
time simulations are made possible through Runge-Gross (RG)
reformulation of the time-dependent Schrödinger equation
[23]. A methodology was developed so that TD-DFT can be
used to quantify AM transfers as detailed in Appendix.

TD-DFT calculations are computationally intense and
amount to carrying out a standard DFT calculation for a
series of very small time steps. The requisite time step for the
calculations of this study is 0.027 a.u. for simulations covering
approximately 2067 a.u. in total. To reduce the computational
cost in this initial proof of concept, a ring of radially aligned
H2 molecules was used as an idealized N-arm system. The
ring was given a radius of 3.8 Bohr with the H-H bond lengths
taken to be 1.4 Bohr. For each simulation, a computational
domain was constructed as the sum of spheres of radius
5.7 Bohr around each atom. This domain was discretized with a
spacing of 0.28 Bohr. The generalized gradient approximation
(GGA) parametrized by Perdew, Burke, and Ernzerhof (PBE)
[24] was adopted to account for exchange and correlation,
and a Troullier-Martins pseudopotential was used. Since
the wavelength of the requisite laser field is much larger
than the dimension of the N-arm system, a point dipole
approximation of light-matter interaction is applied in our
TD-DFT simulations.

Limitations on the type of external field that can be input
to the TD-DFT routine necessitated a piecewise construction
to approximate optical vortices. Transition dipoles from the
ground state were found to be maximal on each arm and so
the associated N field components were constructed so as to be
arm centered. In contrast, the transition dipoles between two
excited states were maximal at the midpoints between arms,
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TABLE II. Dominant determinant �r
a and EAM qe of the first five

lowest excited states as calculated from Casida perturbation within
TD-DFT. Here, �r

a is the spin-adapted singlet so that one electron
is excited from ath occupied KS orbital to the rth unoccupied KS
orbital. Energies are in Hartrees (Ha).

Excited state 1 2 3 4 5

Energy (Ha) 0.37 0.37 0.39 0.39 0.41
Determinant �6

5 �6
4 �6

3 �6
2 �6

1

Percents (%) 97 97 94 94 91
qe

±2 ±1 0

so the associated external field components were centered
between the arms.

A 5-arm configuration of H2 dimers was adopted in all
TD-DFT simulations. Casida’s perturbative TD-DFT method-
ology [25] was first performed to obtain excitation energies.
This was necessary in order to design laser pulses with
the frequency needed to excite a given excitonic state. The
energies, dominant determinants, and the corresponding EAM
of the first five excited states are given in Table II. The
determinants listed there are those that dominate each excited
state, representing approximately 90% of the respective wave
function. Approximating an excited state with only a single
determinant makes it possible to find the population of EAM
states [Eq. (A5)], as detailed in Appendix.

A radial vector vortex, carrying PAM = −1pl and energy of
0.37 Ha, excites the 5-arm system from its ground state to the
EAM = −1e state, as shown in Fig. 5(a). Figure 5(b) shows
that the same state can be achieved using circularly polarized
light, −1s . Combining these two photonic structures and using
a radiation energy of 0.39 Ha results in an EAM = −2e state, as
expected [Fig. 5(c)]. On the other hand, the linearly polarized
vortex of PAM = −1l results in the same EAM = −2e state,

but with only one-half the occupation probability [Fig. 5(d)].
This is because the beam can be decomposed into vortices with
opposing circularly polarizations, i.e., one with a combined
PAM of −1s + −1l and the other with a PAM of +1s + −1l .

A. Algebra of radial vector vortex fields

A radial vortex was chosen to test conservation of AM for
the more realistic many-body TD-DFT Hamiltonian. Three
cases were considered which each involve a sequence of two
laser pulses. The incident radiation field, with a Gaussian
envelope, was taken to be

	E(t) = E0e
−iqeφeiωt e−(t−t0)2/2τ 2 	er . (13)

As with the TB analyses, conservation of energy determines
whether or not PAM is added to or subtracted from the
molecular assembly.

A first comparative analysis demonstrates how conservation
of AM can be used to control exciton manipulations. The
sequence of radiation absorption events is shown at the bottom
left in Fig. 6. A 0.367 Ha laser pulse with PAM = −2p is
first used to create an exciton with EAM = −2e. This has the
highest magnitude of quasiangular momentum possible and
so is of the lowest energy, as listed in Table II. A second
laser pulse, with an energy equal to the difference between
that of the first and second excitonic states, 0.0220 Ha,
is subsequently applied. Radiation of this energy must be
absorbed since the 1e state is of a higher energy. Angular
momentum conservation, −2e + 1p = −1e, therefore predicts
that the resulting excitonic state will have EAM = −1e, and
that is exactly what is found.

The lower-right plot of Fig. 6 shows a completely different
behavior for a sequence of pulses though. The first laser is
identical to that in the figure at the lower left and it produces
an EAM = −2e. A second laser is then used that has the

Time (a.u.)

Ex
ci

to
ni

c 
St

at
e

P
op

ul
at

io
n

0.00

0.05

0.10

0.15

0.20

0 207 414 620 828
0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Ex
ci

to
ni

c 
St

at
e

P
op

ul
at

io
n

Ex
ci

to
ni

c 
St

at
e

P
op

ul
at

io
n

Ex
ci

to
ni

c 
St

at
e

P
op

ul
at

io
n

Time (a.u.)
0 207 414 620 828

Time (a.u.)
0 207 414 620 828

Time (a.u.)
0 207 414 620 828

1e

1e

2e

2e

Radial Vortex Circular Polarization

Circularly 
Polarized Vortex

Linearly 
Polarized Vortex

(a)

(c)

(b)

(d)

FIG. 5. TD-DFT excitations of 5-arm centrosymmetric system. The plots show the evolution of excitonic-state populations in response
to (a) radial vector vortex with energy 0.39 Ha and AM −1l , (b) circularly polarized light with energy 0.39 Ha and AM −1s , (c) circularly
polarized vortex with energy 0.37 Ha and combined AM = −1l + −1s , and (d) linearly polarized vortex with energy 0.37 Ha and AM = −1l .
The Gaussian envelope, E0 e−(t−t0)2/2τ2

, has parameters {t0 = 272,τ = 27.2,E0 = 0.0100} in atomic units.
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FIG. 6. TD-DFT AM manipulation: −2e + 1p = −1e. (a) Sequenced laser pulses of 0.367 and 0.0220 Ha, respectively. The system
is initially given an EAM = −2e using a 2p laser. (b) Left: Application of second laser with AM = 1p transfers the system to a −1e

state. Right: The same laser energy, but with an AM = −1p , does not cause the state to evolve. Envelope parameters for Eq. (13) are
{t0 = 272,τ = 27.2,ω = 0.367,E0 = 0.00300} and {t0 = 1360,τ = 272,ω = 0.0220,E0 = 0.0300} in atomic units, respectively.

same energy as that used in the lower-left plot (0.0220 Ha),
but with the opposite angular momentum, −1p. Once again,
energy conservation demands that such radiation can only be
absorbed and not emitted. However, the associated statement
of AM conservation is now −2e + (−1p) = −3e. This AM is
not supported by the molecule and the result is that radiation
from the second laser cannot be absorbed. The lower-right plot
shows that this is the case, where EAM = −2e is maintained

despite the application of the second laser, i.e., the molecule
appears transparent to the second laser in this excitonic state.

As is clear in the top plot of Fig. 6, the second laser needs
to be much stronger than the first because the transition dipole
between excited states is in the mid-arm region where the
relevant state densities are small, while the transition dipoles
from the ground state are located in the arms where the relevant
state densities are much larger.
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FIG. 7. TD-DFT AM manipulation: 1e + (−1)p = 0e (left) and 1e − (−1)p = 2e (right). (a) Two laser sequences with the (b) associated
population transfers. In both processes, the parameters of Eq. (13) for the first laser pulses are {t0 = 272,τ = 27.2,ω = 0.390,E0 = 0.00300}.
The parameters for the second laser pulses are {t0 = 1090,τ = 136,ω = 0.0158,E0 = 0.0500} (left) and {t0 = 1090,τ = 218,ω = 0.0257,E0 =
0.0500} (right) in atomic units.
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FIG. 8. TD-DFT PAM emissions: 0e − (1)p = −1e (left) and 0e − (−1)p = 1e (right). Two cases are considered, and, in both, (a) an initial
laser pulse generates (b) a 0e AM. The second laser pulse differs for each case though. A +1p pulse stimulates emission and changes the excitonic
state to −1e (left), while a −1p pulse also stimulates emission but changes the excitonic state to +1e (right). The parameters of Eq. (13) for the
first laser are {t0 = 272,τ = 27.2,ω = 0.405,E0 = 0.00300} and those for the second laser are {t0 = 1360,τ = 272,ω = 0.0158,E0 = 0.0300}
in atomic units.

A second comparative analysis, summarized in Fig. 7,
shows how light with a fixed PAM can be adjusted in frequency
to either increase or decrease EAM. In both scenarios shown,
the molecule is first given an EAM = 1e and, in both cases, a
second laser pulse with PAM = −1p is subsequently applied.
In the evolution shown at the lower right, the energy of the
second pulse is equal to the difference between the states 1e

and 0e, 0.0158 Ha (Table II). This results in the absorption
of radiation because the 0e state is of higher energy with the
AM balance equation of 1e + (−1)p = 0e. On the other hand,
tuning the second pulse to an energy of 0.0257 Ha causes the
system to transition to the 2e state because this is the energy
difference between the 1e and 2e states (Table II). In this case,
radiation is emitted because the 2e state is of lower energy, and
the AM balance is 1e − (−1)p = 2e.

Note that there is an oscillation in the population of the
1e state (blue curve) in both of the lower plots of Fig. 7.
This is an artifact associated with the single-determinant
approximation in concert with our piecewise homogeneous
construction of the incident beam. This field approximation
results in a larger contribution of the nonprimary determinant,
and the artificial oscillation in population is an indicator that
the relative weighting of these determinants is time dependent.
In contrast, the analogous curve associated with circularly
polarized light (Fig. 10) shows no such oscillation because the
nonprimary determinants make almost no contribution.

A third comparative analysis, shown in Fig. 8, demonstrates
how EAMs of opposite sign can be created from the same
initial state by changing both the laser frequency and the sign
of its angular momentum. In both left and right scenarios,
a molecule is placed in its highest-energy state, 0e, after
application of an appropriate laser pulse. A second laser with
PAM = −1p (lower left) stimulates emission and changes

the molecule to an EAM = −1e. The associated statement
of AM conservation is 0e − (+1)p = −1e. On the other hand,
illuminating the molecule with a PAM = −1p (lower right)
also stimulates the emission of radiation but changes the
system to an EAM = +1e. The associated statement of AM
conservation is 0e − (−1)p = +1e.

All three of these comparative TD-DFT analyses have
focused on EAM arithmetic. When purposed as a PAM
converter, though, it is important to be able to transfer the
final AM into an electromagnetic field. Such an operation,
already considered within the TB setting, can be demonstrated
in a more realistic TD-DFT simulation. Figure 9 summarizes
a simulation in which the molecule is first given a −2e AM,
which is subsequently changed to −1e using a second laser.
Taken together, these first two steps can be viewed as PAM
addition: −2p + 1p = −1e. A third laser then stimulates the
emission of PAM = −1p, leaving the system in its ground
state. The photonic arithmetic for this conversion process is
therefore −2p + 1p = −1p.

The excited-state excitonic populations are small because
very weak and short lasers are applied in all TD-DFT simu-
lations. This is a pragmatic step taken to avoid the population
of extraneous eigenstates that result from stronger or longer
laser pulses. This is purely a computational issue that results
because the vector vortex beams were approximated with
five piecewise-homogeneous components—a computational
work-around to the limitations of the input fields allowed
by the OCTOPUS TD-DFT software. The result is unphysical
light-matter interactions in the regions between each arm that
can be remedied by dividing the region into more than five
piecewise-homogeneous components. Then stronger and/or
longer laser illumination can be applied to increase the
population of twisted excitons.
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FIG. 9. TD-DFT PAM conversion: −2p + 1p = −1p . (a) Two
laser pulses. (b) The system is excited into the −2e state by the
first laser. Subsequent absorption of a 1p radiation then trans-
fers the system into the −1e state. This EAM is converted to
PAM with a third laser which brings the system back to its
ground state by stimulation emission. The laser parameters of
Eq. (13) are {t0 = 272,τ = 27.2,ω = 0.367,E0 = 0.00100} (first),
{t0 = 1090,τ = 272,ω = 0.0257,E0 = 0.0300} (second), and {t0 =
1905,τ = 27.2,ω = 0.390,E0 = 0.00100} (third), in atomic units.

B. Algebra of circularly polarized lights

As an alternative to applying a radial vector vortex, PAM
can be input using circularly polarized light. This just amounts
to a change of basis for describing the molecular dipoles since
circularly polarized light can be mathematically decomposed
into a combination of radial and azimuthal vector vortices [26],

1√
2

(	ex ± ı	ey) = 1√
2
e±ıφ(	er ± ı	eφ). (14)

Here, {	ex,	ey} and {	er ,	eφ} are the basis vectors in Cartesian
and polar representations. In the 5-arm H2 system, only the
radial vortex components are absorbed. Through a series of
absorption events, circularly polarized light can be used to
generate vector vortices with an arbitrary AM.

This is demonstrated in Fig. 10, where a sequence of
circularly polarized laser pulses is applied. The first laser pulse
causes absorption and the following AM conservation relation:
GS + 1p = 1e. The second laser, of opposite spin, results in
emission: 1e − (−1)p = 2e.

Figure 10 shows that the strength of the first laser is the
same as those used for the vortex beams of Figs. 6–8, but
the duration is three times longer. This allows a much larger
population of proper excited states without involvement of
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FIG. 10. Addition of circularly polarized light: 1ps − (−1)ps =
2e. (a) Two laser pulse. (b) The system is sequentially provided
with two units of AM, resulting in 2e. Subsequent emission would
produce 2p radiation. The laser parameters are {t0 = 272,τ =
81.5,ω = 0.390,E0 = 0.00300} (first) and {t0 = 1360,τ = 109,ω =
0.0257,E0 = 0.00200} (second), in atomic units.

extraneous eigenstates. As compared with Fig. 7, we now have
a very smooth population of the 1e state (blue curve). This
confirms that the origin of the oscillations in our former TD-
DFT simulations is actually the approximation of the vector
vortex with five piecewise-homogeneous components.

IV. CONCLUSIONS

Light and molecules can be engineered so that quanta
of angular momentum can be exchanged between the two.
Strictly speaking, the transformation is between the AM
of a radiation field (PAM) and a quasiangular momentum
(EAM). This makes it possible to design processes in which
sequential laser pulses are used to increase or decrease the
EAM. Subsequent emission results in radiation with a different
PAM than the input light. Unlike existing approaches, this
molecular strategy offers a means of manipulating the angular
momentum of light which does not rely on the nonlinear
optical properties of a mediating crystal. Computational proofs
of concept were provided using tight-binding theory as well
as the more realistic many-body setting of time-domain
density functional theory. While the present work focused
on stimulated emissions, AM conversions may culminate in
spontaneous emission as well.

Angular momentum conservation, valid within a paraxial
approximation, and algebraic manipulations were elucidated
using simple tight-binding Hamiltonians. However, time-
domain DFT gives consistent results within a many-electron
setting with the effects of electron correlation and exchange ac-
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counted for. In both settings, the important influence of phonon
entanglement and dynamic disorder has been neglected. It was
assumed that phase coherence is maintained in the superpo-
sition of arm excitons that comprise molecular eigenstates.
Unless the electronic coupling between arms is sufficiently
strong to preserve coherence in the face of these effects, they
will set a time scale over which AM manipulations must
be carried out for a given temperature [27]. Moreover, AM
conversions must compete favorably with energy relaxation
pathways such as fluorescence and internal conversion [28].

Since changes to the excitonic angular momentum are
accompanied by a change in energy—e.g., Table I—these AM
manipulations can be viewed as a special type of laser-based
up-conversion or down-conversion that can even be carried out
with either pulsed or continuous-wave lasers. A number of up-
conversion methodologies have been experimentally realized,
for instance, and these offer a path forward for manipulating
the angular momentum of light [29]. Laser-based energy-
conversion methodologies tend to use solid-state crystals, so
the approach would need to be adapted to molecular media.
The sequential banking of AM requires that conversions must
be fast relative to competing molecular relaxation processes.
The entire AM conversion process of Fig. 9 takes only 44 fs,
and this is orders of magnitude faster than the nanosecond
time scales for internal conversion and photoluminescence for
typical organic molecules [28]. The issues to be faced here
are also encountered in a range of energy up-conversion and
down-conversion strategies [30].

The level of tight-binding analysis employed does not
require any details of the molecular structure beyond the

HOMO LUMO + 2

3-Arm Structure of
Triphenylphosphine

(a)

(b)

FIG. 11. High-energy exciton of Ph3P with EAM = 0e. The C3

symmetry of Ph3P (a) results in an exciton composed of HOMO and
LUMO+2 orbitals that also has C3 symmetry and so an EAM = 0e.
The exciton energy is 3.47 eV. The red and blue isosurfaces in (b) are
for densities for 0.02 bohr−3/2 of the real part of the wave functions.
Colors correspond to plus (red) and minus (blue) values.

point group, and the time-domain DFT analyses adopted,
as a computational expedient, molecular arms composed of
hydrogen dimers. There exists a panoply of molecules which
exhibit CN or CNh symmetry, though, with only a few
examples shown in Fig. 1. Polycyclic aromatic hydrocarbons
may be promising candidates of this type and several examples
are shown in the figure. Their aromaticity counters the effects
of dephasing due to vibrations. Another intriguing possibility
is to functionalize inert scaffolds that have the requisite point
symmetry.

Screening of candidate molecules can be carried out
using simple DFT analysis to identify the requisite excitonic
structures. As an example, the DFT orbitals of Ph3P can be
used to generate a rudimentary estimate of the electronic
structures associated with its three EAM states: +1, −1, and
0. The EAM = 0e state is composed of the highest occupied
molecule orbital (HOMO) and the third excited state—i.e., two
states above the lowest unoccupied molecular orbital (LUMO).
These both have the requisite C3 symmetry, as shown in
Fig. 11. The associated exciton energy is 3.47 eV (357 nm). On
the other hand, the LUMO and LUMO+1 are degenerate and
can be combined to create states with EAM = ±1e, as shown
in Fig. 12. Taken with the HOMO, the associated excitons have
an energy of 3.43 eV (361 nm), lower than the EAM = 0e

state and consistent with both the TB results of Table I and

Real Imaginary

Real Imaginary

(a)

(b)

FIG. 12. Low-energy excitons of Ph3P with EAM = ±1e.
Orbitals with opposite 120-degree phase progressions can be con-
structed from the LUMO and LUMO+1 orbitals of Ph3P. (a) The
orbital for EAM = +1e and (b) the orbital for EAM = −1e. Their
energies are each 3.43 eV, lower than the exciton with no angular
momentum. The red and blue isosurfaces of wave-function densities
are for 0.02 bohr−3/2. Colors correspond to plus (red) and minus
(blue) values. The real parts of the two orbitals are identical, but
the imaginary parts are of opposite sign. This is consistent with the
opposing 120-degree phase progressions.
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the H2 trimers considered with TD-DFT. These states are
constructed by first adding the LUMO and LUMO+1 orbitals,
then assigning orbitals to each arm by localizing this sum, as
shown in the top panel of Fig. 11. These arm orbitals are then
given a 120-degree phase progression to obtain the structures
of Fig. 12. This progression is evident in the figure, where it is
clear that the two orbitals have the same real part and imaginary
parts of opposite sign. As a check, the sum of the squares of
the projections of these states with the original LUMO and
LUMO+1 orbitals was found to be 0.98 in each case. While
carried out in a very crude way, with simple combinations
of DFT orbitals to represent excitons, this analysis serves to
demonstrate that light at the far edge of the visible spectrum
can be used to create twisted excitons.
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APPENDIX

Real-time simulations are made possible through the
Runge-Gross (RG) reformulation of the time-dependent
Schrödinger equation [23],

i
∂

∂t
ψi(	r,t) =

[
−1

2
�2 + νHa[ρ](	r,t) + νxc[ρ](	r,t)

+νext(	r,t) + νlm(	r,t)
]
ψi(	r,t). (A1)

Here, νHa and νxc are the Hartree and exchange-correlation
potentials, respectively, and νext is the external potential
representing all nuclei. The semiclassical light-matter inter-
action term νlm has the form 	R · 	E within the electronic
dipole approximation adopted here, where 	R := ∑

i 	ri is the
Kohn-Sham position operator and atomic units are used. The
spin-reduced electronic density ρ(	r,t) is expressed in terms of
these time-dependent Kohn-Sham (TDKS) orbitals, ψi(	r,t), as

ρ(r,t) =
N∑
i

|ψi(r,t)|2. (A2)

These orbitals, in turn, can be represented in the basis of
their counterparts at time zero, ψi , so that the time-propagated
multielectron wave function is constructed from a linear com-
bination of determinants built from these initial orbitals [31],

|�(t)〉 = c0(t) |�gs〉 +
occ∑
a

unocc∑
i

ci
a(t) |�i

a〉 . (A3)

Ket |�gs〉 = |ψ1ψ2ψ3ψ4ψ5〉 is the ground state and
|�i

a〉 = |ψ1 · · ·ψi · · ·ψ5〉 is a determinant with the ath
occupied Kohn-Sham (KS) orbital replaced by the ith
unoccupied orbital. The first summation is over all occupied
KS orbitals, five occupied KS orbitals in the case of the 5-arm
H2 system, and the second summation is over all unoccupied

FIG. 13. Decomposition of KS orbitals of 5-arm H2 system. The
five occupied KS orbitals have been expressed in the basis of arm wave
functions, |ej 〉, with their coefficients labeled on the corresponding
arms. The red (blue) isosurfaces indicate positive (negative) values
of the wave functions. The LUMO is given in order to show that it is
symmetric. HOMO: highest occupied molecular orbital.

KS orbitals. In our case, because the frequency of laser is
chosen to only access the first five lowest excited states, the
only unoccupied KS orbital is the sixth, as shown in Table II.

If it was possible to express Eq. (A3) in the form of
Eq. (2), the associated EAM could be determined directly.
Such a simple expansion of |�(t)〉 in the basis of |ej 〉 does not
exist, though, since it is a many-body wave function. This is
remedied, albeit in an approximate way, by working only with
the dominant determinant for which only the lowest unoccu-
pied molecular orbital (LUMO) is involved in Eq. (A3). This
makes it possible to combine the determinants corresponding
to each EAM subspace {±m} with m = 0,1,2, . . . , as in
Eq. (A4), allowing the EAM of |�(t)〉 to be obtained via
KS orbitals using the method detailed below.

In all simulations, twisted excitons are constructed as
a linear combination of corresponding pairs of degenerate
excited states, consistent with the TB model. Focusing on
the 5-arm system, if a laser with PAM = 0p is applied,
then the resulting excited state can be approximated with a
determinant involving only �6

1 . Likewise, the application of
PAM = ±1p results in excited states that can be approximated
with determinants involving only �6

2 and �6
3 , and PAM = ±2p

yields states that are well approximated with only �6
4 and �6

5 .
The time-propagated wave function for each EAM subspace
{0}, {±1}, and {±2} can therefore be expressed, respectively, as

c6
1(t) |�6

1 〉 = |c6
1(t)ψ6,ψ2ψ3ψ4ψ5〉 ,

c6
2(t) |�6

2 〉 + c6
3(t) |�6

3 〉 = |ψ1,c
6
3(t)ψ2 − c6

2(t)ψ3,ψ6ψ4ψ5〉 ,

c6
4(t) |�6

4 〉 + c6
5(t) |�6

5 〉 = |ψ1ψ2ψ3,c
6
5(t)ψ4 − c6

4(t)ψ5,ψ6〉 .

(A4)

The only difference among these three equations is that the
ground-state determinant is modified as follows: ψ1 is replaced
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by c6
1(t)ψ6; ψ2 and ψ3 are replaced by c6

3(t)ψ2 − c6
2(t)ψ3;

and ψ6, ψ4, and ψ5 are replaced by c6
5(t)ψ4 − c6

4(t)ψ5 and
ψ6. The ground-state determinant |ψ1ψ2ψ3ψ4ψ5〉 is the 0e

state, of course. These replacement orbitals must therefore be
responsible for the EAM of the excited states. Figure 13 gives
the isosurface and decomposition in the basis of ej with j ∈
{1, . . . ,5} of all the relevant KS orbitals. As shown in Fig. 13,
the LUMO is symmetrically distributed across all five arms.
Therefore, ψ6 will not introduce a phase difference among
arms in the right side of Eq. (A4). This implies that c6

3(t)ψ2 −
c6

2(t)ψ3 and c6
5(t)ψ4 − c6

4(t)ψ5 will introduce a phase de-
pendence corresponding to ±1e and ±2e, respectively. The

population of each twisted exciton state is therefore given by

P0e
= 2|c6

1(t)|2,
P−1e

= 2| 〈v−1|c6
3(t)ψ2 − c6

2(t)ψ3〉 |2,
P1e

= 2| 〈v1|c6
3(t)ψ2 − c6

2(t)ψ3〉 |2,
P−2e

= 2| 〈v−2|c6
5(t)ψ4 − c6

4(t)ψ5〉 |2,
P2e

= 2| 〈v2|c6
5(t)ψ4 − c6

4(t)ψ5〉 |2. (A5)

Here, |vqe
〉 is the eigenstate associated with an EAM of qe,

from Eq. (2), and the factor of two in each expression accounts
for the fact that the electron spin can be either up or down.
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