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Phase-modulated photon antibunching in a two-level system coupled to two cavities
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Nonclassical light fields can be generated from two coupled cavities that are interacted with a two-level
system. This scheme is drawing extensive attention because the mode coupling can reduce the requirement of
coupling constants between the light fields and the two-level system. However, the effect of phase differences
between different coupling constants on photon antibunching is always neglected. Considering a two-level system
interacting with two coupled cavities, we analyze the statistical properties of the cavity field and show that the
photon antibunching can be affected by the phase differences of coupling constants between the two-level system
and the cavity modes, or between the cavity modes and the driving fields, and thus we can engineer the phases
to optimally modulate single-photon sources or nonclassical light fields.
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I. INTRODUCTION

Single-photon sources are indispensable ingredients in
secure quantum communication and quantum information
processing [1,2]. They are extensively applied to quantum key
distribution [3,4], linear optical quantum computing [5–7],
single-photon quantum memory [8–11], quantum metrol-
ogy [12–15], quantum simulations [16,17], and interaction-
free measurement [18]. Single-photon sources are usually
obtained via spontaneous parametric down conversion or
photon emission from a quantum emitter, e.g., an atomic or
atomlike system [2]. In the latter case, photon blockade effect
is highly noteworthy, in which single photons separated in
time are emitted. The photon blockade can be measured via
the photon intensity autocorrelation through the normalized
equal-time second-order correlation function [19,20].

Photon blockade was first proposed in a Kerr-type nonlinear
cavity, in which the photon-photon interaction is induced by
a four-level atomic ensemble [21,22]. It is now well known
that photon blockade can also be demonstrated in a cavity that
is coupled to a two-level system, e.g., a cavity coupled to a
trapped atom [23], a bimodal nanocavity coupled to a quantum
dot [24], a bimodal microtoroidal resonator coupled to a
two-level system [25], a photonic crystal resonator coupled to
a quantum dot [26,27], a transmission line resonator coupled
to a superconducting qubit [28,29], or a nitrogen vacancy
center [30]. Several new platforms, including imbedding
quantum dots in GaAs photonic crystals [31] and integrating
colloidal quantum dots with SiN microdisks [32], have also
been realized in experiments for engineering tunable and
robust single-photon sources. In all of these studies, the
two-level system and the cavity field are in the strong coupling
regime to realize photon blockade. Furthermore, it has recently
been shown that a two-level system coupled to a bimodal
cavity with the mode coupling can exhibit the photon blockade
effect even in the weak-coupling regime between the two-level
system and the cavity fields [33].
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However, we find that the photon antibunching in most of
above studies [23–30,33] is obtained by tuning the amplitudes
of different coupling constants in the systems, while the phase
effect of the coupling constants on photon statistics has been
ignored. It is well known that global phases of quantum
superposed states can be ignored in quantum mechanics
because they have no observable effects [34]. However, phase
differences of amplitudes in superposed coefficients of quan-
tum superpositions result in physically observable differences
in measurement statistics, and thus the phase differences play a
very important role in quantum mechanics. The phase effect of
the coupling constant, between a cavity mode and a two-level
system, was actually mentioned in demonstration of strong
photon-atom coupling [35]. The coherent interaction between
an atom and the evanescent fields of cavity modes in toroid
resonators is influenced by the different locations of the atom
around the circumference of the toroid. They found [35] that
the spectrum of the forward flux is closely related to the atom’s
position which leads to phase difference of coupling constants
between different modes and the atom.

Motivated by the photon blockade in coupled systems and
the importance of the phases, here we theoretically study phase
effects of coupling constants on photon blockade. We focus on
the model that two cavities are coupled to a two-level system.
The paper is organized as follows. In Sec. II, the theoretical
model and the Hamiltonian are introduced. Section III presents
detailed calculation of second-order correlation function for
different parameters and shows how the phases can modulate
photon statistics. In Sec. IV, phase effects in different
situations are discussed via numerical analysis. Finally, we
summarize our results and discuss experimental feasibility
in Sec. V.

II. THEORETICAL MODEL

As schematically shown in Fig. 1, we study a system that
a two-level system is coupled to two coupled cavities through
modes A and B of cavity fields. We assume that the modes A
and B locate in different cavities. The two-level system can be
formed by either an atom, a quantum dot, a superconducting
quantum circuit, or other two-level systems. For the generality
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FIG. 1. Schematic diagram of a two-level system which is
coupled to two cavities through modes A and B of cavity fields,
respectively. Here we assume that the two modes reside in different
cavities. The coupling between two modes via evanescent fields
is described by the coupling constant J . The coupling constants
between the two-level system and two modes are ga = |ga |eiθ1

and gb = |gb|eiθ2 , respectively. Two modes of cavity fields are also
separately driven by classical fields with the coupling constants
εa = |εa|eiθa and εb = |εb|eiθb . κa and κb represent the decay rates
of the mode A and mode B, respectively. γa denotes the decay rate of
the two-level system.

of discussions, we first do not specify it. We assume that two
cavities have the same frequency ω and are driven by two
classical fields, respectively. Thus the driven system can be
described by the following Hamiltonian:

H = h̄ω(a†a + b†b) + h̄ωaσ+σ− + h̄J (a†b + b†a)

+ h̄[gaa
†σ− + gbb

†σ− + εaa
†e−iω1t + εbb

†e−iω2t

+ H.c.], (1)

where a and b (a† and b†) are the annihilation (creation)
operators of two modes of the cavities.

For the convenience of following presentation, we say that
the operators a and b correspond to the mode A and mode B
of two cavities, respectively. σ− and σ+ are ladder operators
of the two-level system with the frequency ωa . The parameter
J denotes the coupling constant between two cavity modes,
whereas the parameters ga and gb are the coupling constants
between the two modes and the two-level system. We assume
that the mode A is driven by a weak classical field with the
frequency ω1 and the coupling constant εa , and the mode B
is driven by another weak classical field with the frequency
ω2 and the coupling constant εb. Here, the parameters ga , gb,
εa , and εb are complex numbers, e.g., in experiments [35].
Moreover, the phases of the coupling constants εa and εb can
be controlled by classical driving fields.

We now transform the Hamiltonian in Eq. (1) to the rotating
reference frame at the frequency ω1 of the driving field; then
we have an effective Hamiltonian

Heff = h̄�(a†a + b†b) + h̄�aσ+σ− + h̄J (a†b + b†a)

+ h̄[(gaa
† + gbb

†)σ− + εaa
† + εbb

†e−iδt+H.c.], (2)

where � = ω − ω1 and �a = ωa − ω1 represent the detunings
from the frequency ω1 of the driving field to the frequency ω of
cavity modes, and the frequency ωa of the two-level system.
The parameter δ = ω2 − ω1 denotes the detuning from the
frequency ω1 of one driving field to the frequency ω2 of another
driving field.

The open system dynamics of the driven system can be
described by a master equation. By taking into account the
decay rates κi (i = 1,2) of cavity modes and γa of the two-level
system, the master equation can be given as [27]

dρ

dt
= 1

ih̄
[Heff,ρ] + Lρ, (3)

under Markov approximation with

Lρ = κ1

2
L(a)ρ + κ2

2
L(b)ρ + γa

2
L(σ )ρ, (4)

where L(x)ρ = 2xρx† − x†xρ − ρx†x. Below, we are only
interested in the phase effect of the coupling constants on the
statistical properties of the photons. Thus, for simplicity and
without loss of generality, we assume ω2 = ω1 and ωa = ω,
i.e., δ = 0 and � = �a . We also assume κ1 = κ2, and that the
dephasings of the two-level system and two cavity modes are
negligibly small. Then, a convenient method of solving Eq. (3)
is to use an effective non-Hermitian Hamiltonian

H̃ = h̄
(
� − i

κ

2

)
(a†a + b†b)

+ h̄
(
� − i

γa

2

)
σ+σ− + h̄J (a†b + b†a)

+ h̄[(gaa
† + gbb

†)σ− + εaa
† + εbb

† + H.c.], (5)

in the zero-temperature approximation [33]. Detailed deviation
of the Hamiltonian in Eq. (5) can be found in Appendix A.

III. SECOND-ORDER CORRELATION FUNCTIONS

A. General solution

Equation (5) shows that physical properties of the modes
A and B are equivalent, thus using the mode A as an
example, we first analytically study the phase effect on
photon statistical properties via the normalized equal-time
second-order correlation function

g
(2)
A (0) = 〈a†a†aa〉

〈a†a〉2
= Tr (ρssa

†a†aa)

[Tr (ρssa†a)]2
, (6)

where ρss is the reduced density matrix of the system in the
steady state.

Under the assumption that the two driving fields are very
weak, the total excitation number of photons will not exceed
two. In this case, the state of system can be approximately
expressed as

|ϕ〉 = C0,0,−|0,0,−〉 + C1,0,−|1,0,−〉 + C0,1,−|0,1,−〉
+C0,0,+|0,0,+〉 + C2,0,−|2,0,−〉 + C0,2,−|0,2,−〉
+C1,1,−|1,1,−〉 + C1,0,+|1,0,+〉 + C0,1,+|0,1,+〉, (7)

where Ci,j,± = Ci,j,±(t) denote the coefficients [33] of the
state |ϕ〉. In the weak-driving limit, we have the relation

|C0,0,−| � |C1,0,−|,|C0,1,−|,|C0,0,+|
� |C2,0,−|,|C0,2,−|,|C1,1,−|,|C1,0,+|,|C0,1,+|. (8)

Using Eq. (6) and Eq. (7), the second-order correlation function
g

(2)
A (0) is given as

g
(2)
A (0) = 2|C2,0,−|2

|C1,0,−|4 , (9)
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FIG. 2. Time evolution of the coefficients of the state by
solving the dynamic Schrödinger equation. The initial state
of the system is given by taking C0,0,−(0) = 0.5, C0,0,+(0) =
1/

√
2, C1,1,−(0) = 0.5, and C1,0,−(0) = C0,1,−(0) = C2,0,−

(0) = C0,2,−(0) = C1,0,+(0) = C0,1,+(0) = 0. The parameters are
ga/2π = 20 MHz, gb = ga exp(i2π/5), κ/2π = 40 MHz,
γa/2π = 1 MHz, �/κ = 0.63 MHz, J = 30κ , εa = γa , and
εb = εa exp(i1.16π ).

in the limit of the weak driving fields. The coefficients C1,0,−
and C2,0,− can be solved from the Schrödinger equation

ih̄
∂|ϕ〉
∂t

= H̃ |ϕ〉, (10)

with the effective Hamiltonian H̃ given in Eq. (5).
The numerical simulation of the time evolution for some

coefficients is shown in Fig. 2 for a given initial state with
the parameters of the system given. These coefficients evolve
into stable values within the time scale of several hundreds of
nanoseconds, with C0,0,− very close to 1. Other coefficients
not shown in Fig. 2 also possess this steady-state feature and
have the order of magnitude similar to C2,0,−. Therefore,
under the limit of the weak driving field and in the steady
state, we can take C0,0,− → 1 as in Ref. [33], and solve the
coefficients C1,0,− and C2,0,− from the following stationary
Schrödinger equation:

H̃ |ϕ〉 = 0. (11)

Taking into account Eq. (5), Eq. (7), and Eq. (11), we derive
a set of linear equations on coefficients of single excitation

ε∗
aC1,0,− + ε∗

bC0,1,− = 0, (12)

�pC1,0,− + JC0,1,− + gaC0,0,+ + εa = 0, (13)

�pC0,1,− + JC1,0,− + gbC0,0,+ + εb = 0, (14)

�dC0,0,+ + g∗
aC1,0,− + g∗

bC0,1,− = 0, (15)

where the detunings are

�p = � − i
κ

2
, (16)

�d = � − i
γa

2
. (17)

Because Eq. (12) always holds in the limit of the weak driving,
we can solve Eqs. (13)–(15) to obtain the coefficients C1,0,−,
C0,1,−, and C0,0,+ as

C1,0,− = εa(�p�d − |gb|2) + εb(gag
∗
b − J�d )

X
, (18)

C0,1,− = εa(g∗
agb − J�d ) + εb(�p�d − |ga|2)

X
, (19)

C0,0,+ = εa(Jg∗
b − �pg∗

a ) + εb(Jg∗
a − �pg∗

b )

X
. (20)

The parameter X is expressed as

X = (
J 2 − �2

p

)
�d + �p(|ga|2 + |gb|2) − J [g∗

agb + H.c.].

(21)

We can also obtain the equations of coefficients for two
excitation as

√
2�pC2,0,− + JC1,1,− + gaC1,0,+ + εaC1,0,− = 0, (22)

√
2�pC0,2,− + JC1,1,− + gbC0,1,+ + εbC0,1,− = 0, (23)

2�pC1,1,− +
√

2J (C0,2,− + C2,0,−) + gaC0,1,+
+ gbC1,0,+ + εaC0,1,− + εbC1,0,− = 0, (24)

(�p + �d )C1,0,+ + JC0,1,+ +
√

2g∗
aC2,0,−

+ g∗
bC1,1,− + εaC0,0,+ = 0, (25)

(�p + �d )C0,1,+ + JC1,0,+ + g∗
aC1,1,−

+
√

2g∗
bC0,2,− + εbC0,0,+ = 0. (26)

It is straightforward to obtain a complete solution for
coefficients of two excitation, and accordingly the second-
order correlation function. But it is not easy to see physics
from a complicated formula. From the above derivations, we
can find that g(2)

A (0) is related to both the amplitudes and phases
of ga,gb,εa,εb, and also the coupling constant J between two
modes of the cavities when all of these parameters are not
zero. Below, we further discuss phase effects on the photon
antibunching for some special cases of the parameters.

B. Second-order correlation function for J �= 0

From the above discussions, we know that the second-order
correlation function can be modulated by the amplitudes and
phases of ga,gb,εa,εb when the coupling constant J �= 0. We
now further discuss some special cases for J �= 0 when the
mode A is coupled to the two-level system and also driven by
a classical field.

For the case J �= 0 and εb = 0, that is, there is coupling
between modes of the cavities, but the mode B is not driven. In
this case, the solution of the second-order correlation function
is still very complex. The following numerical simulation will
show that g

(2)
A (0) is independent of εa , but is related to both the

amplitudes and phases of the coupling constants ga and gb.
For the case J �= 0 and gb = 0, that is, the mode B is not

coupled to the two-level system but is driven, the following
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numerical simulation shows that g
(2)
A (0) is independent of both

εa and εb, and is only related to the amplitude of ga .
Therefore, it is clear that the coupling constant gb (ga)

between the two-level system and the mode B (mode A) plays
a crucial role for the phase effect on the statistical properties
of the photons when J �= 0 and only one driving field is
applied. The physical meaning of this result can be explained
by the interference picture as in Ref. [33]. When gb = 0,
the interaction between mode A and the two-level system is
achieved only through their direct coupling described by ga .
When both J and gb are nonzero, there comes an alternative,
indirect way to realize this kind of interaction: mode A is
coupled to mode B through J , and mode B is coupled to the
two-level system through gb. This results in a new transition
path between |1,0,−〉 and |2,0,−〉, which involves the effect
of phase difference. For example, the phase difference be-
tween ga and gb has influence on the quantum interference
between the two transition paths (1) |1,0,−〉 εa−→|2,0,−〉 and

(2) |1,0,−〉 g∗
a−→|0,0,+〉 εa−→|1,0,+〉 gb−→|1,1,−〉 J−→|2,0,−〉.

Therefore, the photon antibunching is modulated by the phase
difference between ga and gb in this case.

C. Second-order correlation function for J = 0

To better understand the phase effects on photon statistics,
we consider the simpler case that J = 0, i.e., in absence of the
mode-mode coupling. Under this circumstance, Eqs. (12)–(26)
can be greatly reduced, which, combined with Eq. (9), lead to
(see Appendix B for derivation)

g
(2)
A (0) =

∣∣∣∣1 + Rp

1 + Rc

∣∣∣∣
2

, (27)

with

Rp = �2
p

(
�d�p − |gb|2 + |ga|2 + 2ε−1

a εbgag
∗
b

)
(
�d�p − |gb|2 + ε−1

a εbgag
∗
b

)2 , (28)

Rc = �2
p

�d�p − |gb|2 − |ga|2 . (29)

Denote ga = |ga|eiθ1 , gb = |gb|eiθ2 , εa = |εa|eiθa , and
εb = |εb|eiθb . This result shows that, in general, g

(2)
A (0) can be

modulated by the phases if and only if all coupling constants
εa , εb, ga , and gb are nonzero, and it is dependent only on the
phase of the term ε−1

a εbgag
∗
b , i.e.,

� = (θb − θa) − (θ2 − θ1), (30)

which can be changed by tuning any of the four phase
variables. Moreover, the dependence of g

(2)
A (0) on ε−1

a εbgag
∗
b

also indicates that, in the weak-coupling limit, only the relative
strength |εb|/|εa| of the driving field, but not their absolute
amplitudes, affects the photon antibunching.

This result can also be understood by the inter-
ference picture. Considering the two transition paths
(1) |1,0,−〉 εa−→|2,0,−〉 and (2) |1,0,−〉 εb−→|1,1,−〉

g∗
b−→|1,0,+〉 ga−→|2,0,−〉, we see that the quantum interference

is influenced by the phase difference between ga , gb, εa , and
εb. It can also be inferred that if gb or εb is zero, then the second
path is cut off. The excitation from |1,0,−〉 to |2,0,−〉 can only

TABLE I. Comparison of different parameters for photon anti-
bunching in a system of a two-level system coupled to two cavities.
In each case, J , gb, and εb are marked by “

√
” if nonzero. For each

parameter εa , εb, ga , and gb, the second-order correlation function
can be related to both the amplitude and phase (marked by Yes), only
the amplitude [marked by Yes (Amp.)], or neither the amplitude nor
the phase (marked by No).

Cases J gb εb εa εb ga gb

G
√ √ √

Yes Yes Yes Yes
B.1

√ √
No No Yes Yes

B.2
√ √

No No Yes (Amp.) No
B.3

√
No No Yes (Amp.) No

C.1
√ √

Yes Yes Yes Yes
C.2

√
Yes (Amp.) No Yes (Amp.) Yes (Amp.)

C.3
√

No No Yes (Amp.) No
C.4 No No Yes (Amp.) No

be realized by εa , and thus the phase effect disappears. This
inference is confirmed by the following discussion.

For the case that both J = 0 and gb = 0, the mode B
becomes free and the system is reduced to a two-level system
coupled to a cavity mode driven by a classical field [26]. In
this case, g

(2)
A (0) is independent of εa and the phase of ga .

The statistical properties of photons are affected only by the
amplitude of ga . The case that J = 0, gb = 0, and εb = 0 is a
more special one for the case that J = 0 and gb = 0; thus, in
this case, the phase has no effect on the statistics of photons.
For the case J = 0 and εb = 0, we find that g

(2)
A (0) is related

to εa , ga , and gb, but only their amplitudes rather than their
phases.

The effects of the parameters on the statistical properties of
photons for different cases are summarized in Table I. When
the mode A is coupled to the two-level system and is driven
by the classical field, we find that the phases of the parameters
εa , εb, ga , and gb affect the statistical properties of photons
in mode A in the following cases: (i) both gb �= 0 and εb �= 0
for J �= 0, i.e., the case G in Table I; (ii) gb �= 0 but εb = 0
for J �= 0, i.e., the case B.1 in Table I; (iii) both gb �= 0 and
εb �= 0 for J = 0, i.e., the case C.1 in Table I.

IV. NUMERICAL SIMULATIONS

To further show how the values of the phase parameters
affect the photon antibunching, in this section, we numerically
solve the Schrödinger equation in the steady state and study the
photon antibunching, discussed above analytically. Because
we are interested in the phase effect, thus we only focus on the
cases G, B.1, and C.1 in Table I.

A. Case with mode coupling ( J �= 0) and εb = 0

We first study the case B.1 in Table I, that is, two cavity
modes are coupled to each other and also coupled to a two-level
system, but the mode B is not driven, i.e., εb = 0. The mode
A is driven by a classical field with the coupling constant εa .
As shown in Table I, the statistical property of the mode A is
irrelevant to the phase of its driving field, but controlled by
the phase difference of the coupling constants ga and gb. We

013818-4



PHASE-MODULATED PHOTON ANTIBUNCHING IN A TWO- . . . PHYSICAL REVIEW A 96, 013818 (2017)

2

(θ 2
-θ1

)/π1
0-2

Δ/κ
0

(b)

0

2

-4

-2

2

lo
g

10
[g

A(2
) (0

)]

Δ/κ
-1.5 -1 -0.5 0 0.5 1 1.5

lo
g

10
[g

A(2
) (0

)]

-3

-2

-1

0

1
(a)

θ
2
-θ

1
=0

θ
2
-θ

1
=0.4π

FIG. 3. (a) Second-order correlation function g
(2)
A (0) of the mode

A is plotted as a function of �/κ for the case B.1 in Table I with and
without the phase difference between gb and ga . The black-solid (red-
dashed) curve represents g

(2)
A (0) in logarithmic scale with θ2 − θ1 = 0

(θ2 − θ1 = 0.4π ). (b) The second-order correlation function g
(2)
A (0)

of the mode A is plotted as a function of �/κ and θ2 − θ1 for the case
B.1 in Table I. Other parameters are given as |gb|/2π = |ga|/2π =
20 MHz, κ/2π = 40 MHz, γa/2π = 1 MHz, J = 30κ , |εa | = γa ,
θa = 0, and εb = 0.

assume ga = |ga|eiθ1 and gb = |gb|eiθ2 . The effect of the phase
difference θ2 − θ1 on the photon antibunching is shown in
Fig. 3(a), where the second-order correlation function g

(2)
A (0)

is plotted as a function of �/κ with or without the phase
difference for other given parameters. By optimizing the phase
difference, we find that the minimum value of the second-order
correlation function at � = 0 can be lower than the minimum
value of 6.0 × 10−3 given in Ref. [33] when θ2 − θ1 = 0.
This means that the photon antibunching can be optimized
by changing the phase difference between gb and ga .

To clearly see the effects of the phase difference between
gb and ga , the second-order correlation function g

(2)
A (0) versus

�/κ and the phase difference θ2 − θ1 is calculated and shown
in Fig. 3(b). The range of variation of g

(2)
A (0) is more than

one order of magnitude when the phase difference θ2 − θ1 is
changed, and the minimum g

(2)
A (0) can reach 6.0 × 10−4 when

θ2 − θ1 = 1.5 π , compared to 6.0 × 10−3 when θ2 − θ1 = 0
shown in Ref. [33]. That is, Fig. 3 clearly shows that the photon
antibunching of the mode A can be modulated by the phase
difference between gb and ga . Figure 3 also shows that the
antibunching can be observed with weak-coupling strengths
between the cavity modes and the two-level system, e.g.,
|ga|/κ = |gb|/κ = 0.5. As discussed in Sec. III, the effects
of the phase difference on the antibunching can be explained
from the interference picture as in Ref. [33]. That is, the
interference patterns and the induced photon antibunching can
be periodically modulated via the phase difference.

B. Case without mode coupling ( J = 0)

We now discuss the phase effect on the photon antibunching
for the case C.1 in Table I. In this case, the photon antibunching
is affected by the phases only when two cavity modes are
coupled to a two-level system and are driven by two classical
fields, respectively. The second-order correlation function
g

(2)
A (0) is related to both amplitudes and phases of εa , εb, ga ,

gb. The phase will not have an effect on the antibunching when
any one of the above four parameters is equal to zero.

When all the four parameters are nonzero, only the phase
variable � defined by Eq. (30) takes effect. Without loss of
generality, we tune the phase difference θb − θa between two
driving fields, and fix the value of θ2 − θ1 at 0.4 π , i.e., � =
θb − θa − 0.4π . Figure 4 plots the second-order correlation
function g

(2)
A (0) versus �/κ under various values of θb − θa .

We find that the second-order correlation function g
(2)
A (0) is up

to 106 when θb − θa = 0.4π , which indicates a photon bunch-
ing effect. However, by changing θb − θa , g

(2)
A (0) changes

dramatically and becomes less than 1 (log10[g(2)
A (0)] < 0)

when θb − θa gets close to 1.16π . Thus the photon bunching
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FIG. 4. Second-order correlation function g
(2)
A (0) vs �/κ for the

case C.1 listed in Table I. The colored curves represent g
(2)
A (0) in

logarithmic scale for θb − θa = 0, 0.4π , 0.8π , 1.16π , and 1.64π ,
respectively. There is no coupling between the modes A and B,
i.e., J = 0. The cavity mode B is coupled to the two-level system
with coupling constant gb = |gb|eiθ2 . Here, we assume |gb|/2π = 20
MHz and θ2 − θ1 = 0.4π . Other parameters are the same as those in
Fig. 3.
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FIG. 5. Second-order correlation function g
(2)
A (0) vs θb − θa

around 1.16π for the case C.1 listed in Table I. The curve represents
g

(2)
A (0) in logarithmic scale for �/κ = 0.63. Other parameters are the

same as those in Fig. 4.

effect has been changed to the photon antibunching effect with
the change of the phase difference of ga and gb. This shows
the transition from photon bunching to photon antibunching
of mode A. The calculation of minimal g

(2)
A (0) over the

range θb − θa ∈ (0,2π ) indicates that g
(2)
A (0) can be lowered

to 5.9 × 10−3, when θb − θa = 1.16π and �/κ = 0.63,
or θb − θa = 1.64π and �/κ = −0.63. Therefore, photon
antibunching can be achieved and enhanced by simply tuning
the phase difference of εa and εb between the two driving fields
applied to the cavity modes.

Furthermore, the photon bunching and antibunching are
sensitive to phase changes around the optimal points. Fig-
ure 5 plots the second-order correlation function g

(2)
A (0)

around the optimal antibunching point θb − θa = 1.16π with
�/κ = 0.63. It indicates that a phase change, e.g., 0.02π ,
could alter the magnitude of g

(2)
A (0) by one order. Similarly,

the bunching effect is also sensitive to the phase difference.
Moreover, the amplitudes of driving fields are also crucial for
the degree of photon antibunching. Figure 6 plots g

(2)
A (0) with

the fluctuation of field amplitudes |εa| and |εb|, respectively,
at the optimal antibunching point with θb − θa = 1.16π and
�/κ = 0.63. The change of |εa|/2π or |εb|/2π by, e.g.,
0.03 MHz would lead to a change of g

(2)
A (0) by one order

of magnitude.
Finally, it can be verified using similar numerical simu-

lations that photon antibunching is not very sensitive to the
amplitudes of coupling constants between the cavities and
the two-level system. Therefore, the control of driving fields,
both their amplitudes and phase difference, is important for
achieving a robust photon antibunching in this case.

C. General case for all nonzero parameters

For the general case labeled as G in Table I in which all
parameters are nonzero, g

(2)
A (0) is related to both amplitudes

and phases of all coupling constants εa , εb, ga , and gb. Below,

/2π [MHz]
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b
|

FIG. 6. Second-order correlation function g
(2)
A (0) vs |εa| and |εb|

around ε0/2π = 1 MHz for the case C.1 listed in Table I. The colored
curves represent g

(2)
A (0) in logarithmic scale for θb − θa = 1.16π and

�/κ = 0.63. δε represents |εa | − ε0 and |εb| − ε0 for the two curves,
respectively. Other parameters are the same as those in Fig. 4.

the definitions of the phase differences θb − θa and θ2 − θ1 are
the same as those in Sec. IV B. To further study the effects
of these coupling parameters on the photon antibunching, the
second-order correlation function g

(2)
A (0) is shown in Fig. 7 and

Fig. 8 for the case G in Table I. A significant difference between
the case G and the case C.1 is that the photon antibunching
effect becomes significant when the amplitude of the driving
field of the mode B is much smaller than that of the mode
A, e.g., |εb| = 0.1|εa|. That is, the general case discussed
here is more realistic than the case B.1, with the existence
of the driving field of the mode B, which is much weaker
than that of the mode A. Besides, the photon antibunching
is very sensitive to the value of the mode coupling constant

Δ/κ
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FIG. 7. Second-order correlation function g
(2)
A (0) of the mode

A vs �/κ in the case G listed in Table I. The colored curves
represent g

(2)
A (0) in logarithmic scale for θ2 − θ1 = 0, 0.8π , and

1.7π , respectively. The coupling constant between the modes A
and B is assumed as J/κ = 5. Here, we assume |εb| = |εa |/10 and
θb − θa = 0. Other parameters are the same as those in Fig. 3.
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FIG. 8. Second-order correlation function g
(2)
A (0) of the mode A

vs �/κ in the case G listed in Table I. The colored curves represent
g

(2)
A (0) in logarithmic scale for θb − θa = 0, 0.8π , 1.26π , and 1.8π ,

respectively. The coupling constant between the modes A and B is
assumed as J/κ = 5. The coupling constant of the mode B to the two-
level system is assumed as gb = |gb|eiθ2 with |gb|/2π = 20 MHz.
We also assume |εb| = |εa|/10 and θ2 − θ1 = 0.4π . Other parameters
of the system are the same as those in Fig. 3.

J . As is shown in Fig. 7, the photon antibunching is very
strong at �/κ = 0.06, in which g

(2)
A (0) = 5.7 × 10−3 when

θ2 − θ1 = 1.7π . In fact, this effect follows a pattern similar
to the case B.1, except that the driving field of the mode B
is added. This driving field distorts the symmetric distribution
of the second-order correlation function about the resonant
point � = 0. Furthermore, the effect of θ2 − θ1 becomes less
important compared to the case B.1. It thus provides another
way to obtain a single-photon source. In this case, the photon
antibunching is less sensitive to the phase shift of the coupling
constants between the two-level system and cavities.

In Fig. 8, g
(2)
A (0) is plotted as a function of �/κ with

different values of θb − θa for θ2 − θ1 = 0.4 π . It shows
that near � = 0, the photon antibunching is always strong
no matter what the phase difference θb − θa is, with the
second-order correlation function g

(2)
A (0) being about 10−2.

That is, near � = 0, the photon antibunching is insensitive to
the phases of the driving fields. However, if the detuning goes
far from the resonant point � = 0, the second-order correlation
function can be further reduced to reach 4.29 × 10−4 when
θb − θa = 1.26π and �/κ = −0.21. Therefore, the phase
difference of the driving fields can still be used to enhance
the photon antibunching.

Thus, from Fig. 7 and Fig. 8, we know that (1) near the
resonant point � = 0, the second-order correlation function
g

(2)
A (0) is stable and not very sensitive to the phase shift of

coupling constants and (2) if we tune both the phase difference
θb − θa of the driving fields and the detuning �, the photon
antibunching in the mode A can be further optimized.

V. EXPERIMENTAL REALIZATION

Let us now discuss possible experimental realization. The
coupled system between a semiconductor bimodal microcavity

and a quantum dot [36–39] is a promising platform. When the
clockwise (CW) mode is driven by a laser, the counterclock-
wise (CCW) mode is generated due to surface scattering of
the microcavity. This corresponds to the case B in Sec. III.
Inspired by the theoretical works in Refs. [35] and [40], the
field distributions of the clockwise (CW) and counterclockwise
(CCW) modes have an azimuthal spatial dependence. Thus the
phases of coupling constants between the two-level system
and the two modes can be tuned by varying the position of
the two-level system relative to the azimuthal distribution
of the modes when the sample is fabricated. Furthermore,
if the two optical modes are both driven by lasers, the case
C in Sec. III can be realized, when the scattering-induced
mode coupling does not exist. In this case, both the phases
and the amplitudes of εa and εb can be controlled by the
driving fields in the optical fibers or waveguides coupled to the
microcavity. Besides, great potential lies in new tunable and
robust platforms, with cutting-edge technologies of coupling
quantum dots to microdisks [41].

Another promising platform is the columnar semiconduc-
tor microcavity interacting with the semiconductor quan-
tum dot [42–44]. The optical modes in the semiconductor
microcavity are coupled to each other through a scatterer
or other defects. Especially, the coupling between different
polarized optical modes with the same eigenfrequencies is
observed [45,46]. In addition, the quantum well embedded in
the semiconductor microcavity also shows the potential for
studying multibody interactions [47]. Here, the change of the
relative phase between the input fields of these two optical
modes is controlled by tuning the phases of the external pump
lasers. Therefore, our proposal may be feasible in the columnar
semiconductor microcavity systems.

Recently, photon blockade was realized with a quan-
tum dot, strongly coupled to a photonic crystal nanocavity
[48–52], where only one optical mode is used. In addition,
a lossy bimodal optical cavity is fabricated for observing
the unconventional photon blockade [24], and the photon
blockade is also optimized versus the ratio of the coupling
strengths between the quantum dot and the two cavity
modes. Based on such controllable coupling strengths and the
external pump fields, our proposal is hopefully applied to the
realization of single-photon sources with the photonic crystal
structure [53].

Besides the optical frequency domain, tunable single-
photon source in the microwave domain is a key element
in a series of prospective quantum technologies and appli-
cations. The photon blockade at microwave frequencies was
observed by using correlation function measurements [54–57].
However, the photon blockade is still weak and only limited to
the single cavity mode case. To enhance the photon blockade
and its robustness to the dephasing of the superconducting
artificial atoms, the interactions between different microwave
cavity fields should be explored. The multimode cavity QED
systems are proposed for photonic memories, efficient Purcell
filters, and quantum simulations [58]. The mode coupling
between different cavity fields has been studied and used for,
e.g., separating photon storage and qubit readout [59], deter-
ministically encoding quantum information [60], and studying
the multimode correlations from vacuum fluctuations [61].
Based on such controllable mode coupling between the cavity
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fields and tunable coupling strengths between the cavity fields
and the superconducting artificial atom, our proposal is also
feasible in superconducting quantum circuits [62–64].

In view of rapid progress of optomechanics, we finally
mention that our study here is also possibly realized in the
system of two cavity fields, coupled to a mechanical resonator
via radiation pressure or the hybrid optomechanical polariton
systems [65–69]. Corresponding to the bimodal optical fields,
here a phase and amplitude tunable pump for the mechanical
mode should be introduced. This can be realized by the related
experiments [70–75] . Based on the experimental feasibility
discussed above, we hope that our study will be helpful for
generating stable and controllable single-photon sources in
future experiments.

VI. CONCLUSION

Using one of the modes of two cavities as an example,
we study the phase effect on the photon antibunching in a
two-level system coupled to modes of two cavities with or
without mode coupling. We mainly study how the phases of the
coupling constants (ga , gb, εa , and εb) affect the second-order
correlation function g(2)(0). We mention that the parameters
ga and gb denote the coupling between the two-level system
and cavity fields, while the parameters εa and εb denote the
coupling between the cavity fields and the driving fields. We
find that the phases of these coupling constants affect g(2)(0)
in the following three cases.

(i) Two modes of two cavities are coupled to each other
and the two-level system, and they are driven by classical
fields. In this case, both the phase differences, between the
coupling parameters ga and gb, and between the coupling
parameters εa and εb, affect the photon antibunching. Our
numerical calculation shows that the minimum value of g(2)(0)
can reach about the order of 10−4 by optimizing the parameters.
We also find that near the resonant point (� = 0), the photon
antibunching is not sensitive to phase differences.

(ii) Two modes of two cavities are coupled to each other
and also coupled to the two-level system, while one of the
modes is driven by a classical field. In this case, only the phase
difference between the coupling parameters ga and gb affect
the photon antibunching, whereas the phase of the driving field
has no effect. The minimum value of g(2)(0) can also reach the
order of 10−4 by optimizing the parameters.

(iii) Two modes of two cavities are coupled to the two-
level system and driven by classical fields, but there is no
mode coupling between them. In this case, both the phase
differences, between the coupling parameters ga and gb and
between the coupling parameters εa and εb, affect the photon
antibunching. The minimum value of g(2)(0) can also reach the
order of 10−3 by optimizing the parameters, and the transition
between photon bunching and antibunching is achieved by
tuning the phase differences and the detuning. Moreover, the
optimal antibunching point can be reached by the control of
amplitudes and phases of the driving fields, and this point is
insensitive to the change of coupling parameters ga and gb.

Based on the studies above, we conclude that the cases
(i) and (iii) have a larger chance to be experimentally
implemented, because the phase difference of the driving fields
is much easier to adjust than that of the coupling constants

between the two-level system and the cavity modes. In the
case (ii), the phase of the driving field does not affect the
antibunching. Comparing the case (i) with the case (iii), we
know that the photon antibunching becomes better when the
mode coupling is introduced.

In summary, we find that the phases of the coupling
constants can be used to adjust the photon antibunching of
cavity fields in a two-level system coupled to two modes of two
cavities. Although we only study the statistical properties for
one of modes, the other one also has the same behavior because
these two modes of two cavities are equivalent to each other.
For the case that there is one driving field, the statistical proper-
ties can be very different if the two-level system is placed into
different places of the cavities. Furthermore, if two classical
fields are applied to the modes, then the statistical properties
are much easier to adjust via these two external fields.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
NON-HERMITIAN HAMILTONIAN

Using the effective Hamiltonian of the system in Eq. (2),
the master equation in Eq. (3) can be calculated as

dρ

dt
= −i[�(a†a + b†b) + �aσ+σ− + J (a†b + b†a)

+{(gaa
† + gbb

†)σ− + εaa
† + εbb

†e−iδt + H.c.},ρ]

+ κ1

2
(2aρa† − a†aρ − ρa†a)

+ κ2

2
(2bρb† − b†bρ − ρb†b)

+ γa

2
(2σ−ρσ+ − σ+σ−ρ − ρσ+σ−). (A1)

We make an approximation that the terms 2aρa†, 2bρb†,
and 2σ−ρσ+ are neglected. Thus the master equation in
Eq. (A1) can be rewritten as

dρ

dt
≈ −i[�(a†a + b†b) + �aσ+σ− + J (a†b + b†a)

+{(gaa
† + gbb

†)σ− + εaa
† + εbb

†e−iδt + H.c.},ρ]

− κ1

2
(a†aρ + ρa†a) − κ2

2
(b†bρ + ρb†b)

− γa

2
(σ+σ−ρ + ρσ+σ−)

= −i[�(a†a + b†b) + �aσ+σ− + J (a†b + b†a)

+{(gaa
† + gbb

†)σ− + εaa
† + εbb

†e−iδt + H.c.},ρ]

− i
[
−i

(κ1

2
a†a + κ2

2
b†b + γa

2
σ+σ−

)
,ρ

]
+

= 1

ih̄
[H̃1,ρ] + 1

ih̄
[H̃2,ρ]+. (A2)
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Here [ , ]+ denotes the anticommutator, and also we have

H̃1 = h̄�(a†a + b†b) + h̄�aσ+σ− + h̄J (a†b + b†a)

+ h̄[(gaa
† + gbb

†)σ− + εaa
† + εbb

†e−iδt + H.c.],

(A3)

H̃2 = −ih̄
κ1

2
a†a − ih̄

κ2

2
b†b − ih̄

γa

2
σ+σ−. (A4)

Using the above equations, we could describe the system
by an effective [76] wave function |ψ〉. It is obvious that only
H̃1 is an Hermitian operator, whereas H̃2 is not because of the
coefficient i. In particular, H̃ †

1 = H̃1 and H̃
†
2 = −H̃2. Using the

pure-state approximation of the density operator ρ ≈ |ψ〉〈ψ |,
we get

d|ψ〉
dt

〈ψ | + |ψ〉d〈ψ |
dt

=−i(H̃1|ψ〉〈ψ |−|ψ〉〈ψ |H̃1)−i(H̃2|ψ〉〈ψ |+|ψ〉〈ψ |H̃2),

(A5)

which can be divided into two subequations

d|ψ〉
dt

〈ψ | = −iH̃1|ψ〉〈ψ | − iH̃2|ψ〉〈ψ |, (A6)

|ψ〉d〈ψ |
dt

= i|ψ〉〈ψ |H̃1 − i|ψ〉〈ψ |H̃2. (A7)

As there is only one solution to the master equation, we
consider Eq. (A6) as the equivalent Schrödinger equation of
the master equation in Eq. (3). The effective non-Hermitian
Hamiltonian of the system is thus given by

H̃ = H̃1 + H̃2

= h̄�(a†a + b†b) + h̄�aσ+σ− + h̄J (a†b + b†a)

+ h̄[(gaa
† + gbb

†)σ− + εaa
† + εbb

†e−iδt + H.c.]

− ih̄
κ1

2
a†a − ih̄

κ2

2
b†b − ih̄

γa

2
σ+σ−

= h̄
(
� − i

κ1

2

)
a†a + h̄

(
� − i

κ2

2

)
b†b

+ h̄
(
�a − i

γa

2

)
σ+σ− + h̄J (a†b + b†a)

+ h̄[(gaa
† + gbb

†)σ− + εaa
† + εbb

†e−iδt + H.c.].

(A8)

In the special case that ω2 = ω1, ωa = ω, and κ1 = κ2, i.e.,
δ = 0 and � = �a , Eq. (A8) turns into Eq. (5).

APPENDIX B: DERIVATION OF THE SECOND-ORDER
CORRELATION FUNCTION FOR J = 0

In this special case, Eq. (18) is reduced to

C1,0,− = B

�pA
, (B1)

with

A = |ga|2 + |gb|2 − �d�p, (B2)

B = �d�pεa + εbgag
∗
b − εa|gb|2. (B3)

By setting J = 0, we can also solve Eqs. (22)–(26) to obtain

C2,0,− =
√

2(C + D)

2�2
pAE

, (B4)

with

C = �2
d�

2
pε2

a + �d�
3
pε2

a − 2�d�pε2
a|gb|2

+ 2�d�pεaεbgag
∗
b + �2

pε2
a|ga|2, (B5)

D = −�2
pε2

a|gb|2 + 2�2
pεaεbgag

∗
b + ε2

a|gb|4

− 2εaεbga|gb|2g∗
b + ε2

bg
2
ag

∗2
b , (B6)

E = |ga|2 + |gb|2 − �2
p − �d�p. (B7)

Using Eq. (9), Eq. (B1), and Eq. (B4), the normalized equal-
time second-order correlation function is now given as

g
(2)
A (0) = |A|2|C + D|2

|B|4|E|2 , (B8)

which can be further simplified to the expression in Eq. (27).
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Vučković, Nat. Phys. 4, 859 (2008).

[27] W. Zhang, Z. Yu, Y. Liu, and Y. Peng, Phys. Rev. A 89, 043832
(2014).

[28] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J. M. Fink, A. A.
Abdumalikov, M. Baur, S. Filipp, M. P. da Silva, A. Blais, and
A. Wallraff, Phys. Rev. Lett. 106, 243601 (2011).

[29] A. J. Hoffman, S. J. Srinivasan, S. Schmidt, L. Spietz, J.
Aumentado, H. E. Türeci, and A. A. Houck, Phys. Rev. Lett.
107, 053602 (2011).

[30] R. Brouri, A. Beveratos, J. P. Poizat, and P. Grangier, Opt. Lett.
25, 1294 (2000).

[31] C. Jarlov, É. Wodey, A. Lyasota, M. Calic, P. Gallo, B. Dwir, A.
Rudra, and E. Kapon, Phys. Rev. Lett. 117, 076801 (2016).

[32] W. Xie, Y. Zhu, T. Aubert, Z. Hens, E. Brainis, and D. V.
Thourhout, Opt. Express 24, A114 (2016).

[33] Y. L. Liu, G. Z. Wang, Y.-x. Liu, and F. Nori, Phys. Rev. A 93,
013856 (2016).

[34] C. Cohen-Tannoudji, B. Diu, and F. Ladoë, Quantum Mechanics
I, 2nd ed. (Wiley-VCH, New York, 2005).

[35] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J.
Kippenberg, K. J. Vahala, and H. J. Kimble, Nature (London)
443, 671 (2006).

[36] K. Srinivasan and O. Painter, Nature (London) 450, 862 (2007).
[37] D. Gershoni, Nat. Mater. 5, 255 (2006).
[38] E. Kim, M. D. Baaskea, and F. Vollmer, Lab Chip 17, 1190

(2017).
[39] B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang,

and K. Vahala, Nature (London) 457, 455 (2009).
[40] K. Srinivasan and O. Painter, Phys. Rev. A 75, 023814 (2007).
[41] Y. Sun, F. Song, C. Qian, K. Peng, S. Sun, Y. Zhao, Z. Bai, J.

Tang, S. Wu, H. Ali, F. Bo, H. Zhong, K. Jin, and X. Xu, ACS
Photon. 4, 369 (2017).

[42] M. P. Bakker, T. Ruytenberg, W. Löffler, A. Barve, L. Coldren,
M. P. van Exter, and D. Bouwmeester, Phys. Rev. B 91,
241305(R) (2015).

[43] J. Kasprzak, S. Reitzenstein, E. A. Muljarov, C. Kistner, C.
Schneider, M. Strauss, S. Höfling, A. Forchel, and W. Langbein,
Nat. Mater. 9, 304 (2010).

[44] R. Oulton, Nat. Nanotechnol. 9, 169 (2014).
[45] A. K. Nowak, S. L. Portalupi, V. Giesz, O. Gazzano, C.

D. Savio, P.-F. Braun, K. Karrai, C. Arnold, L. Lanco, I.
Sagnes, A. Lemaître, and P. Senellart, Nat. Commun. 5, 3240
(2014).

[46] S. Hughes and G. S. Agarwal, Phys. Rev. Lett. 118, 063601
(2017).

[47] C. Schneider, A. Rahimi-Iman, N. Y. Kim, J. Fischer, I. G.
Savenko, M. Amthor, M. Lermer, A. Wolf, L. Worschech,
V. D. Kulakovskii, I. A. Shelykh, M. Kamp, S. Reitzenstein, A.
Forchel, Y. Yamamoto, and S. Höfling, Nature (London) 497,
348 (2013).

[48] K. Müller, A. Rundquist, K. A. Fischer, T. Sarmiento, K.
G. Lagoudakis, Y. A. Kelaita, C. S. Muñoz, E. del Valle,
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