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We theoretically investigate Klein tunneling processes in photonic artificial graphene. Klein tunneling is a
phenomenon in which a particle with Dirac dispersion going through a potential step shows a characteristic angle-
and energy-dependent transmission. We consider a generic photonic system consisting of a honeycomb-shaped
array of sites with losses, illuminated by coherent monochromatic light. We show how the transmission and
reflection coefficients can be obtained from the steady-state field profile of the driven-dissipative system. Despite
the presence of photonic losses, we recover the main scattering features predicted by the general theory of
Klein tunneling. Signatures of negative refraction and the orientation dependence of the intervalley scattering
are also highlighted. Our results will stimulate the experimental study of intricate transport phenomena using
driven-dissipative photonic simulators.
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I. INTRODUCTION

Lattices of photonic resonators have recently emerged as
versatile simulators of condensed matter physics phenom-
ena [1]. Thanks to the great flexibility and onsite control in
their fabrication, photonic systems have opened a way to
the investigation of phenomena otherwise difficult to access
in conventional condensed matter systems. In particular,
pioneered by the study of the Bose-Einstein condensation [2],
exciton polaritons have appeared as a very successful system in
the research on quantum fluids of light [3], demonstrating vari-
ous manybody phenomena such as supefluidity [4], Josephson
oscillations [5], and the localization in flat bands in suitably
designed lattice geometries [6]. Other photonic platforms, such
as microwave cavities [7], silicon resonators [8], and arrays
of coupled waveguides [9,10] made excellent progress in the
observation of topologically protected edge states.

Since its discovery, graphene, with its characteristic linear
Dirac-like dispersion of electrons, has been the subject of
intense study in solid-state physics [11]. Along with these
developments, there have been several studies on the sim-
ulation of graphene physics using photonics. Honeycomb
lattice structures to simulate the physics of graphene have
been realized in microwave cavities [12–14], propagating
waveguides [10,15,16], and exciton-polariton microcavities
[17–20]. All of these experimental realizations have been
successfully modeled using tight-binding Hamiltonians whose
band structure presents the characteristic massless Dirac cones
responsible for a number of transport phenomena in graphene.
However, an important difference between the solid-state
(electronic) graphene and photonic graphene is that, apart
from the carrier being fermionic or bosonic, photonic cavity
systems are intrinsically dissipative and what is observed
in experiments is typically the steady-state configuration
resulting from the interplay of pump and losses.1 On the one
hand, dissipation poses certain challenges upon simulating

1This is not the case of light propagation experiments in waveguide
arrays that directly simulate a time-evolution problem [10,16,21]. A

dynamical properties, such as transport phenomena, because
photons can be lost during propagation. Alternative and more
sophisticated experimental schemes are therefore required
to address dynamical properties of graphene with photonic
simulators. On the other hand, the dissipative nature of photons
can be an asset when comparing photonics to other kinds of
simulators. For example, in photonic resonators, dissipation
mostly takes place via the radiative escape of photons, which
carry along with them complete information on the in-cavity
photonic wave function. Furthermore, the driven-dissipative
nature of these systems has opened a way to explore entirely
new physics such as the dissipative phase transitions [23–33],
the dissipative measurement of band topology [34,35], and
emergence of novel topological states [36,37].

In this paper, we investigate how driven-dissipative pho-
tonic systems can be used to simulate Klein tunneling, which is
a characteristic transport phenomenon of graphene. In this ef-
fect, a particle with relativistic dispersion normally incident on
a potential step perfectly transmits into the step independently
of the step height. When the step is higher than the energy of
the incident particle, the transmission into the step corresponds
to a “particlelike” state transforming into a “holelike” state.
Klein originally discussed such a phenomenon in the context
of relativistic quantum mechanics [38,39], but an analogous
phenomenon can also occur in graphene where electrons have
a linear (relativistic) dispersion and obey a two-dimensional
Dirac-like equation [40–44]. Klein tunneling in graphene
has been experimentally observed through transport mea-
surements where engineered npn junctions provide potential
barriers [45–48]. Klein tunneling of photons obeying the
one-dimensional Dirac equation has also been theoretically
analyzed [49–51] and experimentally realized in coupled
optical waveguides [52]. However, the direct experimental
realization of the two-dimensional Klein tunneling in a
step configuration, instead of a barrier, is missing. In this
photonic context, Klein tunneling has also been theoretically

typical limitation of these experiments is however the difficulty of
getting an efficient energy-selectivity [22].
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discussed for optical metamaterials [53], propagating photonic
waveguides [54,55], and optical microcavities in the presence
of spin-orbit coupling [56], but the lossy nature of photons was
not taken into account.

In this work, we show that the Klein tunneling can
be directly observed also in a driven-dissipative model of
photonic graphene based on a honeycomb-shaped array of
coupled semiconductor microcavities. By taking advantage
of the flexibility in designing the pump profile, transmission
and reflection rates can be quantitatively evaluated from
the steady-state profile of the light emitted by the lattice
under a coherent monochromatic pump. The direct access
to the real-space wave functions allows the observation of
negative refraction. Our work demonstrates that the finite
linewidth associated with losses in photonic devices does
not significantly affect the phenomenon of Klein tunneling,
but rather offers a useful means to experimentally simulate
its microscopic details. While our discussion is focused to
the specific case of polaritons in laterally patterned planar
microcavities [18–20], it straightforwardly extends to other
related systems such as microwave [7,13] and superconductor
resonators [57]. This work is the first step towards the study
of Klein tunneling, negative refraction, and Veselago lensing
in the presence of interactions, directly accessible in exciton-
polariton lattices [58].

The structure of the article is the following. In Sec. II we
briefly review the basics of Klein tunneling in systems without
losses and in Sec. III we summarize the main consequences
of the honeycomb geometry on the coherent pumping and on
the intracavity field imaging from the emitted light. In Sec. IV
we propose experimentally viable schemes to observe Klein
tunneling effects and we make use of numerical simulations
of a driven-dissipative tight-binding model to characterize the
efficiency of our proposal in the ideal case of a large surface
sample with small losses. In Sec. V we then discuss how the
main qualitative features of Klein tunneling survive when more
realistic samples are considered with smaller spatial size and
larger losses. Conclusions are finally drawn in Sec. VI.

II. KLEIN TUNNELING

We first briefly review the basic concepts of the Klein
tunneling in conservative systems without losses. We consider
a honeycomb lattice oriented as in Fig. 1 with a uniform
tunneling amplitude J between neighboring sites and a sharp
potential step of height V , where the lattice sites at x � 0 have
a higher energy than those at x < 0.

A beam of particles is incident from x < 0, and is partially
reflected and partially transmitted at the edge of the step at
x = 0, as described in Fig. 1. In both x < 0 and x > 0 regions
the energy dispersion of the particles shows linear crossings
at momenta called the Dirac points. The Dirac velocity, which
is the group velocity of a particle around a Dirac point, is
vD = 3aJ/2, where the lattice spacing is a and we have set
h̄ = 1. The zero of the energy is chosen at the Dirac point in the
x < 0 region, while the Dirac point in the x > 0 is displaced
in energy by the potential step V .

To describe the wave function on the honeycomb lattice,
we use a tight-binding model on the A,B sublattice basis
and we assume that the relevant wave vectors are within the

FIG. 1. Incident, reflected, and transmitted waves in a honeycomb
lattice with a step. The thick vertical line represents the step edge; the
lattice sites on the right of the thick vertical line have an additional
potential energy V compared to those on the left of the line. The
direction of the full arrows indicates the direction of the momentum
measured from a Dirac point, while the open ones indicate the group
velocity. The parameters chosen in this figure correspond to a negative
refraction case.

linear dispersion region in the vicinity of the Dirac points.
In an infinite and spatially homogeneous honeycomb lattice,
the particle wave function is characterized by the crystal
momentum (kx,ky), which is measured with respect to the
momentum at the Dirac point K = (Kx,Ky), and its angle φ

defined through kx + iky = eiφk with k = (k2
x + k2

y)1/2. For
sufficiently small k, the energy is equal to vD k.

In the A,B sublattice basis, the wave function can be written
in the following spinor form [11]:

ψ(x,y) = eikxx+ikyy+iK·r
(

1
iei(φ−Kxa−kxa)

)
. (1)

This equation should be understood such that if one wants to
calculate the wave function on a lattice site at position r on the
A sublattice, one takes the first component of the spinor and
multiplies it by a Wannier function localized around the site.
Similarly, if one wants to calculate the wave funciton on the B
sublattice, one takes the second component. Throughout this
manuscript, we assume that the Wannier functions are sharply
localized at the lattice sites. Our gauge choice for the spinor
wave function in (1) follows from our choice of the orientation
of the honeycomb lattice and of the unit cell, where a B lattice
site is displaced from an A lattice site by a distance a in the x

direction. While it is perhaps more customary in the graphene
literature to use a spinor wave function of the form (1,eiφ)T

that differs from ours by an appropriate gauge transformation
to the Hamiltonian [11], our choice (1) appears to be more
convenient to compare with numerical simulations or actual
experiments in photonic systems where we have a direct access
to the spinor structure of the wave function.

In the following we focus our attention to the case of a beam
of particles incident on the potential step with a positive energy
and a given momentum. Depending on whether the step height
V is lower or higher than the incident energy, the transmitted
beam will be “particlelike” or “holelike,” as schematically
illustrated in Fig. 2. Under the assumption that intervalley
scattering processes by the potential step are negligible, we
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FIG. 2. Schematic illustration of the Klein tunneling. The cones
represent the Dirac dispersion before (x < 0) and after (x > 0) the
step. (a) When the step height is smaller than the energy of the incident
particle. The transmitted particle is in the upper band and therefore
the transmission is particlelike. (b) When the step height is larger than
the energy of the incident particle. The transmitted particle is in the
lower band and therefore the transmission is holelike.

can write a general wave function in the x < 0 (ψl) and x > 0
(ψr ) regions with a probability current from left to right of the
step as [43,44]

ψl(x,y) = eikxx+ikyy+iK·r
(

1
iei(φi−Kxa−kxa)

)

+ re−ikxx+ikyy+iK·r
(

1
iei(π−φi−Kxa+kxa)

)
,

ψr (x,y) = teik′
xx+ikyy+iK·r

(
1

−iei(φt−Kxa−k′
xa)

)
, (2)

where (kx,ky), (−kx,ky), and (k′
x,ky) are the momenta of inci-

dent, reflected, and transmitted waves, respectively, measured
with respect to a Dirac point K = (Kx,Ky). More details on
the validity of neglecting the intervalley scattering for a sharp
step are discussed in Sec. IV B.

Translational invariance along y guarantees conservation of
ky . The longitudinal k′

x is determined by energy conservation
plus the condition that the group velocity of the transmitted
beam must be in the positive x direction. The sign of k′

x will
depend on whether the transmission is particle- or holelike; see
Fig. 2. The angles φi,t of the incident and transmitted beams are
defined through kx + iky = eiφi (k2

x + k2
y)1/2 and k′

x + iky =
eiφt (k′2

x + k2
y)1/2. Depending on the particle or hole character

of the transmitted beam, the y component of the group velocity
will have the same or the opposite sign as compared to the
incident beam; the latter case (sketched in Fig. 1) goes under
the name of negative refraction.

The reflectivity R and the transmittivity T are related to the
reflection and transmission coefficients r and t and the angles
φi and φt through [44]

R = cos φi |r|2
cos φi |r|2 + | cos φt ||t |2 ,

T = | cos φt ||t |2
cos φi |r|2 + | cos φt ||t |2 . (3)

Neglecting intervalley coupling, one can determine r and t by
requiring that the wave function is continuous at x = 0, which
yields the following theoretical predictions:

R = 1 − cos(φi − φt )

1 + cos(φi + φt )
, T = 2 cos φi cos φt

1 + cos(φi + φt )
, (4)

for the particlelike transmission when V < ω, and

R = 1 + cos(φi − φt )

1 − cos(φi + φt )
, T = − 2 cos φi cos φt

1 − cos(φi + φt )
, (5)

for the holelike transmission when V > ω, where ω is the
incident energy.

In particular, when the beam is normally incident (φi = 0
and φt = 0 or π ), the transmittivity is exactly one indepen-
dently of the potential step height, resulting in a perfect trans-
mission without any backscattering. This peculiar tunneling
effect where a particle transmits through a potential which is
higher than its energy is called the Klein tunneling, in analogy
with the Klein paradox for relativistic particles [38,39]. In the
context of particles in a honeycomb lattice this phenomenon
arises as a consequence of the pseudospin (chirality) conser-
vation on both sides of the step [44].

In the context of graphene physics, Klein tunneling has
been studied in the case of a finite-width barrier [40], rather
than a step, and an oscillatory behavior of the transmission
rate was predicted and observed as one changes the incident
angle [45,46]. In the following, we show that in photonic
systems one can directly observe the Klein tunneling for a
single step, a situation closer to the original argument of Klein,
via the analysis of both the angle dependence and the step
height dependence of the conductivity.

III. PHOTONIC GRAPHENE

A. Theoretical model

We consider a photonic graphene, such as the one realized
in [18], in which photons have a finite lifetime. By continuous
wave resonant pumping of the system, a steady-state configu-
ration of photons is reached, whose real- and momentum-space
distributions can be experimentally measured by detecting the
near-field and far-field emissions, respectively. We restrict to
the linear regime in which photons do not interact.

We consider a tight-binding Hamiltonian in which the
annihilation operators of photons at position r in A and
B sublattices are denoted by âr and b̂r, respectively. Note
that r takes only discrete values on lattice sites. Under
monochromatic coherent pumping, the expectation values of
the operators in the Heisenberg representation, ar(t) = 〈âr(t)〉
and br(t) = 〈b̂r(t)〉, evolve according to the pump frequency
ω as ar(t) = are

−iωt and br(t) = bre
−iωt .

In this paper, we consider a uniform loss for all sites at
a rate γ . Then, the steady-state configuration of the photon
fields ar and br is obtained by solving the following linear
equations [34]:

f a
r = (ω + iγ − Vr)ar + J (br+δ1 + br+δ2 + br+δ3 ),

(6)
f b

r = (ω + iγ − Vr)br + J (ar−δ1 + ar−δ2 + ar−δ3 ),

where f a
r and f b

r are the spatial amplitude profile of the pump
field acting on A and B sublattices, respectively, and Vr is
the step height which is Vr = V > 0 at x � 0 and Vr = 0
at x < 0. The vectors δ1 ≡ (a,0), δ2 ≡ (−a/2, − a

√
3/2),

and δ3 ≡ (−a/2,a
√

3/2) connect the nearest neighbors of a
honeycomb lattice.

This model is not limited to the region of linear dispersion
around the Dirac points; it reproduces the whole band structure
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when considering cylindrically symmetric photonic modes at
each lattice site coupled to their nearest neighbors. This is
exactly the case of lattices of microwave resonators [12,13],
single-mode waveguides [16] or micropillar polaritons [18]. In
the case of polaritons, photoluminescence experiments have
directly shown the complete band structure of the lattice,
including the linear dispersion close to the Dirac points, in
agreement with Eq. (6). In the following calculations we will
make use of the complete Hamiltonian (6) though our focus
will mostly be on modes close to the Dirac points.

One of the assets of photonic systems is that a step potential
V can be easily implemented in lattices of resonators or
waveguides [12,13,16,18]. This can be done by increasing or
reducing the diameter of the resonators at a given region of the
sample. In this way, the confinement energy of the photonic
mode is modified resulting in a different onsite energy. As the
resonators have a size comparable to the wavelength of the
considered photon—on the order of micrometers in the case
of polariton microcavities—the onsite energy can be easily
controlled using standard lithographic techniques. Here we
will concentrate on a step potential in which the onsite energy
is abruptly changed on the scale of one lattice site.

B. Coherent pumping and imaging

We now describe the pumping scheme which creates
the steady-state configuration of photon fields acting as the
incident wave for the Klein tunneling. We consider the
situation where the system is coherently pumped by a Gaussian
field with spatial profile described by f (r) = eikc ·r−(r−r0)2/2σ 2

,
where r0 is the center of the pump, kc is the central momentum,
and σ is the spatial width of the pump.

In the steady-state configuration of photons in the absence
of a step, all states with energy ω and momentum covered
by the pump can in principle be excited, but the weight
of excitation of each state depends on the complex overlap
between the A and B sublattice components in the spinor
wave function (1) and the pump profile. The two sublattices
can in fact interfere constructively or destructively with the
pump depending on the momentum.

To better understand the interference effect between A and
B sublattices, in Fig. 3 we plot the momentum distribution
of the steady-state photon fields in the absence of a step
for the pumping field centered at three different Dirac points
K1,2,3 and a detection window centered around the same Dirac
points. Here we consider an ideal case of a large sample size
(200 × 200 unit cells) and small loss γ /J = 0.02, to better
illustrate our principle; we later discuss in Sec. V the effect
of having a small sample with larger loss to consider more
realistic situations. The finite size of the lattice is accounted
for in our calculations by imposing an amplitude of the
wave function equal to zero out of the considered area. The
frequency of the pump beam is ω = 0.3J , which corresponds
to the momentum k = 0.2/a measured from Dirac points.

Figure 3 shows that, on iso-energy surfaces, the emission is
concentrated around different angles φ for a pump located
around different Dirac points. Here we observe different
emissions around different Dirac points, even though these
Dirac points are equivalent in the sense that they are related by
reciprocal lattice vectors. The reason for the different behavior

(a)

(c)

(b)

(d)

FIG. 3. (a) First Brillouin zone of a honeycomb lattice denoted
by a hexagon in momentum space, whose vertices are the Dirac
points. The solid circles, K1, K2, and K3, are the Dirac points in
the same valley which we mainly explore in this paper. The hollow
circles are the Dirac points in the other valley. (b)–(d) The momentum
space distribution of the steady-state emission of photons when the
spatially tightly focused pump fields are concentrated around the
different Dirac points K1, K2, and K3 and the emission is detected
around the same respective Dirac points. The black circles are the
iso-energy surfaces corresponding to the pump energy. The width of
the pumping field is σ = 5a.

around different Dirac points is that our lattice has two lattice
sites per unit cell which gives rise to a geometrical structure
factor effect. This effect is analogous to that in solid-state
electron systems, where Bragg reflection peaks associated
with reciprocal lattice vectors can have intensity variations
due to the geometrical structure factor [59]. It has been
observed in angle-resolved photoemission of graphite [60] and
graphene [61], and in the photoluminescence of a honeycomb
lattice of micropillars [18].

This angle-dependent emission pattern can be quantita-
tively explained by the structure of the spinor wave function
in Eq. (1) [18]. To understand the pattern, it is convenient
to regard the emission as a result of two separate processes;
(i) a given pump beam excites a particular mode, and (ii)
the excited mode emits light. Both processes have angle
dependence, and the resulting emission pattern is the product
of the two processes. The first process can be understood
from the overlap between the pump beam localized around
a Dirac point, e.g., K1, and the spinor (1). From the spinor
structure, we see that the mode at momentum (kx,ky) and
angle φ in the vicinity of the Dirac point K1 is excited with
the strength of |1 + iei(φ−K1,xa)|2. To understand the second
process, let us assume that a mode at momentum (kx,ky)
around a Dirac point K1 is excited with a unit strength. Then,
if the detection is performed around the same Dirac point K1,
this mode emits light with the intensity of |1 + iei(φ−K1,xa)|2,
which gives the structure factor for the emitted light. In the end,
as a result of the two processes, the observed emitted intensity
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from the momentum (kx,ky) for a pump located around K1

is approximately |1 + iei(φ−K1,xa)|4. Instead if the detection is
performed around a different Dirac point K2, the first process
does not change if we use the same pump, but the second
process gives the intensity of |1 + iei(φ−K2,xa)|2, and the ob-
served emitted intensity is |1 + iei(φ−K1,xa)|2|1 + iei(φ−K2,xa)|2.
Below, we discuss how to exploit this angle dependence of the
sublattice interference to selectively excite an incident beam
which mainly propagates toward the potential step.

From the momentum distribution of the steady state in the
presence of a step, we want to extract the information on the
reflection coefficient |r|2 and the transmission coefficient |t |2
defined in Eq. (2). When doing this, one needs to keep in
mind that r and t are the coefficients in the sublattice basis.
As one performs the Fourier transform of both sublattices at,
for example, x > 0, and takes the intensity of the momentum
component corresponding to K1 + (k′

x,ky), one obtains a value
proportional to |t(1 − ei(φt−k′

x−K1,xa))|2 � |t(1 − ei(φt−K1,xa))|2,
not just |t |2. Note that although these expressions, derived from
Eq. (2), are defined for a conservative system, they also apply
to the case of weak and homogeneous losses in a sufficiently
large lattice.

While the angle dependence may have some utility to
selectively focus on a specific range of momenta, one can
avoid the angle-dependent factor by summing the momentum
components of the emitted intensity around three adjacent
Dirac points K1, K2, and K3 in Fig. 3(a), or, equivalently,
around three Dirac points which are separated by 4π/3a in the
k′
x direction, which gives

|t(1 − ei(φt−k′
xa−K1,xa))|2 + |t(1 − ei(φt−k′

xa−4π/3−K1,xa))|2
+ |t(1 − ei(φt−k′

xa−8π/3−K1,xa))|2 = 6|t |2. (7)

An analogous result holds for the reflection coefficient |r|2. We
have assumed here that the Wannier function is well localized
in space so that its Fourier transform has the same weight for
all momentum components.

IV. KLEIN TUNNELING IN PHOTONICS

We are now ready to present our proposal to study Klein
tunneling in driven-dissipative systems. In the next two
subsections we will discuss two possible schemes, based on,
respectively, a spatially tightly focused pump beam and a
spatially wide pump beam. In the former case, a ky-selective
detection is sufficient to reconstruct the full angle dependence
of Klein tunneling using a single pump spot. In the latter
case, an incident beam with a well-defined wave vector k
is excited, which allows one to also visualize the negative
refraction effect.

Throughout this section, we focus on a rather idealized case
of a large lattice and a small loss rate. For all considered cases,
we will show that the quantities extracted from the numerical
simulation are in good agreement with the general theory of
Klein tunneling. In the next section (Sec. V), we shall see how
this conclusion survives when more realistic parameters from
actual experiments are used.

A. Spatially focused beam

In this subsection, we consider a beam focused in space
(σ = 5a), and analyze tunneling with a step V = 0.4J . We
take the loss to be γ /J = 0.02 throughout this section. We
use the Dirac point K1 ≡ (2π/3a,2π/3

√
3a) to be the central

momentum of the pump field and the pump frequency of
ω = 0.3J , which corresponds to the momentum k = 0.2/a

from the Dirac point. We place the center of the pump r0 to
be in the middle between the lower-left corner of the sample
and the center of the edge of the step at x = 0. As one sees
from Fig. 3(b), the momentum distribution of the no-step
configuration is strong in kx > 0, thus pumping the field at
x < 0 mainly excites an incident beam that propagates towards
the potential step.

In Figs. 4(b)–4(d), we plot a cut of the momentum
distribution for a given ky = −0.05/a as a function of kx ,
where (kx,ky) is measured with respect to the three Dirac points
K1, K2, and K3, respectively. The momentum distribution of
the x < 0 region is plotted in solid (blue) lines, which contains
the information of both the incident and reflected waves, and
the momentum distribution of the x > 0 region is plotted in
dashed (green) lines, which represents only the transmitted
wave. From (2), in the case of no loss with a plane wave
with a single wave vector as an incident wave, one expects
that the momentum space signal would be two sharp peaks
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FIG. 4. (a) Transmittivity T as a function of ky . The line is a
theoretical curve from (5). The dots (blue) are calculated from the
simulation with the reflection coefficient |r|2 estimated by summing
the signals at x < 0 around K1, K2, and K3, the brown squares are
the transmittivity calculated by only using signals emitted around K2,
and the red crosses are the simulation where the reflection coefficient
|r|2 is estimated from the signal at x < 0 after subtracting the
no-step distribution to isolate the reflection signal. (b)–(d) Cut of the
momentum distribution for ky = −0.05/a as a function of kx around
K1, K2, and K3, respectively. The vertical axis is dimensionless
photon counts, and we use the same scale for (b)–(d). The solid
(blue) lines are the spatial Fourier transform of the field in the x < 0
region, and the dashed (green) lines are the spatial Fourier transform
of the field in the x > 0 region. The dotted (red) lines are the spatial
Fourier transform of the x < 0 region after subtracting the no-step
distribution.
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at x < 0, corresponding to the incident and reflected waves,
and one sharp peak at x > 0, corresponding to the transmitted
wave. In our system, as we see in Figs. 4(b)–4(d), the peaks
are broadened due to the loss, and also have some structures
due to the presence of the sample edges.

The different structures observed in Figs. 4(b)–4(d) can
be understood in terms of the sublattice interference effect
discussed also in the previous section. We observe that the
incident wave (kx > 0 component of the solid lines) is well
visible in Figs. 4(b) and 4(d) but is strongly suppressed in
Fig. 4(c). This is because, as seen from Fig. 3(c), the emission
at kx > 0 is small around K2. We also observe that the kx < 0
part of the signal of Fig. 4(c) is not a single peak but shows
a visible modulation on top of the peak. This is because the
pump beam generates weak excitations also in kx < 0 modes
which travel backward and reflect at the edge of the sample,
thus producing the interference effects.

We estimate the reflection coefficient |r|2 by integrating
the kx < 0 part of the detected signal of the x < 0 region
(solid lines) and summing over the three Dirac points K1,
K2, and K3, as explained in the end of Sec. III B. We note
that this method generally overestimates the reflection because
the kx < 0 component of the incident beam, although small
due to the choice of our pump beam, is not excluded in the
integral. The transmission coefficient |t |2 can be estimated
by integrating the signal of x > 0 (dashed lines). To find the
reflection and transmission rates R and T from (3), we also
need to know φi and φt . The incident angle φi is given for
a fixed value of ky , and the transmission angle is determined
by finding the average value of the transmission signal in the
momentum space, which we call kt

x , and then through the

relation kt
x + iky =

√
kt2
x + k2

ye
iφt .

In Fig. 4(a), we plot the transmission rate T as a function
of ky . The dots (blue) are calculated from the numerical
simulation, and the line is the analytical prediction of Eq. (5).
We observe that the transmittivity is quite underestimated in
the numerical simulation. This is because the signal at x < 0 to
estimate the reflection coefficient contains contributions from
incident waves as well. The overestimation of the reflection
wave is larger at ky > 0 than at ky < 0 because the incident
wave, whose profile is similar to Fig. 3(b), has more overlap
with the ky > 0 region than with the ky < 0 region at kx < 0
and thus overestimates the reflection at ky > 0.

One can improve the estimate by pumping around K1 and
detecting only around K2, taking advantage of the fact that the
incident wave is very suppressed around K2 as we discussed
above. In order to calculate the transmittivity using the signal
only around K2, upon integrating the signal at x < 0, one
needs to take into account the angular factor due to the spinor
structure correctly to estimate |r|2 and |t |2, because there is no
cancellation as in (7). The transmittivity thus calculated is plot-
ted as brown squares in Fig. 4(a). We see an improvement in
the estimate of the transmittivity. The advantage of this method
is that one needs to only measure around one Dirac point.

Finally, a very efficient but experimentally challenging way
to isolate the reflected wave in the x < 0 region is to subtract
the real-space field amplitude distribution without a step from
the one with a step before performing the Fourier transform;
the resulting momentum distribution is plotted in dotted (red)

lines in Figs. 4(b)–4(d). It shows a single peak at kx < 0 as
we would expect for photons with nonzero ky component; we
recall that backscattering is only forbidden for exactly normal
incidence onto the step. The transmission calculated using this
procedure is displayed as red crosses in Fig. 4(a), which shows
a very good agreement with the theoretical prediction.

B. Intervalley scattering

At this point, it is worth discussing the importance of
the intervalley scattering in our system. For the vertical
step we consider (see Fig. 1) the intervalley scattering is
kinematically not allowed due to the simple momentum and
energy conservation. Namely, as one can see from Fig. 3(a),
there is no state in the other valley conserving the energy
and the momentum ky in the vertical direction. On the other
hand, if the step is aligned horizontally, there is a state in the
other valley conserving the energy and the momentum kx in
the horizontal direction. Therefore, if we were to use a sharp
horizontal step, we would have a non-negligible amount of the
intervalley scattering. Such an intervalley scattering would be
suppressed if one uses not a sharp but a smooth step [44].

This orientation dependence of the intervalley scattering
for a sharp step is confirmed by the numerical simulation as
shown in Fig. 5. In Figs. 5(a) and 5(b), we plot the momentum-
space distribution of the steady-state emission of photons of
the reflected beam when the step is vertical. In order to isolate
the reflection signal, we only look at the x < 0 part of the

FIG. 5. Momentum-space distribution of the steady-state emis-
sion of photons around Dirac points calculated for the reflected signal,
where the incident signal is subtracted to isolate the reflected signal.
(a) and (b) When the step is vertical located at x = 0, and (c) and
(d) when the step is horizontal located at y = 0. In (a) and (c), the
emission around the equivalent Dirac points K1, K2, and K3 are
summed, whereas in (b) and (d), the emission around the Dirac
points in the other valley is summed. The simulation is done on a
very large lattice with a size of 1000 × 1000. The central momentum
of the pump beam is at K1 with the spot size of σ = 5a. The pump is
located at 100 lattice sites away from the center of the system in (a)
and (b) the horizontal direction, and (c) and (d) the vertical direction.
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signal and we subtracted, as before, the steady-state photon
amplitude without a step from that with a step. Figure 5(a) is
the sum of the emission around the Dirac points K1, K2, and
K3, and Fig. 5(b) is the sum of the emission around the Dirac
points of the other valley. We see essentially no emission from
the other valley. In Figs. 5(c) and 5(d), we plot the case when
the step is horizontal. Figure 5(c) is the sum around K1, K2, and
K3, and Fig. 5(d) is the sum around the Dirac points of the other
valley. We see that the emission around the other valley is now
significant. Thus, the vertical orientation of the step we use
in this paper is ideal for studying the Klein tunneling without
intervalley scattering. We note that the absence of the reflected
signal around kya = 0 for Fig. 5(a) and around kxa = 0 for
Fig. 5(c) is the manifestation of the perfect transmission for
the normal incidence in the Klein tunneling.

In reality, if we use a finite-size system, the intervalley
scattering can also occur at the top and bottom edges of
the finite-size lattice, which are oriented horizontally. In the
following analysis, the scattering at the edges is not significant
for the large system size we use in Sec. IV. However, for small
systems in Sec. V, the scattering at the edges is one of the
major sources of discrepancy from the numerical simulation
and the analytical prediction of the Klein tunneling.

C. Wide beam

We now proceed with the discussion of an alternative
method to study Klein tunneling effects which is also able to
elucidate the negative refraction effect. The pump field is taken
to have a wide Gaussian profile in real space with σ = 20a

and a momentum distribution well localized around the central
momentum kc = K1 + k(cos 45◦, sin 45◦) with k = 0.2/a.
The pump frequency is set to ω = 0.3J on resonance with
the Dirac dispersion at the central momentum of the pump.

In Figs. 6(a) and 6(b), we plot the steady-state field profile
in real and momentum spaces in the absence of a step. One
can see that photons propagate in real space at an angle of 45◦
and the incident beam is well localized in momentum space.
In Fig. 6(c), we plot the steady-state spatial configuration
of photons in the presence of a step with V = 0.6J , where
one sees the existence of the reflection and the transmission.
The transmission through the step is directed downward,
which shows the negative refraction characteristic of the Klein
tunneling in graphene for a holelike transmission when the
potential step is higher than the incident energy [44]. The
usual refraction is recovered in the opposite case of a potential
step lower than the incident energy (not shown).

To better visualize the reflected and transmitted fields, in
Fig. 6(d) we show the field amplitude after subtracting in the
x < 0 region the one for the no-barrier case [Fig. 6(a)]. Another
salient feature we observe from Fig. 6(d) is that the centers
of the reflected and transmitted waves at the step edge are
shifted. This is an analog of the Goos-Hänchen effect known
for total internal reflection in optical systems [62]. However,
the value of the shift obtained in the numerical simulations
does not fit the conventional theory of the Goos-Hänchen effect
in solid-state or photonic graphene [63,64]. Therefore, a more
elaborate theory taking into account pump and loss is necessary
and will be the subject of future work.

FIG. 6. Field intensity profiles under a spatially wide pump. Real
space (a) and momentum space around K1 (b) distribution of the
photon emission for no-step potential. (c) Real-space profile for a high
potential step V = 0.6J > ω. (d) Real-space profile after subtracting
the no-step amplitude in the x < 0 region. In all panels, the pump
energy is ω = 0.3J and the loss is γ = 0.02J . The other parameters
are given in the text.

1. Changing the angle

The use of an incident beam localized in momentum
provides a convenient method to study the angular dependence
of the Klein tunneling effect. To perform this study we fix the
step height at V = 0.4J and consider an incident beam well
localized in momentum space (spatial width σ = 40a) around
kc = K1 + k(cos φi, sin φi) with k = 0.2/a and ω = 0.3J . We
vary the incidence angle φi .

For a given value of φi , we Fourier transform the steady-
state amplitude to obtain the momentum-space distribution in
the (kx,ky) plane. We analyze the reflection and transmission
waves by looking at the momentum distribution as a function
of kx for a fixed ky = k sin φi .

In Fig. 7(a), we show the normal incidence (φi = 0) case.
The solid and dashed lines are the Fourier transform in the
x < 0 and x > 0 regions, respectively. As we expect from the
theory of Klein tunneling, there is only one peak in the Fourier
transform of x < 0 corresponding to the incident wave, and
no peak from reflection is present.

On the other hand, in Fig. 7(b), we plot the momentum
distribution for a finite incidence angle φi = 18◦. In this case,
the signal of the incoming wave and that of the reflected wave
show themselves as two separate peaks in momentum space;
the larger (right) peak corresponds to the incoming wave, and
the smaller (left) peak corresponds to the reflected wave.

To estimate the reflection coefficient |r|2, we integrate,
as before, the reflection signal at kx < 0. Similarly, we
estimate the transmission coefficient |t |2 by integrating the
transmission signal. In Fig. 7(c), we plot the angle dependence
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FIG. 7. Momentum-space distribution of the steady-state emis-
sion of photon fields for (a) φi = 0 (ky = 0) and (b) φi = 18◦

[ky = 0.2 sin(18◦)/a] as a function of kx , measured from K1,x . The
vertical axes of (a) and (b) are plotted with the same scale. The solid
line is the Fourier transform at x < 0, and the dashed line is that at
x > 0. The transmission rates when (c) the incident angle (in degrees)
is changed for a fixed value of V = 0.4J and (d) the height of the
step is changed for a fixed value of φi = 30◦. The dots are calculated
numerically, and the solid lines are the theoretical prediction of (4)
and (5). The calculations are done on a lattice with 200 × 200 unit
cells with γ /J = 0.02.

of the transmission rate thus obtained. The solid curve is the
theoretical prediction from Eq. (5).

Although the qualitative agreement is generally good, there
is an overestimation of transmission especially at the region
beyond the critical angle ∼19◦ where theory would predict no
transmission. The observed discrepancy for angles bigger than
∼19◦ is due to the exponentially decaying evanescent wave
that is present at x > 0 even when there can be no transmitted
propagating wave. On the other hand, the well-localized
momentum distribution makes the estimation of |r|2 very
accurate. As a result, the transmission below the critical angle
is very well estimated by the numerical simulation.

2. Changing the step height

Next, we consider the case where the angle of the incoming
wave is fixed to 30◦, but the height of the step varies. We
assume that the pump beam is peaked around the momen-
tum kc = K + k(cos(30◦), sin(30◦)) with k = 0.2/a, and the
spatial width σ = 40a and frequency ω = 0.3J . We vary
the height of the step so that the ratio of the step height to
the energy of the pump (V/ω) varies from 0 to 2.

In Fig. 7(d) we plot the transmission rate T as a function of
V/ω. The analytical theory (solid line) predicts a characteristic
region of forbidden transmission at 0.5 � V/ω � 1.5. Below
this region (V/ω < 0.5), the transmission is particlelike,
and above this region (V/ω > 1.5), the transmission is
holelike [43,44]. This pronounced dip is quantitatively well
reproduced by the numerical simulation (dots).

V. SMALLER SAMPLE WITH LARGER LOSS

So far we focused on a rather large system with a small loss
to demonstrate the principle of Klein tunneling in photonic
systems. Now we consider more reasonable experimental
parameters from [18]: a lattice of 20 × 20 unit cells with
γ /J = 0.1. Note that in the experiments reported in Ref. [18],
no effects of the discretization of energies due to the finite
size of the lattice were observed. Nevertheless, in such a small
lattice, pumping with a spatially focused beam, as done in
Sec. IV A, is not a convenient technique. Indeed, the small spot
in real space excites states with kx < 0, which are reflected
by the sample edge located at x < 0. This edge-reflected
component interferes with both the pump beam and the signal
reflected from the potential step. This multiple interference
prevents a clear analysis of the Klein signal.

Therefore we focus on a pumping scheme with a spatially
wide beam. However, a difficulty in dealing with a small
sample is that one cannot use a pump field too sharply localized
in momentum space due to the limitation in the available space
in the sample. Furthermore, in addition to the larger losses
giving rise to a shorter propagation distance, they also lead to
a wider range of states being excited over an energy range of γ

around the pump frequency. One way to tackle these difficulties
is to use a larger value of ω to increase the relevant photon
momentum, so that the momentum-space peaks can be more
clearly resolved. An upper bound to the allowed ω is set by the
size of the linear dispersion regime around the Dirac point.

In Fig. 8(a), we plot the momentum distribution of normally
incident beam (φi = 0) using a pump with central momentum

FIG. 8. (a) Cuts of the steady-state momentum distribution for
(a) φi = 0◦ and (b) φi = 18◦ (ky = 0.4 sin(18◦)/a) as a function of
kx , measured from K1,x . The same scale is used for the vertical axes
for both plots. The solid lines are the spatial Fourier transforms in the
x < 0 region, and the dashed lines are the ones in the x > 0 region.
The transmission rates when (c) the incident angle is changed for a
fixed V = 0.9J and (d) the height of the step is changed for a fixed
φi = 30◦. The dots are calculated numerically, and the solid lines are
the analytical predictions of (4) and (5). The calculations are done
on experimentally realistic lattice parameters from [18]: a lattice of
20 × 20 unit cells with γ /J = 0.1.
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kc = K1 + k(cos(φi), sin(φi)) and σ = 10a, with k = 0.4/a

corresponding to ω = 0.6J , in a spot located halfway between
the lower-left corner of the sample and the center of the edge
of the step at x = 0 as before. We take the step height to be
V = 0.9J . Comparing with Fig. 7(a), one can see that the
momentum peaks are broader, reflecting the larger loss γ and
the smaller value of σ .

In Fig. 8(b), we plot the momentum distribution for
φi = 18◦; the reflected signal is visible and the transmitted
signal is smaller compared to the normal incidence case of
Fig. 8(a). This trend is clearly visible in Fig. 8(c), where we
plot the transmission spectrum as a function of the angle of
incidence for a fixed V = 0.9J , showing a clear decrease of
the transmission rate as the angle is increased. Here, we are
again estimating the reflection by integrating the whole signal
at kx < 0 of x < 0 region, which suffers from the broadened
large incident peak centered at kx > 0. Another difficulty of
having a small sample size is the unwanted reflection at the
edges of the sample. In particular, the reflection at the top and
bottom edges of the system, which are aligned horizontally,
can cause significant intervalley scatterings, which can result
in the further deviation of the numerical simulation from the
Klein tunneling theory.

Finally, in Fig. 8(d), we plot the transmission as a function
of the step height V/ω for a fixed incident angle of φi =
30◦. In spite of a significant smoothening of the dip, the
overall typical features of Klein tunneling are still well
visible.

Summing up, the results of Fig. 8 confirm the ac-
tual observability of the main qualitative signatures of
Klein tunneling in models of photonic graphene with re-
alistic parameters. These results should provide a clear
guideline to undertake the experiment with state-of-the-art
samples.

VI. CONCLUSION

We have shown that the Klein tunneling and negative re-
fraction effects can be observed in driven-dissipative photonic
systems with experimentally realistic parameters. In particular,
we have proposed an experimental scheme to extract the trans-
mittivity in driven-dissipative photonic systems. Our result
can be not only useful in confirming known condensed matter
theories which are difficult to directly observe in electronic
systems, but can also open the way to new phenomena that are
unique in photonic systems.

Firstly, the structure of the spinor wave function is clearly
visible through the interference effect in the momentum space
emission of photons. By choosing the relative phase of the
sublattices via the wave vector of the external pump field, one
is able to better isolate the physics of interest and possibly
explore new subtle features of sublattice-dependent physics.

Secondly, an even more exciting direction of future research
will consist of including optical nonlinearities characteristic of
the polariton microcavities modeled in the present work. This
would allow taking Klein tunneling, and also other effects
characteristic of the spinor nature of the wave function, to the
nonlinear regime.
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