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Generation of Weyl points in coupled optical microdisk-resonator arrays via external modulation
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We theoretically propose a scheme to produce Weyl points in two-dimensional (2D) optical microdisk-resonator
arrays, which undergo a dynamical modulation with temporal periodicity. By mapping the set of modes supported
by each resonator to a synthetic frequency dimension, the 2D lattice is equivalent to a three-dimensional (3D)
time-independent lattice. We show that, by breaking the inversion symmetry (I symmetry) or introducing
artificial gauge fields, Weyl points can be formed, leading to anomalous topological edge states and Fermi arcs.
This approach may provide a way to design robust topological photonic devices on chips and future applications
for integrated photonics.

DOI: 10.1103/PhysRevA.96.013811

I. INTRODUCTION

In recent years, topological photonics has become a rapidly
growing field in optics [1,2]. Analogous to topological insula-
tors, the light in some artificial topological photonic crystals
and metamaterials [3–5] shows some remarkable features.
The potential applications for optical devices arouse great
interest for realization of the photonic systems with topological
characteristics [6–9]. Recently, a new topological material
called Weyl semimetal [10,11] emerged. One important feature
of the material is the appearance of Weyl points, which
are similar to Dirac points but have no spin degeneracy.
The dispersions close to Weyl points are governed by the
Weyl Hamiltonian Hk = ∑

i,j �kivijσj , i,j ∈ {x,y,z}, where

�
⇀

k ≡ (�kx,�ky,�kz) is the displacement vector from the
Weyl point and σj are Pauli matrices; vij characterizes a
topological Chern number (topological charge) cT of the Weyl
Hamiltonian by cT = sgn[det(vij )] = ±1. Owing to all Pauli
matrices occurring in the Weyl Hamiltonian, the edge states
generated are robust to impurities and defects, even for any
perturbations breaking T symmetry (time symmetry) and I

symmetry (inversion symmetry). Generally, due to the demand
of all three Pauli matrices, the Weyl points are considered as
only occurring in three-dimensional (3D) lattices. To date there
are two methods to produce Weyl points in photonic systems;
one focuses on I symmetry broken via designing complex
3D photonic crystal or metamaterials [12–14], the other via
using gyromagnetic or gyroelectric materials and applying
an external magnetic field [15]. However, for applications in
micro- and nanophotonics circuits on chips, the formation of
Weyl points in a two-dimensional (2D) photonic system is very
attractive.

In this paper, we theoretically propose a scheme to generate
Weyl points in 2D coupled disk high-Q microresonator arrays,
which can be characterized by band dispersion structure of
a 3D lattice. The key of the scheme is to introduce a third
synthetic dimension by using a set of resonant modes with
equal frequency space supported by each resonator and a
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time-dependent modulation on the dielectric tensor of each
resonator. Similar to a real 3D case, two methods are suggested
for the formation of the Weyl points: one by making the two
sublattices different to break I symmetry and the other by
inducing an artificial gauge field to break I symmetry or T

symmetry.
The rest of this paper is arranged as follows. In Sec. II

a scheme is proposed to produce a synthetic dimension in a
2D resonator array and the general Hamiltonian of the system
is provided. In Sec. III we design Weyl points in model I
by making a difference between sublattice sites to break I

symmetry. In Sec. IV the Weyl points are produced in model
II via adding external modulation phases in resonators to
introduce an artificial gauge field. In Sec. V we show the edge
states and Fermi arcs in our models. In Sec. VI the Proposals
for experimental realizations are discussed. In the Conclusions,
Sec. VII, a brief summary of the obtained results is presented.

II. SYNTHETIC DIMENSION AND GENERAL
HAMILTONIAN

We consider a 2D honeycomb lattice of disk resonators
as shown in Fig. 1(a). It is noted that the structure can be
seen as a triangular lattice with a basis of two “atoms” per
unit cell. Therefore, without loss of generality, we distinguish
between sublattices A and B with two kinds of resonators.
Each resonator at A (B) supports a set of modes with their
frequencies equally spaced at a frequency �A (B), as shown
in Fig. 1(b). We assume that there is only nearest-neighbor
coupling between resonators in the 2D lattices, and the mi-
croresonator at sublattice site A (B) is periodically modulated
at a frequency �, which induces coupling between modes in
the same resonator at A (B) with frequencies separated by �.
The Hamiltonian of the lattices can be written as follows:

H =
∑
i,l

(
ωA

l a
†
i,lai,l + ωB

l b
†
i,lbi,l

) + h
∑
〈i,j 〉,l

(
a
†
i,lbj,l + H.c.

)

+ gA cos(�t + ϕA)
∑
i,〈l,l′〉

(a†
i,lai,l′ + a

†
i,l′ai,l)

+ gB cos(�t + ϕB)
∑
i,〈l,l′〉

(b†i,lbi,l′ + b
†
i,l′bi,l), (1)
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FIG. 1. (a) Illustration of a 2D graphene-like lattice of disk resonators. (b) Each disk resonator supports a set of resonant modes with the
frequencies with equal spacing (left). The discrete modes can map to a synthetic frequency dimension (right, green rectangle). (c) (Left) Model
I with two different sites (small blue and large red spheres represent sublattices A and B, respectively), which breaks P symmetry in the lattice.
a is the nearest-neighbor distance of the lattice and the interval in the frequency dimension equal to �. Here it is noted that we choose the
frequency spacing of resonator B as two times that of A. (Upper right) The corresponding diagrams of the synthetic dimension of sublattice
sites A and B. (Lower right) The diagram of a 2D lattice projected along the x axis. (d) (Left) Model II with identical sites and an artificial
magnetic field B (red arrow). Here T symmetry is broken while P symmetry is preserved. (Right) The diagram of artificial magnetic field
in model II. The plane projected along the x axis passed through by the artificial magnetic field. The red circle means the magnetic flux per
plaquette with π . Therefore, the model is equivalent to a Harper-Hofstadter model with 	 = 1

2 .

where ωm
l = ωm

0 + l�m [m ∈ (A,B)] gives the on-site poten-
tial for lth frequency eigenmode at the resonator on sublattice
A (B); ωm

0 is the frequency of the zero-order mode (here the
group velocity dispersion is neglected) and �m = c/nmRm is
the frequency spacing between adjacent modes in the resonator
with effective refractive index nm and radius Rm; a

†
i,l (ai,l)

are the creation (annihilation) operators for the lth mode
of resonator at sublattice A on lattice site i [an equivalent
definition of b

†
i,l (bi,l) is used for sublattice B]; h is the

coupling constant between nearest-neighbor resonator; gA

(gB) represents the coupling constant between two modes (lth
and l′th) of each resonator on sublattice A (B) with ϕA (ϕB)
being the corresponding modulation phase.

Some previous works [16,17] have pointed out that a
high-Q microresonator can support a set of modes with
their frequencies equally spaced forming an optical frequency
comb, and the set of modes can map to a synthetic one-
dimensional space [18,19], as illustrated in Fig. 1(b). Thus
the system we just described can be considered to be a 3D
lattice model by stacking 2D graphenelike lattices layer by
layer with the vertical axis corresponding to frequency. Clearly
this axis can only take discrete values determined by disk-
resonator modes. On the other hand, an external modulation
with appropriate frequency can excite hopping between the

two modes of the set with frequency spacing equaling the
frequency. Therefore, we can consider the frequency interval
between two arbitrary modes of the resonator as the lattice
spacing of the synthetic one-dimensional space if we choose
the correct parameters of resonator and external modulation
frequency.

Moving to a rotating frame by defining a transform cA
i,l =

ai,le
il�At (cB

i,l = bi,le
il�B t ), the Hamiltonian of Eq. (1) can be

rewritten as follows:

H = ωA
0

∑
i,l

c
A†
i,l c

A
i,l + ωB

0

∑
i,l

c
B†
i,l c

B
i,l + h

∑
〈i,j 〉,l

(
cA
i,l

†
cB
j,l+H.c.

)

+ gA

∑
i,l

(
e−iϕAcA

i,l

†
cA
i,l+p + eiϕAcA

i,l+p

†
cA
i,l

)

+ gB

∑
j,l

(
e−iϕB cB

j,l

†
cB
j,l+q + eiϕB cB

j,l+q

†
cB
j,l

)
, (2)

where we apply the rotating wave approximation and assume
that an external modulation frequency (�) and the adjacent
modes spacing of resonators in sublattice A and B (�A and
�B) satisfy � = p�A = q�B (p and q are integers), which
keeps the translation invariant in the direction of the synthetic
dimension.
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The first line in Eq. (2) is the Hamiltonian of 2D lattices in
real space with nearest-neighbor coupling, and the second and
third lines describe the coupling between adjacent frequencies
of sublattices A and B along the synthetic dimension,

respectively. We can clearly see that the above Hamiltonian
describes a 3D tight-binding lattice model with two sublattices.
For an infinite case, Eq. (2) can be Fourier transformed into k

space:

Hk =
[
ωA

0 + 2gA cos(kz� + ϕA) ρ

ρ∗ ωB
0 + 2gB cos(kz� + ϕB)

]
, (3)

where ρ = e−ikxa + 2 cos(
√

3kya/2)eikxa/2, a is the distance
between the two sublattices of the real 2D resonator array, and
⇀

k ≡ (kx,kx,kz) is the Bloch wave vector in reciprocal space of
the 3D lattice. It is noted that here the lattice intervals in the
synthetic dimension in the 3D model are represented by the
modulation frequency �.

III. MODEL I WITH INVERSION SYMMETRY BROKEN

We first consider model I with inversion symmetry broken,
as illustrated in Fig. 1(c) (left), which can be induced by
making the frequency spacing of resonators at sublattices A

and B with 2�A = �B via choosing the appropriate value
of effective refractive index and radius of the resonators.
Here, we assume the external modulation frequency satisfying
� = 2�A = �B .

The eigenvalues of Hk are given by

E = (
ωA

0 + ωB
0

)/
2 + (gA + gB) cos kz�

±
√

|ρ|2 + [(
ωA

0 − ωB
0

)/
2 + (gA − gB) cos kz�

]2
. (4)

In the real 2D lattice, which hass no term of
(gA − gB) cos(kz�), if ωA

0 	= ωB
0 and the first term under the

square vanishes (|ρ| = 0), the inversion symmetry is broken,
which induces a gap in band dispersion. However, in the
synthetic 3D lattice of model I, the second term in the square
can be equal to zero via choosing the appropriate value
of �. More specifically, when A and B are not identical,
the gap of the band dispersion can be opened in a 2D
lattice at six Dirac points (kx,ky) = (±2π/3a,±2π/3

√
3a) and

(0,±4π/3
√

3a). However, when the modulation frequency �

satisfying kz = ± arccos[−(ωA
0 − ωB

0 )/2(gA − gB)]/�, where
|(ωA

0 − ωB
0 )/2(gA − gB)| � 1, this gap closes again in these

points (kx,ky,kz), which are denoted by red and green spheres
in 3D k space [see Fig. 2(a)]. Here, the two colors (red
and green) of the spheres represent positive and negative
topological charges, respectively, and it is the same with model
II; see Fig. 2(e). The band dispersion near the point surrounded
by the red circle in the 3D k space is linear, as shown in
Figs. 2(b)–2(d), indicating that the degeneracy point is a Weyl
point which usually exists in a true 3D lattice band structure.

The lattice considered here has the mirror symmetry in the
(x,z) plane, which ensures the topological charges of the Weyl
points of (kx,kz) have the same signas those of (−kx,−kz) and
the net charge in the horizontal plane is zero. This can be seen
from Fig. 2(a).

IV. MODEL II WITH ARTIFICIAL GAUGE FIELD

The other method to produce Weyl points is to introduce an
external magnetic field. This can be handled according to the
Hamiltonian of Eq. (3). The difference is that here we assume
all the resonators are identical (we obtain gA = gB ≡ g0) and
the external modulation frequency � satisfies the condition
� ≡ �A = �B . The key to realizing model II is to make the
phase modulation ϕA different from ϕB . Here, the frequency
modulation induces a coupling between adjacent modes in
each resonator, while the phase modulation can be used to
achieve an artificial magnetic field. Below, we choose ϕA = 0
and ϕB = π . When the above conditions are satisfied, the
second and third lines of Eq. (2) are analogous to the 2D
bosonic Harper- Hofstadter (HH) model for the flux per
plaquette 	 = 1

2 [20,21]. As is well known, the HH model
describes the electrons in lattices with an external magnetic
field. Therefore, according to the analogy it means that an
effective magnetic field is artificially produced in our system
along the horizontal direction as shown in Fig. 1(d) (left). As
a result, it can be considered as an analog of the quantum
Hall effect within the 2D rectangle lattice plane which is
perpendicular to the synthetic magnetic field [Fig. 1(d) (right)].
The corresponding Hamiltonian is given by

Hk =
[

2g0 cos (kz�) ρ

ρ∗ −2g0 cos (kz�)

]
. (5)

We can obtain the energy band of the model II E =
±

√
|ρ|2 + 4g2

0cos2(kz�). The two bands touch at Weyl points
within the first Brillouin zone at (kx,ky,kz) with kx and ky

satisfying |ρ| = 0 and kz = ±π/2�. In model II, there are
twelve Weyl points denoted by red and green spheres in 3D
k space of Fig. 2(e) and the corresponding dispersions of the
Weyl point [surrounded by a red circle in Fig. 2(e)] are shown
in Figs. 2(f)–2(h). We note that the above model actually is I

symmetry broken just like in model I. We can also make T

symmetry broken in model II by choosing the modulated phase
difference between adjacent resonators along the y axis equal
to π/2. In this case, the system is described by the Harper-
Hofstadter model with flux of 1

4 and the modulated phases
of resonators being π/2, π , 3π/2, and 2π , respectively. The
energy spectrum of the Harper-Hofstadter model consists of
four bands. Each of the four bands is topologically nontrivial,
and characterized by a nonzero Chern number. The two bands
in the middle of the four touch each other at some points, which
are Weyl points, whereas the top two bands as well as the
bottom two bands have band gaps. For a finite lattice, the edge
modes will appear and move along the frequency axis. Due to
relatively complex phase modulation in the experiment, the
model with T symmetry broken will not be discussed further.
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FIG. 2. Weyl points in reciprocal space of model I and model
II, respectively. (a) Location of Weyl points of mode I in (kx,ky,kz)
space. There are 12 Weyl points in the first Brillouin zone. (b–d)
The band dispersion of the Weyl point surrounded by a red circle in
the left 3D diagram, i.e., the point of [2π/3,2π/3

√
3,cos−1(−1/4)].

(e) Location of Weyl points of mode II in (kx,ky,kz) space. Comparing
with model I, the Weyl points have the same number and topological
charges but different coordinates in kz axis. (f–h) The band dispersion
of the Weyl point at (2π/3,2π/3

√
3,π/2), which is surrounded by a

red circle in the left 3D diagram. Here, large red and small green
spheres denote Weyl points with positive and negative topological
charge, respectively. In (a,e), the Weyl points can also be seen in
three planes (kx-ky , kx-kz, ky-kz), which are 2D projections of Weyl
points in the corresponding two k-vector components.

Here we only point out that it is the 2D generalization of the
model proposed in Ref. [19] and that due to T symmetry being

broken the edge modes are topologically protected one-way
modes.

In model II, the horizontal synthetic magnetic field is along
the x axis; hence the mirror symmetry remains with respect to
the x-z plane, so the topological charges of Weyl points in k

space are the same as model I, as shown in Fig. 2(e).

V. EDGE STATES AND ANALOG OF “FERMI ARCS”

To study the edge states, we take a ribbon of our 2D
lattice terminated with zigzag edges since the edge states
only occur in a hexagonal ribbon with a zigzag edge. The
ribbon width is 40 resonators in the transverse cross section
(x direction), as Fig. 3(a) shows, while the edges are supposed
to have infinite extent in the y and z direction (such that ky

and kz are good quantum numbers). In the ordinary 2D case,
the dispersion diagram of a ribbon with zigzag boundaries is
shown in Fig. 3(b). Due to the flatness of the edge-mode curves,
the two degenerate edge modes of the real 2D zigzag ribbon

FIG. 3. (a) A ribbon of our 2D lattice with 40 resonators
terminated with zigzag edges. The ribbon width is 40 resonators
in the x direction. The y direction is along the red dashed line.
(b) Projected band structure for 2D lattice with zigzag edge (I
symmetry and T symmetry all remain). (c,d) Projected band structure
for 3D lattice of model I and model II with zigzag edge in
the x-z plane. The edge modes can be seen in the band gap, and
the green arrowed lines indicate the intensity distribution of the edge
states. (e,f) The intensity distribution diagrams of the eigenstates of
the edge modes correspond to (c,d), respectively. Here, we choose
ωA = h (ωB = 2h), gA = 1.2h (gB = 3.2h), and h = � in model I
and ωA = ωB = h, gA = gB = 1.2h, and h = � in model II. It can
be seen that there is one propagating edge mode in each edge of the
zigzag ribbon.
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are dispersionless (group velocities are zero). In other words,
the edge modes do not propagate in a real ribbon and only
localize in two edges. However, when we introduce the third
dimension, the situation is different. This can be seen from
the projected band structures along the x direction of models
I and II, which are defined as the eigenvalues of Eqs. (4)
and (5) with respect to the wave vector kz [shown in Figs. 3(c)
and 3(d) respectively]. Figures 3(e) and 3(f) are the intensity
spectra of the eigenstates of the two models, respectively. As
are shown in the two figures, the energies of the edge modes are
almost completely concentrated at the edge sides of the ribbon
lattice.

Furthermore, we can see from Fig. 3(c), in model I, at
certain kz the group velocities, e.g., the slopes of the two curves
in gap, of the two edge modes have different magnitudes but
with the same direction. For model II, at certain kz the group
velocities of the two edge states have the same magnitude
but with a different direction, as shown in Fig. 3(d). The
propagation of the edge modes of model I can be explained by
the shape of the projected band structure in plane (E,kx). We
have found, as long as the conditions ϕA = ϕB and gA 	= gB

are satisfied, the top and bottom energy bands of model I
are curved with the same shape [bend upward as shown in
Fig. 3(c)]. Therefore, the two edge modes bend upward as
well. Here in Fig. 3(c) the slope of the top one has the same
sign as the bottom one. It means that the edge modes at two
boundaries in model I can move along the same direction. For
model II, the case can be considered as the quantum Hall effect
on the square lattice with 	 = 1

2 , in which the edge modes at
the two boundaries move along the opposite direction.

It should be noted that the edge modes here correspond
to propagation in the frequency space, so this means that, for
model I, the two edge modes (0 < kz < π ) would cascade
down in frequency at different rates as well as be confined
at two boundaries of the real 2D resonator ribbon. However,
in model II, due to the group velocities being equal with the
opposite direction, the confined edge mode (0 < kz < π ) at
the left moves downward in frequency axis while that at the
right moves upward at the same rate. For π < kz < 2π , just
the opposite is true. That is, frequency conversion occurs. The
interaction between resonators and the external modulation
field introduces transition of the edge modes up or down
in frequency. The frequency conversion of the edge modes
is topologically protected by Weyl points, which suggests
that our setup might be used as a transducer in certain
applications.

For obtaining a clear impression, we numerically simulate
the frequency conversion of the edge modes shown in Figs. 4(a)
and 4(b) corresponding to models I and II, respectively. To do
this, we numerically solve the time-dependent Schrödinger
equation,

i
∂

∂t
ψ

A (B)
r,l = −

∑
j

h
(
ψ

B (A)
r−Rj ,l

+ ψ
B (A)
r+Rj ,l

) − 
A (B)
r ψ

A (B)
r,l−η

−
A (B)∗
r ψ

A (B)
r,l+η + fpumping, (6)

where the subscript η is the hopping unit in frequency axis, 
Rj

is the resonator position in real space, 
A (B)
r = gA (B)e

−iϕA (B) ;
fpumping is the pumping term. For model I, gA 	= gB and

FIG. 4. Simulation of the steady-state photon-field distribution
for model I and II with 40 resonators in the x axis. (a) The two edge
modes of model I. Both of the two edge modes clearly propagate along
the frequency axis from top to bottom. (b) The two edge modes of
model II. Compared with model I, the two edge modes have opposite
velocity, and the left edge mode propagates from top to bottom and
the right from bottom to top. In the two figures, the resonators at the
leftmost and rightmost of the x axis of the ribbon are pumped by light
with a frequency marked by triangles at the frequency axis. Here, the
parameters of two models are chosen to be the same as in Fig. 3 and
the intensity of the pumping light is 50h for (a,b).

ϕA (B) = 0 while for model II gA = gB and ϕA = 0, ϕB = π .
Then we can obtain the steady-state intensity distribution
|ψA (B)

r,l |2. Here we assume the frequency axis is semi-infinite
(i.e., from l = 0 to l → ∞). Actually, in simulation we choose
l = N with N a larger number. The pumping lights inject at a
position indicated by a triangle in the figures. The intensity of
the edge modes is concentrated at both edges and propagates
in the same direction of frequency axis for model I but in
the opposite direction for model II, as shown in the two
figures.

We note that the edge modes of the two models will only
propagate in the frequency dimension, not in the real resonator
array. To create propagation of the edge modes in the real
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arrays, according to the method proposed in Ref. [18] we
should make a hard boundary in frequency dimension. It can
be realized by introducing some impurities into every disk
resonator to cause great dissipation of one of modes in the
disk resonators. Thus we create a sharp boundary at the mode
site in frequency dimension. As a result, the edge modes can
propagate along the plane perpendicular to the frequency axis.
Another method is to consider the group velocity dispersion
in the disk resonator [19]. The deviation between the lth
mode and the sideband mode ωm

0 + l�m will be increased
with the increasing of l. As a result, the coupling between the
adjacent modes with higher l is missing, which is equivalent to
providing a natural boundary in the frequency space. Thus the
mode with frequency close to the missing mode can propagate
within the real resonator arrays.

There is no deep understanding yet about the topological
stability of the edge modes of the photonic Weyl system with I

symmetry broken. Here we can refer to the scenario in the Weyl
semimetal [22–24]. Due to a similar Hamiltonian, we think
that in our case the topological protection for the edge modes
follows from the separation of the Weyl points in momentum
space and from the chirality of the edge modes, just like the
Weyl semimetal. For model I, although the edge modes have
the same chirality, the topological protection still exists as
long as the Weyl points are not too close together, while for
model II, the Harper-Hofstadter model with flux 	 = 1

2 and
Weyl points ensures that the two topologically protected edge
modes with opposite chirality are present.

In addition, we would single out that the kz in Figs. 3(c)
and 3(d) does not represent momentum. Here kz are the recip-
rocal lattice vectors of frequency space and thereby represent
time. With this in mind, we can avoid misunderstanding about
the energy band structure of model I. As shown in Fig. 3(c), it
seems that the edge modes have the same energy as some
bulk modes at certain E which might lead to resonance
between the edge modes and bulk modes, thereby affecting
the stability of the edge modes. However, since the edge and
bulk modes with the same E correspond to different kz, it
means they can only have the same energy at two different
times. Therefore, for general static disorders, the edge modes
cannot be resonant with the bulk modes at any time even
though disorder scattering exists. However, if the disorders are
time dependent, for example, with appropriate time-periodic
frequency, the mixing of the modes would occur. Its physical
mechanism is just like the external time-dependent modulation
for the system described in Sec. II.

It is well known that the Weyl point is accompanied by the
Fermi arc surface states whose dispersion curve connects two
Weyl points with opposite topological charge in momentum
space. We obtain the similar result in the band dispersion
spectrum of this ribbon, as Figs. 5(a) and 5(b) show. For
model I, the intersection of band dispersion in a projected
band structure in Fig. 3(c) traces out a straight line segment
terminating at the two Weyl points with opposite topological
charge localized at ky = 2π/3, kz = 2π/3 and ky = 4π/3,
kz = 2π/3 as ky is varied [Fig. 5(a)]. The result for model II is
shown in Fig. 5(b) with a line segment connecting two Weyl
points at ky = 2π/3, kz = π/2 and ky = 4π/3, kz = π/2. The
trajectories are analogous to “Fermi arcs” in electronic Weyl
semimetals.

FIG. 5. The analog of “Fermi arcs” (black dotted lines in figures)
in two models. The red circle (yellow diamond) denotes topological
charge with +1 (−1). Here, the values of the parameters are chosen
to be the same as Figs. 3(c) and 3(d). (a) The “Fermi arcs” in model
I; (b) the “Fermi arcs” in model II.

VI. PROPOSALS FOR EXPERIMENTAL REALIZATIONS

The theoretical predictions discussed above can be realized
using currently available materials and techniques.

A microresonator-based frequency comb can be produced
by the interaction of a continuous-wave pump laser of a known
frequency with the modes of an ultrahigh-Q microresonator
via the Kerr nonlinearity [16,17]. And the fabrication tech-
niques of high-Q microdisks arranged in well-ordered arrays
over large-scale areas already exist now [25].

Beyond that, for model I we can carefully choose the radii
and materials of resonators to break I symmetry as well as
to make the frequency spacing between adjacent modes of
resonators in sublattice A and B satisfying p�A = q�B in
the synthetic dimension. The coupling between lattice sites
in the synthetic dimension can be realized by a change in
the concentration of charge carriers via femtosecond pulsed
laser pumping [26]. This can produce an ultrafast tuning of the
dielectric tensor of the resonator material at a frequency that
is comparable to the frequency separation of adjacent modes.

As for model II, since we assume ϕA = 0, only the phase ϕB

in sublattice B should be performed by external modulation,
which can be achieved by adding an electro-optic modulator
at sublattice site B, in which the total electric field undergoes
a modulation with specific phase and frequency [27]. Using
this method, the coupling in the synthetic dimension as well as
the artificial magnetic field can be realized. Alternatively, the
phase ϕB can be generated by acousto-optic modulation [28],
but the coupling in the synthetic dimension should be produced
via an external laser pumping similar to that for model I.

VII. CONCLUSIONS

We provide a design for producing Weyl points and
associated phenomena in a 2D hexagonal lattice consisting
of high-Q microresonators. The 2D resonator array can be
mapped to a 3D lattice model via introducing a synthetic
frequency dimension. In the artificial 3D lattice, we show that
Weyl points can be produced by inducing I symmetry breaking
or an artificial gauge field. Thus the topological edge states
and analog of Fermi arcs can be produced. The possibility of
realizing the scheme by the current technique is discussed. The
proposal might be useful for the study of unique topological
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photonic phenomena on chips and open a way to design robust
photonic devices in integrated optics.

Note added in proof. Recently, we became aware of a similar
work [29]. They produce Weyl points in a 2D resonator lattice
by using methods analogous to this paper and the results are
consistent with ours.
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