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Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular
provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement
is thought to have been resource intensive to create in the first place, typically requiring either very strong
nonlinearities or nondeterministic preparation schemes with feedforward, which are difficult to implement.
Recently [K. R. Motes et al., Phys. Rev. Lett. 114, 170802 (2015)], it was shown that number-path entanglement
from a BosonSampling inspired interferometer can be used to beat the shot-noise limit. In this paper we compare
and contrast different interferometric schemes, discuss resource counting, calculate exact quantum Cramér-Rao
bounds, and study details of experimental errors.
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I. INTRODUCTION

A substantial fraction of the efforts of theoretical computer
science and physics is now invested in the discovery of
postclassical devices to demonstrate quantum supremacy.
Much still remains unknown about the fundamental limits and
complexity of quantum computing. One well-known example
of a device, which exhibits a quantum advantage over its
classical counterpart, came about as a result of the discovery
of the Hong-Ou-Mandel effect, enabling interferometers to
estimate unknown variables with improved sensitivity [1].
It was subsequently shown that bosonic NOON states could
achieve asymptotically better sensitivities than a comparable
device using only classical techniques, with an increasing
number of probe photons N [2]. Like universal quantum
computers, however, at present the experimental overhead
for producing NOON states is prohibitive, making practical
implementation infeasible [3,4]. Further, although much is
now known about metrology using two-mode interferometers,
far less is known about larger multimode networks [5].

Recently, the advent of postclassical devices, such as
BosonSampling [6,7], has drawn new interest to the capa-
bilities of potentially more practical passive linear optical
networks. These networks generate complicated number-mode
entanglement across an exponentially large state space. If such
an optical network is fed with uncorrelated single photons,
the output probabilities in the multimode Fock basis are
given by complex matrix permanents, known to be #P-hard to
compute exactly and strongly believed to be computationally
intractable quantities to estimate accurately [8,9]. Boson-
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Sampling has already attracted much experimental interest
as a simple approach for performing a truly postclassical
computation [10–14].

Recently, the sensitivity of a passive linear optical setup,
consisting of single photons fed into a specific multimode
interferometer and photodetection at the output, was investi-
gated [15,16]. In this paper we study a much larger class of
devices and further show how the sensitivity can be maximized
in this scenario given realistic constraints on the unknown
phase. We show that the device achieving this optimality is
not only more sensitive than the one proposed in Ref. [15],
but also far easier to construct. We achieve this by using the
Fisher information formalism, which provides insight into the
role of each different component of the interferometer and
aids an explicit calculation of the phase sensitivity for the
optimal network, a result that was only postulated in Ref. [15].
Additionally, we provide an analytic calculation of the phase
sensitivity for the optimal network from matrix permanents,
which is an improvement on the conjectured result of Ref. [15].
Our main result shows that for n < 7 photons we achieve
sub-shot-noise limited sensitivity with a passive multimode
linear optical device with O(n) optical elements. We believe
that this work is experimentally achievable with the current
temporal infrastructure from Ref. [14].

Although previous models for supersensitive quantum
devices have shown better theoretical scaling in the limit of
larger average photon number, many of these schemes admit a
more pessimistic scalability from an engineering perspective.
These devices generally are not robust enough under noise
models, require nonlinear components, have a large overhead
in state preparation, or employ measurement schemes that are
difficult to implement [17,18]. For instance, a Mach-Zehnder
interferometer (MZI) with a two-mode squeezed vacuum input
and parity detection performs extremely well in the noiseless
regime, but degrades quickly under dephasing and loss and
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requires high-efficiency number-resolving detectors whose
ranges must scale with the average photon number [19].

This paper is organized as follows. In Sec. II we describe
our generalized architecture and discuss quantum Fisher
information and quantum Cramér-Rao bounds. In Sec. III
we investigate the choice of measurement interferometer in
relation to the state preparation interferometer. In this section
we also discuss various phase strategies for �̂ and find the
optimal phase strategy. In Sec. IV we describe how different
choices of V̂1 and V̂2 affect device sensitivity and find their
optimal structure. In Sec. V we investigate how loss and
dephasing errors affect the device performance.

II. ARCHITECTURE AND QUANTUM
CRAMÉR-RAO BOUNDS

To begin, let us consider the quantum Fourier transform
interferometer (QuFTI) architecture, as shown in Fig. 1,
invented by Motes et al. A QuFTI consists of three particular
components: an input state |ψin〉 = |1〉⊗n of n single photons;
an n-mode interferometer with a transfer matrix V1 that
performs the operation V̂1, followed by a generalized linear
phase evolution �̂ that encodes the unknown phase ϕ, and a
second interference with a transfer matrix V2 (enacting the
transformation V̂2); and coincidence photodetection at the
output. We will let the phase-evolved state be defined as
�̂V̂1|ψin〉 ≡ |ψϕ〉, where �̂ = exp(i

∑
j n̂j fjϕ), with n̂i being

the number operator for mode i. We define the measurement
to be a second evolution with a transfer matrix V2 followed by
an array of on-off (non-number-resolving) photodetectors (see
Fig. 1) [15]. The most compelling aspect of the Motes et al.
architecture is that it is composed of single-photon inputs,
passive linear optics, and on-off detection, all of which
can be implemented on an integrated photonic chip [20].
These simplifications forego many of the technical challenges
required to generate NOON states [4] and are experimentally
scalable, but only provide sub-shot-noise sensitivity for a small
number of modes.

FIG. 1. Generalized architecture for the quantum Fourier trans-
form interferometer. We consider optimizations over V1,V2 ∈ SU(n)
and phase strategies �̂, together with single-photon inputs and
photodetection in each mode. The Motes et al. architecture can be
restored when V2 = V

†
1 , where V1 is the n-mode quantum Fourier

transform and fj = (j − 1), with j being the mode number.

The interferometers V̂1, V̂2, and �̂ can be varied without
jeopardizing the scalability of the device (see Fig. 1). Hence,
the following question arises: What are the optimal choices of
V̂1, V̂2, and �̂ that yield maximum phase sensitivity? In this
work we answer this question.

To evaluate the phase sensitivities of different architectures,
we utilize the quantum Fisher information (QFI) formalism,
which we will briefly summarize. Once an unknown parameter
ϕ has been encoded onto a quantum state ρϕ , the QFI F(ρϕ)
bounds the achievable precision to which ϕ can be estimated,
with an unbiased estimator, through the quantum Cramér-Rao
bound (QCRB) [21],

F(ρϕ) � 1/�2ϕ, (1)

where �2ϕ is the variance in the estimate of ϕ. The QCRB can
be saturated when one can measure multiple copies of ρϕ in an
optimal basis [22]. As such, the QFI is one way to quantify the
information content of a quantum state related to an unknown
parameter. If ϕ has been encoded into a pure probe state |ψ0〉 by
a unitary operator |ψϕ〉 = eiĤϕ|ψ0〉, then the QFI is given by
F(|ψϕ〉) = 4(〈Ĥ 2〉0 − 〈Ĥ 〉2

0), where 〈·〉0 = 〈ψ0| · |ψ0〉 [22].

III. PHASE STRATEGIES

We begin evaluating the Motes et al. framework by
investigating the role of V̂2. We note that we measure
|ψϕ〉 = �̂V̂1|ψin〉 by sending it through the inverse optical
network V̂2 = V̂

†
1 and detecting it using single-photon detec-

tors is an optimal measurement strategy around ϕ = 0. This
measurement strategy projects |ψϕ〉 onto a basis containing
|ψϕ=0〉. Projecting onto this basis was shown to be an optimal
measurement in Ref. [22]. To see this more directly, we
can compute the probability P for the observable event
Ô = (|1〉〈1|)⊗n of detecting a photon at each output of the full
interferometer V̂2�̂V̂1 to be P = 1 − ϕ2F(|ψϕ〉)/4 + O(ϕ4)
when V̂2 = V̂

†
1 , as shown in Appendix A. This allows us to

directly compute the phase sensitivity �ϕ obtained from the
error propagation formula in terms of QFI,

�ϕ =
√

〈Ô2〉 − 〈Ô〉2∣∣ d〈Ô〉
dϕ

∣∣
= 1/

√
F(|ψϕ〉) + O(ϕ2). (2)

Thus, for ϕ � 0, the error propagation formula saturates the
QCRB and hence the measurement choice of V̂2 = V̂

†
1 is

optimal; this is one of the primary results of this paper. Note
that when V̂2 = V̂

†
1 , as the precision calculated by the error

propagation formula can be obtained by computing the QFI,
the problem of maximizing the phase sensitivity of the device
is equivalent to maximizing F(|ψϕ〉).

We turn now to the choice of fi , which is a particular choice
of phase strategy as shown in Fig. 1. As has been noted before,
by passing a probe state through an unknown phase shift k

times, the effect of the phase shift is magnified [23]. If the
total phase shift kθ applied to a mode can be measured to a
given precision �2(kθ ) = α, then the precision to which θ is
measured is increased by a factor of k2, so �2θ = α/k2. This
effect can be used to increase the precision of any procedure,
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including those comprised entirely of classical techniques.
Therefore, in order to compare different quantum strategies
fairly, we impose the normalization condition∑

i

fi = 1, (3)

i.e., we assume they all utilize the same total accumulated
phase. Now we show that, given this normalization con-
dition, the highest QFI can be achieved using a single-
phase strategy, i.e., fj = δj,1. Analogous to the Motes et al.
framework, the unknown phase is encoded by the unitary
�̂ = exp(i

∑
j n̂j fjϕ). It follows that

1

4
F(|ψϕ〉) =

∑
j,k

fjfk Cov0(n̂j ,n̂k)

�
∑
j,k

fjfk Var0(n̂h)

= Var0(n̂h), (4)

where the covariance is Cov0(A,B) ≡ 〈AB〉0 − 〈A〉0〈B〉0 for
commuting operators A and B and mode h is taken to be the one
with the largest photon-number variance. If the phase shift was
only put in mode h, then the QFI would simply be 4 Var(n̂h).
We conclude that distributing the phase shift between two or
more modes leads to a QFI, which is less than or equal to the
QFI obtained if the phase shift is only in mode h. If we assume
that the variance is largest in mode 1, which can be ensured by
the choice of V̂1, the optimal phase distribution is fj = δj,1.

To illustrate the performance of differing phase strategies,
we consider a range of functions representing trial strategies
(Table I). For each phase strategy, we can use the result of
Ref. [8] to numerically compute the phase sensitivity �ϕ using
matrix permanents of V1�V

†
1 . This technique is summarized in

Appendix B and the result is plotted in Fig. 2. From this figure
it is apparent that there is no improvement in phase sensitivity
by distributing the phase throughout the modes and restricting
ϕ to one mode is most effective. This result is consistent with
the conclusions by Berry et al. as shown in Ref. [24].

With this in mind, we would like to now compare the
architecture described in the original Motes et al. work to
the phase strategy described above that optimizes the QuFTI.
However, we have already made this comparison, since the
work of Motes et al. possesses the linear phase strategy
fj = j − 1, whose normalized strategy is plotted against
the optimal strategy in Fig. 2. This is contradictory to the

TABLE I. Functions representing trial phase strategies. Note that
many of the strategies are not normalized to satisfy Eq. (3), but can
easily be made so by dividing each by

∑n

j=1 fj .

Phase strategy Function

sublinear f sub
j = √

j

linear f lin
j = j − 1

quadratic f
quad
j = j 2

exponential f
exp
j = 2j

δ f δ
j = δj,1

Sublinear

Linear

Exponential

Quadratic

Delta

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 2. Phase sensitivity scaling of different phase strategies
for the QuFTI suggests that widening the phase gap between
modes improves the phase sensitivity. The shot-noise limit used for
comparison here is defined to be 1/

√
n, which is the best possible

classical scheme for n photons and any number of modes greater
than 2. The region where the sensitivity falls below one indicates
supersensitivity. It is apparent that the δ-phase strategy is optimal.

preliminary results from Motes et al., which showed that for
all n, the phase sensitivity of Motes et al. beats the shot-noise
limit. This is because Motes et al. used a different resource
counting technique called ordinal resource counting (ORC).
The ORC strategy found in the work of Motes et al. did not
obey the normalization condition on the phase shifts that we
have imposed here in Eq. (3). For that reason, the comparison
by Motes et al. with the classical strategy chosen to represent
the shot-noise limit was unfair. The subsequent erratum of
Ref. [15] is indeed consistent with the normalized result here.
Thus, when the normalization condition of Eq. (3) is imposed,
the linear phase strategy used by Motes et al. is suboptimal.

In Fig. 3 we show the phase sensitivity of the QuFTI with
the δ-phase strategy and compare it to the shot-noise limit
and the Heisenberg limit. We see that we do better than the
shot-noise limit for n � 6 photons, which is well above what

Shot�noise

Optimal QuFTI

Heisenberg

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 3. Phase sensitivity of the optimal QuFTI, which consists
of the δ-phase strategy for �̂, V̂2 = V̂

†
1 , where V̂1 is the n-mode

quantum Fourier transform, compared to the shot-noise limit and the
Heisenberg limit.
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is experimentally achievable today, suggesting that this type
of quantum metrology might be the best route forward in the
medium term.

IV. OPTIMAL UNITARY

In this section we investigate the effect that V̂1 has on the
phase sensitivity, when using the previously found optimal
components V̂2 = V̂

†
1 and fi = δ1,i , the best phase strategy. In

Sec. III it was shown that when the phase shift is placed in
the first mode, i.e., fi = δ1,i , then F(|ψϕ〉) = 4 Var0(n̂1). For
an initial state of single photons |1〉⊗n fed into V̂1, we can
explicitly compute, as shown in Appendix C, that F(|ψϕ〉) =
8(1 − ∑n

i=1 |V1,i |4), where V1,i is the ith element in the top
row of V1. Physically, this means that the Fisher information
is dependent only on the coupling between the input modes
and the first output mode. This is perhaps to be expected,
since only the first mode contains the phase to be interrogated.
Additionally, we can compute the QFI when k photons |k〉⊗n

are fed into each mode of V̂1 to be

F(|ψϕ〉) = 4

(
1 −

n∑
i=1

|V1,i |4
)

k(k + 1), (5)

which is maximized for V1 with |V1,i | = 1/
√

n for all elements
on the top row. Note that while the QuFTI satisfies this
constraint, it does not do so uniquely. To be as general as
possible then, we consider any unitary with this structure
to be “uniform” and any interferometer with these unitaries
to be a quantum uniform multimode interferometer (QUMI).
A QuFTI is hence a special case of a QUMI. Remarkably,
because the phase sensitivity of the device relies only on the
values of the first row of the matrix V1, a network can attain
the maximum sensitivity with only O(n) beam splitters; this is
a significant improvement over the Motes et al. architecture’s
QuFTI, which requires O(n2) beam splitters to implement. A
simple implementation of the architecture introduced here is
shown in Fig. 4, where the reflectivity amplitude of the beam
splitter acting on modes 1 and k should be 1/

√
k. Setting

|V1,i | = 1/
√

n gives

Fmax(|ψϕ〉) = 4k(k + 1)(1 − 1/n). (6)

FIG. 4. Simple architecture that maximizes the phase sensitivity
of our scheme. Subscripts on the kets denote mode number. The beam
splitters (vertical gray slabs) should be adjusted so that V1 is a QUMI,
namely, the transmissivity amplitude t of the beam splitter acting on
mode 1 and mode k should be 1/

√
k.

Average

Shot�noise

Minimum

Optimal QuFTI

Heisenberg

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 5. The quantum Fourier transform is optimal for the δ-phase
strategy. However, it is not uniquely so; we know that any uniform
unitary is also optimal for this strategy.

This reduces to the result of Holland and Burnett when
n = 2 modes [25]. Members of our team have shown that
it is possible to make k-photon Fock input states from only
single photons using more advanced devices, such as reliable
quantum memory, which is beyond current experimental
techniques [26].

For an input state of single photons the optimal precision
obtainable is therefore

�ϕ = 1/
√

8(1 − 1/n). (7)

One can also arrive at the same result by an explicit calculation
of matrix permanents when V = V1 = V

†
2 , which we provide

in Appendix D.
To investigate the sensitivity of a device in which V̂2 = V̂

†
1

but wherein V̂1 is not optimal, we computed the phase
sensitivity of 10 000 random unitaries in SU(n) (for each
n) and plotted the best phase sensitivity (i.e., minimum �ϕ)
and average phase sensitivity of this set against the phase
sensitivity of the optimal QUMI (see Fig. 5). It is now clear
that the best strategy is to use the δ-phase function and the
QUMI. We call this overall best strategy, which has the optimal
δ-phase shift, combined with the uniform weighted first row
of the unitaries the optimal QUMI. Note that, although an
experimental implementation of the QuFTI is not optimal
for QUMIs, we use the QuFTI for analytic calculations and
numerics, since the matrix itself has useful symmetries and
still produces the same output statistics as any QUMI.

V. EXPERIMENTAL ERRORS

Quantum states such as single photons are notoriously
difficult to manipulate. It is therefore important to consider
how various errors affect the quality of metrology protocols.
In particular we look at loss and dephasing. In particular,
such effects generate mixed states for which the QFI is very
difficult to calculate. In addition, the QFI is not practically
instructive if one cannot perform an optimal measurement due
to technological limitations.

For example, when loss has been applied to a quantum
state, the optimal measurement strategies can require exotic
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techniques such as nondemolition measurement and feedfor-
ward [18]. Therefore, calculating the QFI is not necessarily
a good indicator of the performance of a practical strategy.
Because of these issues, we study the performance of the
architecture by directly calculating the sensitivity of specific
measurement outcomes from implementable measurement
techniques.

A. Loss analysis

Loss is a considerable issue to overcome in any experiment
utilizing single photons. One hurdle when considering photon
loss in the scheme presented here is that, if the device
relies solely on bucket photon detectors, a loss event is
indistinguishable from a photon collision event. Hence, for
small ϕ, it may be the case that the loss dominates the
number of perceived collision events and one is unable to
obtain any useful information about ϕ. Employing limited
photoresolution (i.e., detectors with the capability of distin-
guishing between one and two or more photons) can partially
solve this issue, though photon losses corresponding to one
of the photons in a collision event will still continue to
degrade the signal. Of course, the advantage of being able
to employ simple photodetectors is lost in the case that one
retains the exact architecture previously presented. However,
it is possible to implement pseudo-number-resolving detectors
for small numbers of photons by simply coupling the output
modes with one or more additional vacuum modes via beam
splitters; the output of these additional modes then can use
the simpler photodetector. Members of our team have also
done an exhaustive calculation of loss in the context of
BosonSampling in [27,28], where both spatial and temporal
losses are considered.

If enough is known about the error profile beforehand, one
can still extrapolate information about ϕ despite the noisy
data. For example, if each photon has an independent and
equal chance of being lost, then the sensitivity �ϕ degrades
continuously according to the photon fidelity 
. Suppose P (ϕ)
corresponds to the probability of measuring the |1〉⊗n outcome.
If at most a single photon is lost, the probability of detecting
an unambiguous collision event becomes

Pr(collision) = (1 − P )[
n + (n − 2)(1 − 
)
n−1]. (8)

This can then be substituted into the error propagation formula
of Eq. (2) to give the sensitivity �ϕ (see Fig. 6).

Recent experimental advancements have shown that linear
optical networks, particularly for networks of the size consid-
ered here, can be constructed with very low loss. Networks
(with even more modes and optical elements than we consider
here) have been demonstrated with up to 99% efficiency [29];
additionally, single-photon detectors have achieved up to 93%
efficiency [30]. Given the rapid advances in engineering optical
networks, photon loss may soon be a negligible source of error
for the devices considered in this paper.

B. Dephasing analysis for the optimal QuFTI

Another type of error often present in optical networks is
dephasing. Here we will analyze dephasing in the optimal

FIG. 6. Sensitivity of lossy three- and six-photon QUMIs (solid
lines) compared to their respective shot-noise limits (dashed lines) at
ϕ = 0.001. The probability on the x axis corresponds to the loss rate
for each photon independently in the device.

QuFTI architecture and compare it to NOON states in a
standard Mach-Zehnder interferometer.

Dephasing with a single phase shift is modeled with
dephasing only occurring on the mode with the unknown
phase. In the rest of the interferometer, dephasing can be made
very close to zero. We insert a random phase shift χ in the
single mode, which is a Gaussian random variable of zero
mean 〈χ〉 = 0 but nonzero second-order moment 〈χ2〉 = �χ ,

e±iϕ 	→ e±i(ϕ+χ). (9)

When both ϕ,χ � 1, the approximate form of P derived in
Appendix D becomes

P = 1 − 2n − 2

n
(ϕ + χ )2 + O(ϕ4) (10)

and correspondingly

〈P 〉 ≈ 1 − (2n − 2)(ϕ2 + �χ )

n
, (11)

Shot noise

Optimal QuFTI

NOON

Heisenberg

5 10 15 20

0.0

0.2

0.4

0.6

0.8

FIG. 7. Dephasing with the optimal QuFTI for ϕ = 0.1. This is
compared to the shot-noise limit, the Heisenberg limit, and the NOON
state with dephasing [31]. The shaded regions represent the dephasing
regime of 0 � �χ � 0.005 for both the optimal QuFTI and NOON
states.
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which is then substituted into Eq. (2) to derive the phase
sensitivity. Using this result, we numerically plot the phase
sensitivity with dephasing in Fig. 7 for 0 � �χ � 0.005
and ϕ = 0.1. We see that, in the sub-shot-noise regime, the
optimal QuFTI interferometer is comparable in dephasing to
the NOON state in a MZI, another well-known metrological
scheme.

It is important to note that when �χ is close to or larger
than the value of

√
ϕ, the estimator P is very poor because

it is unable to differentiate between a positive or negative
value of ϕ + χ . Indeed, for ϕ = 0 and �χ = 0, the formula in
Eq. (2) does not converge since 〈P 〉ϕ=0 = 1. A straightforward
solution is to use a known controlled phase to shift the average
phase far enough away from the peak of P so that, together
with the noise, the phase is predominantly positive or negative.

VI. CONCLUSION

We have considered a variety of different phase and unitary
strategies for implementing a passive, single-photon input
multimode metrological scheme. We have shown that the
optimal architecture for n single photons is a QUMI, which
equally couples each mode to a single-phase resource in one
of the arms of the interferometer, followed by the inverse of
the QUMI. For n < 7, the sensitivity of the optimal QUMI
is sub-shot-noise. In the asymptotic limit of n photons, the
sensitivity approaches a constant. This limit, however, assumes
all n photons are used in a single experiment. The scheme can
always be made to beat the shot-noise limit asymptotically by
choosing an architecture with n < 7 modes and repeating the
experiment many times.

Perhaps the most attractive feature of our proposed device
is that it can be implemented with only passive linear optics,
single-photon sources, and on-off detectors. In addition, it does
not require any of the complicated phase arrangements from
the scheme of Motes et al. The technology to implement
the optimal architecture is essentially identical to that of
BosonSampling and is achievable with experiments that have
already been implemented. For a discussion on how this
compares to quantum metrology using squeezed light, see
Appendix E.
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APPENDIX A: MOTES et al. USE OPTIMAL
MEASUREMENT

Here we link the analysis of Motes et al. to the quantum
Fisher information formalism and point out that the mea-
surement strategy employed is optimal. To start, we calculate
the probability that all photons exit the same mode that they

enter,

p(k, . . . ,k) = |〈k|⊗m|V̂ −1[I + iϕĤ − ϕ2Ĥ 2/2

− iO(ϕ3)]V̂ |k〉⊗k|2

= |1 + iϕ〈Ĥ 〉 − ϕ2〈Ĥ 2〉/2 − iO(ϕ3)|2

= 1 − ϕ2(〈Ĥ 〉2 − 〈Ĥ 2〉) + O(ϕ4)

= 1 − ϕ2F(|ψ〉)/4 + O(ϕ4), (A1)

where we have denoted the unitary performed by the linear
optical network as V̂ . Entering p(k, . . . ,k) into the error
propagation formulas,

�ϕ =
√

P 2 − P∣∣ ∂P
∂ϕ

∣∣ , (A2)

and evaluating at ϕ = 0 gives

�ϕ = 1√
F(|ψ〉) . (A3)

Hence, this measurement basis is optimal as the quantum
Cramér-Rao bound is saturated.

In fact, in a footnote in Ref. [22] it was noted that a measure-
ment strategy, which projected onto the state exp(iϕĤ )|ψ〉,
would indeed be optimal. This is effectively the measurement
that is being performed in the Motes et al. framework making
an explicit calculation, as shown here, somewhat redundant.

APPENDIX B: CONNECTION BETWEEN �ϕ AND
MATRIX PERMANENTS

Here we summarize how matrix permanents can be used to
compute the phase sensitivity �ϕ of an interferometer of the
form of Fig. 1. We wish to numerically compute the probability
P of measuring a single photon in each mode, which is the
observable 〈Ô〉 by which we obtain an estimate of ϕ. Since the
input state and measurement is fixed across every strategy, we
can use the result of Ref. [8] to compute P = |perm(Û )|2 =
|perm(V̂ �̂V̂ †)|2, where perm(·) refers to the matrix permanent
given by the equation

perm(Û ) =
∑
σ∈Sn

n∏
i=1

ui,σ (i), (B1)

with Sn the symmetric group of degree n. The phase sensitivity
�ϕ is then found by applying the formula for standard error
propagation as in Eq. (2), which can be rewritten in terms of
P as

�ϕ =
√

P − P 2∣∣ dP
dϕ

∣∣ . (B2)

APPENDIX C: OPTIMAL STATE PREPARATION

Here we calculate the QFI for the Motes et al. setup with
k photons entering each mode and the phase shift confined to
a single mode. As before, let V̂ = V̂1 = V̂

†
2 . Putting the phase

shift in the first mode, the QFI can be calculated using the
Heisenberg picture. Labeling the modes in between V̂ and V̂ †

as bi , where i = 1,2, . . . ,m, then the generator of the phase
shift is Ĥ = b̂

†
1b̂1. By utilizing b̂

†
i = ∑

j Vi,j â
†
j [32] it is clear

013810-6
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that only the top row of V is important. Now we evaluate

〈ψ |b̂†1b̂1b̂
†
1b̂1|ψ〉 =

∑
i,j,q,l

V1,i V̄1,jV1,q V̄1,l〈k|⊗mâ
†
i âj â

†
q âl|k〉⊗m

=
∑

q,l,q =l

|V1,q |2|V1,l |2〈k|⊗mâ
†
l âq â

†
q âl|k〉⊗m +

∑
q,l

|V1,q |2|V1,l|2〈k|⊗mâ
†
l âl â

†
q âq |k〉⊗m

=
∑

q,l,q =l

|V1,q |2|V̄1,l |2k(k + 1) + k2 =
∑

q

(
1 − |V1,q |2

)|V̄1,q |2k(k + 1) + k2

=
(

1 −
∑

q

|V1,q |4
)

k(k + 1) + k2 (C1)

and similarly

〈ψ |b̂†1b̂1|ψ〉 =
∑
q,l

V1,q V̄1,l〈k|⊗mâ†
q âl|k〉⊗m

=
∑

q

|V1,q |2〈k|⊗mâ†
q âq |k〉⊗m

= k. (C2)

The QFI is

4

(
1 −

∑
q

|V1,q |4
)

k(k + 1). (C3)

So to maximize the QFI,
∑

q |V1,q |4 should be minimized,
which is achieved for |V1,q | = 1/

√
m, giving a QFI of

4
(
1 − 1/m)k(k + 1). (C4)

When the number of modes equals 2 this reduces to the case
studied by Holland and Burnett [25]. We note that the only part
of V that played a role in this calculation was the magnitudes
of the elements in the top row. Therefore, instead of a QFT
circuit, a series of m − 1 beam splitters will also be optimal.

APPENDIX D: DERIVATION OF �ϕ FROM
MATRIX PERMANENTS

In order to derive the analytic form of �ϕ from Eq. (B2), we
first need the matrix entries of the entire network Û = V̂ �̂V̂ †.
For a single unknown phase shift ϕ in the first mode, �̂ has
the matrix form

�j,k = δj,k(eiϕ)δj,1 . (D1)

Although any choice of uniform V̂ , such that |Vj,1| =
1/

√
n, should be optimal for sensitivity, for this derivation

we will choose V̂ to be the n-multimode QuFTI, which shares
this property. The matrix entries of the entire network become

Uj,k = (V �V †)j,k =
n∑

l,m=1

Vj,l�l,mV
†
m,k =

n∑
l,m=1

1√
n
ω(j−1)(l−1)

n︸ ︷︷ ︸
Vj,l

δl,meiϕδl,1︸ ︷︷ ︸
�l,m

1√
n
ω(m−1)(1−k)

n︸ ︷︷ ︸
V

†
m,k

= 1

n

[
eiϕ +

n∑
l=2

ω(j−1)(l−1)
n ω(l−1)(1−k)

n

]
= 1

n

[
eiϕ +

n∑
l=2

(ω(j−k)
n )(l−1)

]
= 1

n

[
eiϕ +

n−1∑
l=1

(ω(j−k)
n )l

]
(D2)

=
{

1
n

[eiϕ + n − 1] j = k

1
n

[eiϕ − 1] j = k
= 1

n
[eiϕ + (δj,k)n − 1]. (D3)

For j = k, it is easy to see the sum in Eq. (D2) should be n − 1
since each term is simply 1l = 1. For j = k, the result follows
from the fact that the sum of all nth roots of unity is zero,

0 =
n∑

l=1

ωl
n. (D4)

The proof for the above follows directly from the geometric
series and it easy to see that it extends to a sum over ω

(j−k)
n as

well.

Now that we have the matrix entries of the network, we can
compute the permanent of Û = V̂ �̂V̂ † which is, by definition,

perm(U ) =
∑
σ∈Sn

n∏
j=1

1

n
[eiϕ + (δj,σ (j ))n − 1]

= 1

nn

∑
σ∈Sn

n∏
j=1

[eiϕ + (δj,σ (j ))n − 1]. (D5)

Suppose σk is some permutation with k fixed points, recalling
that a fixed point of a permutation σ is a value j ∈ {1,..,n}
such that σ (j ) = j (also referred to as a partial derangement);
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then the product in Eq. (D5) corresponding to σk is

n∏
j=1

[eiϕ + (δj,σk(j ))n − 1] = [eiϕ + n − 1]k[eiϕ − 1]n−k.

(D6)

The sum in Eq. (D5) can now be rewritten in terms of a
sum over the number of fixed points in a permutation, whose
coefficient Dn,k enumerates all permutations in Sn with k fixed
points. The quantities Dn,k are referred to as the rencontres
numbers,

Dn,k = n!

k!

n−k∑
j=0

(−1)j

j !
. (D7)

The permanent is thus

perm(U ) = 1

nn

n∑
k=0

Dn,k[eiϕ + n − 1]k[eiϕ − 1]n−k. (D8)

We are mostly interested in the behavior of perm(U ) for small
ϕ, where the phase sensitivity is optimal. To simplify the
remaining calculations, we focus our attention on the Taylor
expansion of Fn[ϕ] ≡ perm(U ) around the point ϕ = 0, up to
second order,

Fn[ϕ] ≈ Fn[0] + F ′
n[0]ϕ + 1

2F ′′
n [0]ϕ2. (D9)

We can find Fn[0] easily by noting that, because of the
product with [eiϕ − 1]n−k the only nonzero term in Eq. (D8)
corresponds to k = n,

Fn[0] = 1

nn
Dn,n[1 + n − 1]n = 1. (D10)

Similarly, the only nonzero terms in F ′
n[0] must be derivatives

of either k = n or k = n − 1. Since Dn,n−1 = 0, we need
only concern ourselves with the derivative of the k = n term.
Applying the chain rule gives

F ′
n[0] =

[
1

nn
Dn,n[eiϕ + n − 1]n

]′

ϕ=0

=
[

1

nn
Dn,nn[eiϕ + n − 1]n−1ieiϕ

]
ϕ=0

(D11)

=
[

1

nn
1 × n[1 + n − 1]n−1i

]
(D12)

= nn

nn
i = i. (D13)

Evaluating F ′′
n [0] is only marginally more difficult. The k = n

term can be evaluated by straightforward application of the
product rule to Eq. (D11). Also, although the second derivative
of the k = n − 2 term may be nonzero and contains a product,
it is only so for the second derivative of [eiϕ − 1]2; the other
terms originating from the product rule are zero. Hence, F ′′

n [0]
has only three nonzero terms

F ′′
n [0] =

[
1

nn
Dn,nn[eiϕ + n − 1]n−1ieiϕ

]′

ϕ=0

+
[

1

nn
Dn,n−2[eiϕ + n − 1]n−2[eiϕ − 1]2

]′′

ϕ=0

=
[

1

nn
Dn,nn(n − 1)[eiϕ + n − 1]n−2(ieiϕ)2

]
ϕ=0

+
[

1

nn
Dn,nn[eiϕ + n − 1]n−1(ieiϕ)2

]
ϕ=0

+
[

1

nn
Dn,n−22[eiϕ + n − 1]n−2(ieiϕ)2

]
ϕ=0

= −
[

1

nn
(n − 1)nn−1

]
−

[
1

nn
nn

]
−

[
1

nn
2Dn,n−2n

n−2

]

= −
[
n − 1

n
+ 1 + 2Dn,n−2

n2

]
= −

[
n − 1

n
+ 1 + n(n − 1)

n2

]

= −
[

2n − 2

n
+ 1

]
= −3n − 2

n
. (D14)

Thus, Eq. (D9) becomes the simple expression

perm(U ) ≈ 1 + iϕ −
(

3n − 2

2n

)
ϕ2. (D15)

Recall that the probability of observing n photons, each exiting individual ports, is P = |perm(Û )|2. For small ϕ then,

P =
∣∣∣∣1 + iϕ −

(
3n − 2

2n

)
ϕ2

∣∣∣∣2

=
[

1 + iϕ −
(

3n − 2

2n

)
ϕ2

][
1 − iϕ −

(
3n − 2

2n

)
ϕ2

]

= 1 + iϕ − iϕ − 2

(
3n − 2

2n

)
ϕ2 − i2ϕ2 + O(ϕ4) = 1 − 2n − 2

n
ϕ2 + O(ϕ4). (D16)

Finally, �ϕ becomes

�ϕ =
√

P − P 2∣∣ ∂P
∂ϕ

∣∣ =
√

1 − 2n−2
n

ϕ2 − 1 + 4n−4
n

ϕ2

4n−4
n

ϕ
=

√
2n−2

n
ϕ2

2 2n−2
n

ϕ
= 1

2
√

2
√

n−1
n

, (D17)
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which is in agreement with Eq. (7). The ratio between �ϕ and
the shot-noise-limited phase sensitivity for n photons is then

�ϕ

1/
√

n
=

√
n2

8(n − 1)
, (D18)

which is greater than one (i.e., gives an advantage over shot
noise) for 2 � n � 6. This is more photons than what is
experimentally available today.

APPENDIX E: COMPARISON TO METROLOGY WITH
SQUEEZED LIGHT

Let us compare our digital approach to metrology here
to the more analog approach of coherent light mixed with a
single-mode squeezed vacuum in a balanced MZI [33]. The
phase uncertainty �ϕξ for that scheme can be written as [34]

�ϕξ = [n̄ξ exp(2r) + 2n̄ξ (n̄ξ + 1)]−1/2. (E1)

Here n̄ξ is the mean number of photons in the squeezed state
and r is the usual squeezing parameter [35]. We have also
taken n̄ξ = n̄α , the latter being the mean number of photons in
the coherent state, which is where the scheme is optimal [36].
This expression clearly has Heisenberg scaling in the limit of
infinite squeezing [or equivalently as n̄ξ = sinh2(r) goes to
infinity].

To compare with experiments we use the handy for-
mula [35]

r = 1
2 ln[10(dB/10)], (E2)

which allows us to plot �ϕξ as a function of dB, the latter
of which is the typical experimental number for determining
the amount of squeezing (see Fig. 8). As we can see,
�ϕξ always remains below the shot-noise limit and in fact
remains below the Heisenberg limit, approaching it from below
asymptotically as �ϕξ → 1

2n̄ξ
, which we call Heisenberg

scaling. It is now well known that the Heisenberg limit can
be beaten with squeezed vacuum [19]. The record squeezing
for optics in the laboratory is 15 dB (n̄ξ = 7.4), but 10 dB
(n̄ξ = 2.03) is more typical [37].

Hence 10 dB corresponds to a mean photon number of
only 2.0 in the squeezed vacuum mixed with a coherent state
scheme. If we then compare this result to our scheme here
in Fig. 2 for n = 2, our interferometer also reduces to a MZI
with a twin photon input and the result is well known to be
Heisenberg limited with �ϕ = 1/2 = 0.5. For the comparable
photon number in the squeezed plus coherent state MZI,

FIG. 8. Phase sensitivity of a squeezed vacuum (dot-dashed line)
mixed with coherent light on a MZI.

�ϕξ = 0.21, which is slightly better but assumes that the
squeezed vacuum input is in a pure state; this assumption
is rarely the case. The real issue here is that while our current
single-photon scheme has poor scaling at high photon number,
the squeezing scheme cannot experimentally reach the high
mean photon numbers required to approach the Heisenberg
limit in the asymptotic regime.

Lest we be led astray, the point of our paper here is to
demonstrate that the deterministic entanglement produced
in a linear interferometer via the generalized Hong-Ou-
Mandel effect (the same effect that generates number-path
entanglement in boson sampling) can indeed provide a
metrological advantage, even if small, for this particular class
of interferometers. Given that groups around the world are
rapidly developing optical interferometers with deterministic
on-demand single-photon sources, as well as detectors, all on
chip, it is reasonable to predict that systems with hundreds
of single-photon inputs will soon be available. Such a chip
would produce an exponentially huge amount of number-path
entanglement, as has been show in the context of boson
sampling [38]. If another scheme, such as multiparameter es-
timation or even superresolving imaging, can be found to take
advantage of this entanglement, it would mean a breakthrough
in quantum metrology, since only single photons, linear optics,
and photon on-off detection is required. In contrast, for the
squeezed vacuum approach, squeezed vacuum states with
n̄ξ = 100 will likely never be made in the laboratory, the device
that produces the squeezed vacuum in the first place requires a
strong optical nonlinearity, and the detection scheme typically
requires homodyning, all of which is difficult to implement on
chip.
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