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Dispersive radiation and regime switching of oscillating bound solitons
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We study resonant radiation generated by bound solitons in a twin-core fiber near a zero-dispersion wavelength,
in the presence of higher order dispersion terms. We propose a theoretical description of a dispersive wave genera-
tion mechanism and derive resonance conditions. The presence of a third order dispersion term leads to generation
of polychromatic dispersive radiation and transition from the regime of center-of-mass oscillations to the regime
of amplitude oscillations. Such a transition is not reproduced in the case of symmetric fourth order dispersion.
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I. INTRODUCTION

Radiative effects of solitary waves propagating in nonlinear
waveguides with high order dispersion have been attracting
attention for a long time [1]. This has a twofold motivation. On
one hand this problem is interesting from the point of view of
fundamentals of nonlinear waves dynamics. On the other hand
this research has practical importance. Optical supercontinuum
generation is one of the most prominent examples of practical
application of solitary waves [2].

In an optics context one of the most interesting phenomena
is Cherenkov emission of dispersive wave by solitons prop-
agating in nonlinear fibers with high order dispersion. This
effect was reported in 1986 [3] and described in detail in
Ref. [4]. A similar effect of transitional radiation of solitons
moving in periodical systems was considered in Ref. [5].

Interest in the interaction between the dispersive waves and
optical solitons was revived when it was found that it plays
a crucial role in optical supercontinuum generation [2]. In
particular it was found that Cherenkov radiation affects the
parameters of solitary waves and can even compensate for
Raman self-frequency shift [6,7]. The combined effect of the
soliton frequency shift and the resonant radiation modifies the
spectrum of the output radiation strongly.

The interaction of solitons with the dispersive waves, either
those emitted by the solitons themselves, or those left from the
initial pulse in the form of residual radiation, leads to further
enrichment of the spectrum of the output signal. The theory
of this interaction was developed in Refs. [8,9] and verified
experimentally in Refs. [10–12]. The role of the four-wave
mixing of the solitons and dispersive waves in supercontinuum
generation was revealed in a number of works [13–18].

Resonant radiation of oscillating solitary waves started with
the analysis of the radiation of solitons propagating in active
fibers with periodically varying linear gain [19]. Recently
an analogous effect was reported for conservative systems
with periodically varying parameters [20] and for oscillating
solitons propagating in spatially uniform single- [21] and
multi-mode [22,23] fibers and in filament light bullets [24].

The aim of this paper is to consider resonant radiation of
the bound state of solitons propagating in coupled fibers with
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high order dispersion. We show that the oscillations of the
solitons result in the generation of polychromatic radiation
with a discrete spectrum, and we discuss how this radiation
affects the dynamics of the bound state of the solitons.

A system of nonlinear Schrödinger equations is a widely
accepted model describing propagation of light in linearly
coupled optical fibers with higher order dispersion

i∂zun + D̂(i∂t )un + |un|2un + �um

= 0, n,m = 1,2 and n �= m, (1)

where � is a coupling parameter and D̂(i∂t ) is a dispersion
operator defined by

D̂(i∂t ) =
∞∑

n=2

βn

n!
(i∂t )

n.

Equations (1) have a rich plethora of linear and nonlinear
solutions. In spite of the fact that the equations have been
actively studied for many decades, new interesting solutions
have been found even in the linear limit; see, for example,
Ref. [25] where optical Airy breathers were reported.

For the purposes of this paper it is important that twin-
core fibers support a family of symmetric and antisymmetric
solitons. However, as the stability analysis shows, both of those
families are unstable after a certain threshold in η/� is reached
(soliton amplitude to coupling constant ratio) and evolve into
so-called asymmetric A and B states [26–28].

Extensive research into adiabatic quasiparticle theory pro-
vides more insights into dynamics of solitons interaction.
Launching the soliton into a single core of the fiber can, after
a power threshold is reached, lead to a periodic switching
[29,30]. The symmetric solution with equal amplitude solitons
of the same phase can be considered as an equilibrium point
[31]. Small perturbation of the solution either due to one of the
solitons being delayed with respect to another or uneven soliton
amplitudes can lead to soliton parameter oscillations near that
equilibrium. For example, a couple of delayed solitons can
form a bound state with the solitons oscillating near a common
center of mass [31,32]. High order dispersion and Raman
effects alter the stability of the symmetric and antisymmetric
solutions [33,34]; however, stable oscillating soliton states can
be found in the presence of high order dispersion as well.

In the present paper we provide a theoretical description of
resonant radiation generated by an oscillating pair of bound
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solitons. We also report a transition in the oscillation regime of
coupled solitons from center-of-mass oscillations to periodic
energy exchange between the channel, which is apparent only
in the setting of an asymmetric dispersive characteristic of the
medium.

II. RESONANCE CONDITION

We are interested in the evolution of two coupled soli-
tons with their parameters periodically changing, either in
the regime of amplitude oscillations, when the solitons in
the neighboring channels periodically exchange energy, or
in the regime of center-of-mass oscillations, when both
solitons sway around common center of mass. Both these
configurations can arise from an initial condition

u1,2(z = 0,t) = η1,2 sech[η1,2(t ± τ0)],

where η1,2 are the amplitudes of the solitons and 2τ0 is an
initial soliton delay.

An exact analytical solution to Eq. (1) is not feasible.
However, in the limit of weak coupling � � 1 and in the
absence of higher-order dispersion terms, an approximate
quasiparticle solution can be constructed by use of a common
ansatz of a soliton with slowly changing amplitude ηn(z),
position τn(z), phase φn(z), and frequency ω(z),

Un(z,t) = An(z,t) exp(iqz),

An(z,t) = ηn sech[ηn(t − τn)] exp(−iωnt + iφn),

where q = � + η2/2 is a wave number corresponding to a
symmetric soliton solution. A concrete expressions for the
slowly changing soliton parameters can be found either by
means of perturbation theory [32], using integrals of motion
[31], or by a variational approach [33]. As an example, let
us consider symmetric center-of-mass oscillations, with both
amplitudes being equal and constant η1 = η2 = η, and soliton
positions τn(z) being periodic functions of z with period
Zτ . The solitons are oscillating out-of-phase, τn(z + Zτ/2) =
−τn(z), which also means that

A1(z,t) = A2(z + Zτ/2,t). (2)

To account for dispersive radiation we seek for the solution
in the form of un = Un + ũn, where ũn is a small perturbation
on top of an approximate quasiparticle solution Un. Substitut-
ing this into Eq. (1) and linearizing with respect to small ũn

we arrive at the equation

i∂zũn + D̂(i∂t )ũn + 2|Un|2ũn + U 2
n ũ∗

n + �ũm

= R[Un,Um] − [
D̂(i∂t ) − 1/2 ∂2

t t

]
Un, (3)

where R[Un,Um] is a residue term left from substituting
quasiparticle solution Un in the original equation Eq. (1) in
the absence of higher order dispersion

R[Un,Um] = i∂zUn + 1/2 ∂2
t tUn + |Un|2Un + �Um.

Far from the solitons Eq. (3) simplifies to i∂zũn +
D̂(i∂t )ũn + �um = 0 and admits to a plane-wave solution
un = an exp [ik(ω)z − iωt] with parameters

k±(ω) = D̂(ω) ± �, [a1,a2]± = [1,±1]. (4)

This defines the asymptotics of the radiating states of Eq. (3).
The most important feature of the solution is that the upper
“+” branch of the dispersive curve is symmetric, while the
lower “−” branch is antisymmetric [35].

Because of the periodicity of quasiparticle solutions
U1,2(z,t) and property (2) we can represent it as a sum of
spatial harmonics in the form of the Fourier series[

U1(z,t)
U2(z,t)

]
=

∑
n

[ +1
(−1)n

]
Cn(t) exp[i(q + nk0)z],

where k0 = 2π/Zτ and Cn(t) is defined by an integral
Cn(t) = (1/Zτ )

∫ +Zτ /2
−Zτ /2 An(z,t) exp(−ink0z) dz. Here we can

note an important property in [U1,U2], namely, that even
spatial harmonics are symmetric and odd harmonics are
antisymmetric. Similar representations can be written for
both terms in the right-hand side of Eq. (3), R[Un,Um] and
(D̂ − 1/2 ∂2

t t )Un.
Dispersive radiation is generated due to a resonance

between one of the source terms in the right-hand side
and a radiating solution of Eq. (3), which happens when a
wave number of a source term matches a wave number of a
radiating solution (see Ref. [4] for details). Due to the opposite
symmetries of upper and lower branches of the dispersive
curves, as well as even and odd harmonics of the source, an
additional restriction applies: the upper branch is excited by
even harmonics, and odd harmonics excite the lower branch.
Following these statements we write the resonance conditions:

D̂(ω) + � = 2n k0 + q, (5a)

D̂(ω) − � = (2n + 1) k0 + q. (5b)

In the case of a moving source U1,2 we can employ Galilean
invariance of Eq. (1) and change to the solitons’ reference
frame. The resonance conditions in this case change to

D̂(ω) + � = 2n k0 + q + vω, (6a)

D̂(ω) − � = (2n + 1) k0 + q + vω, (6b)

where v is the central velocity of the coupled solitons. This
approach to resonance conditions is analogous to one used
earlier for higher-order solitons [21] and solitons in dispersion
oscillating fibers [20], but the situation is complicated by
double dispersion curve and alternating symmetries in soliton
harmonics and dispersive solutions.

The reasoning above can be repeated for pure amplitude
oscillations involving two solitons periodically exchanging
energies between the channels without any temporal delay:
a state that evolves from the initial condition with η1 �= η2 and
τ0 = 0. An intermediate regime, featuring both oscillation in
the soliton amplitudes ηn and central position τn, is not so
tractable. We can suppose that in the intermediate regime the
symmetry-based resonance exclusion would not hold, and all
resonances would contribute to the dispersive radiation.

III. SECOND ORDER DISPERSION

We start our numeric analysis with a simple case of second
order dispersion with D̂(i∂t ) = 1/2 ∂2

t t . To make the radiation
more prominent at shorter simulation distances we choose
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FIG. 1. Second order dispersion case. (a) Time domain and (b) frequency domain plots of the field intensity in the first channel of the
coupler |u1(z,t)|2 in logarithmic scale. The field in the second channel |u2(z,t)|2 is symmetric with respect to t = 0. (c, d) Number of photons
Nn and central soliton positions 〈tn〉 for both channels.

η = 2. It is known from the bifurcation analysis [26] that for
q �

√
1.2� the symmetric solution (in our case 2τ0 = 0) is

unstable and if launched evolves toward a stable asymmetric
A-type state. In order to avoid that we set the coupling � = 4.

Launching the solitons with an initial relative delay 2τ =
0.4 we observe propagation of a bound state with the solitons
oscillating near the common center of mass [for a time domain
plot of the first channel see Fig. 1(a)]. We also see that the pair
of solitons immediately begin to generate resonance radiation
(both time and frequency domain plots in Figs. 1(a) and 1(b).
Figures 1(c) and 1(d) display the first two moments of intensity
distribution functions |un(z,t)|2, namely,

Nn(z) =
∫ +T/2

−T/2
|un(z,t)|2 dt, (7a)

〈tn〉(z) = 1

Nn

∫ +T/2

−T/2
t |un(z,t)2| dt (7b)

as functions of distance z, where the integrals are taken
over a finite time window of T = 20. The integral Nn is a
characteristic of total energy attributed to a pulse, sometimes
also called a number of photons, and 〈tn〉 is the central position
of a pulse. In Figs. 2(c) and 2(d) we can notice that due to
shedding of dispersive radiation both solitons lose energy Nn.
However, an additional decay in the amplitude of position
〈tn〉 oscillations is present. This indicates that the internal
oscillation mode loses energy due to radiation damping.

In the output spectrum the dispersive radiation manifests
itself as two sharp peaks near ω ≈ ±6 [see Fig. 2(a) for the
spectral density of both channels at z = 50]. To compare
the simulated spectrum with the predictions of resonance
conditions (5) we take the field u1(z,t) in the simulation
domain and perform a two-dimensional Fourier transform,
moving into the ω-k plane. The intensity plot of the resulting
spectrum [Fig. 2(b)] clearly shows two branches of the
dispersive curve (parabolas starting at ±�) as well as a set of

solitons’ spatiotemporal harmonics (horizontal line). The line
passing through k = 6 is the fundamental n = 0 harmonics of
the soliton (k = q). The horizontal line below it is the n = −1
harmonics of the soliton. It does intersect with the upper branch
of the dispersive curve near ω ≈ ±4. However, due to the
different symmetries of the solution these resonances do not
contribute to the radiation. The horizontal line corresponding
to n = −2 harmonics (faint, passing through k = −13) is in
resonance with both the upper and the lower branches of the
dispersive curve. Due to the difference in the symmetry, the
resonance with the lower branch does not lead to generation of
dispersive waves. The only contributing resonance is between
the n = −2 harmonics of the soliton and the upper branch
of the dispersive curve, which is indicated by the cross-hair
pattern centered at the intersection points.

To confirm our reasoning about the soliton’s harmonic and
dispersive curves’ parity we additionally look at the case of
pure amplitude oscillations with η1 = 2.1, η2 = 1.9, and no
delay between the solitons 2τ0 = 0 [see Fig. 2(c)] and then the
case of a mixed regime with η1 = 2.1, η2 = 1.9, and 2τ0 = 0.4
[see Fig. 2(d)]. In the regime of pure amplitude oscillations
the same parity selection rule holds, as is evident from no
resonance between the n = −1 harmonic of the soliton and
the upper branch of the dispersive curve. In the case of a
mixed oscillation regime (η1 = 2.1, η2 = 1.9, and 2τ0 = 0.4)
no harmonic is either purely symmetric or antisymmetric,
rather all of them are asymmetric and thus every intersection of
the soliton’s harmonics with the dispersive curves contributes
to the dispersive radiation.

IV. THIRD AND FOURTH ORDER DISPERSION

We proceed with the case of third order dispersion using the
operator D̂ = −1/2 ∂2

t − iβ3/6 ∂3
t t t with β3 = 0.2. We probe

three different relative delays 2τ0 = 0.0, 0.1, and 0.4. Figure 3
demonstrates field intensity in time domain for all the relative
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FIG. 2. Second order dispersion case. (a) Output spectrum for a coupled state with initial delay of 2τ0 = 0.4 taken at z = 50. (b) ω-k
diagram of the field in the first channel u1(z,t) for η1 = η2 = 2; (c) the same diagram for the case of pure amplitude oscillations η1 = 2.1 and
η2 = 1.9, 2τ0 = 0; (d) mixed regime at η1 = 2.1, η2 = 1.9, and 2τ0 = 0.4.

delays 2τ0 probed. The case of no relative delay 2τ0 = 0
behaves exactly as a single soliton of a scalar equation in the
presence of third order dispersion perturbation, i.e., the soliton
generates monochromatic resonant radiation at the frequency
predicted by a resonance condition as is shown in Figures 4(a)
and 4(d). Introduction of a small relative delay 2τ0 = 0.1 leads
to a splitting of a single spectral line into a tight frequency pair
[Fig. 4(b)]. This additional spectral line is due to contribution
of the resonance between the n = −1 harmonic of a soliton
pair and the lower dispersive curve [compare with Fig. 4(d)].
However, a larger delay (in our simulations 2τ0 � 0.2) reveals
a more complicated dynamics. As an example, let us look
at the output spectrum in Fig. 4(c) for the extreme case of
2τ0 = 0.4. Aside from the pronounced spectral lines near
the spectrum spectrum of the solitons we can see that the
vicinity of Cherenkov resonance is filled with a number of

separated frequency pairs [inset in Fig. 4(c)]. The ω-k diagram
in Fig. 4(f) indicates, that in addition to a set of harmonics
corresponding to the center of mass oscillations of the soliton
pair, the wave number spectrum contains a series of additional
lines between the original harmonics. In addition to that, the
resonance exclusion based on the symmetries does not work
anymore, and every intersection between a dispersive curve
and a soliton harmonic contributes to the dispersive radiation.

To track the origin of the additional spatial harmonics in the
solitons’ spectrum in Fig. 4(d) we look at the moments Nn and
〈τn〉 in Fig. 5. Insets demonstrate input and output parts of the
simulation. As it is evident from the plots, the center-of-mass
oscillations (with period Zτ ≈ 0.7) decay rapidly [Fig. 5(b)].
The system, however, does not evolve towards a steady
state, but instead develops amplitude oscillations with period
Zη ≈ 1.4 [Fig. 5(a)]. There are known approximations for

0 10 20 30 40 50

z

−30

0

30

t

(a)

0 10 20 30 40 50

z

−30

0

30

t

(b)

0 10 20 30 40 50

z

−30

0

30

t

(c)

FIG. 3. Third order dispersion case. Time domain plots of intensity distribution in the first channel |u1| for the oscillating soliton states
(with η1 = 2.1 and η2 = 1.9) at different initial values of relative delay 2τ0. (a) The symmetric case 2τ0 = 0.0, (b) the case of 2τ0 = 0.1, and
(c) the case of 2τ0 = 0.4.
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FIG. 4. Third order dispersion case. Output spectra at z = 0 and ω-k diagrams for the oscillating soliton state (with η1 = 2.1 and η2 = 1.9)
at different initial values of relative delay 2τ0. (a, d) A symmetric case 2τ0 = 0, (b, e) the case of 2τ0 = 0.1, and (c, f) the case of 2τ0 = 0.4.
Insets in (a, b, c) show the vicinity of Cherenkov resonance.

oscillation periods in both regimes provided that amplitudes
are small [31,32]. Unfortunately, neither weak coupling nor
small amplitude approximations are applicable to our case.

To compare this to the case of symmetric fourth or-
der dispersion we consider the dispersion operator D̂ =
−1/2 ∂2

t t + β4/24 ∂4
t t t t with β4 = 0.1. Launching the solitons

with initial relative delay of 2τ0 = 0.4 does not lead to
the oscillation regime switching; see Figs. 6(c) and 6(d).
Indeed the output spectrum and the ω-k diagram at Fig. 6(b)
are similar to the case of second order dispersion. We can
propose a preliminary hypothesis that in the presence of an
asymmetric dispersion profile center-of-mass oscillations of
a soliton pair become unstable, while the amplitude oscilla-

tions are not affected by such a perturbation. The detailed
analysis of the regime stability lies outside the scope of the
current paper.

V. CONCLUSIONS

In this paper we have considered resonant radiation of
oscillating bound states of solitons propagating in the coupled
fibers with high order dispersion. The resonant condition is
derived analytically, and it is shown that the parity of the
soliton bound state defines the parity of the radiated dispersive
waves. An excellent agreement between the frequencies of
the radiation predicted by the resonance condition and the
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amplitude solitons η1 = η2 = 2 with significant temporal delay 2τ0 = 0.4 [corresponds to Figs. 4(c) and 4(f)]. Black line is the average of N1

and N2 demonstrating the loss of total energy by the soliton pair.
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FIG. 6. Fourth order dispersion case. (a) Output spectrum for a coupled state with initial delay of 2τ0 = 0.4 taken at z = 50. (b) ω-k
diagram of the field in the first channel u1(z,t).

positions of the spectral lines observed in direct numerical
simulations is demonstrated.

It is shown that the resonant radiation can be caused either
by the oscillations of the mutual delay between the solitons
or by periodic energy exchange between the solitons. The
oscillations of the mutual delay and the soliton amplitudes
have different periods and, consequently, lead to emission of
the resonant radiation of different frequencies. The mutual
delay and the amplitude oscillations can occur simultaneously
resulting in the formation of rich radiation spectrum. By
numerical simulations it was shown that the energy of the
oscillations goes into the resonant radiation and finally a
nonoscillating bound state of the solitons forms. The energy
of the solitons in the bound state decreases if the condition of
Cherenkov synchronism is fulfilled.

It was observed and investigated numerically that the recoil
from the resonant radiation can result in the drastic change of
the dynamics of the bound state of the solitons. In particular in
the case of symmetric (in the sense k → −k) dispersion two
identical solitons launched with a small delay in the first and
in the second fiber exhibit oscillations of the soliton mutual

delay, but the amplitudes of the solitons are not changing
during propagation. As is mentioned above the oscillations
slowly decay because of the radiation of the resonant mode.

However, in the case of asymmetric dispersion the oscilla-
tion of the soliton mutual delay decays much quicker and gives
rise to the quasiperiodical energy transfer between the solitons.
In their turn the oscillations of the soliton amplitudes result in
the radiation of resonant modes with different frequencies and
relatively slow decay with the propagation distance.

The reported results explain the dynamics of the bound
states of the solitons in coupled nonlinear fibers with high-
order dispersion and are important from the fundamental point
of view and can possibly be used for better understanding of
the process of supercontinuum generation in complex wave-
guiding systems, in particular in dual core silica fibers [36].
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