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Nonreciprocal quantum-state conversion between microwave and optical photons
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Optoelectromechanical quantum interfaces can be utilized to connect systems with distinctively different
frequencies in hybrid quantum networks. Here we present a scheme of nonreciprocal quantum-state conversion
between microwave and optical photons via an optoelectromechanical interface. By introducing an auxiliary
cavity and manipulating the phase differences between the linearized light-matter couplings, unidirectional state
transmission that is immune to mechanical noise can be achieved. This interface can function as an isolator,
a circulator, and a two-way switch that routes the input state to a designated output channel. We show that
under a generalized impedance matching condition the state conversion can prevent thermal fluctuations of the
mechanical mode from propagating to the cavity outputs and reach high fidelity. The realization of this scheme
is also discussed.
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I. INTRODUCTION

The past decade has witnessed enormous progress in the
study of opto- and electro-mechanical systems in the quantum
limit with experimental milestones such as the realization of
cavity cooling to the mechanical ground state [1–5]. Mechan-
ical resonators can be coupled to a broad variety of electronic,
atomic, and photonic systems, ranging from acoustic to optical
frequencies [6]. Optoelectromechanical systems can hence
serve as an interface to bridge devices with distinctively
different frequencies in hybrid quantum networks and advance
the development of scalable quantum processors [7–10].
Bi-directional state conversion and entanglement generation
between microwave and optical photons have been realized via
optoelectromechanical interfaces [11–17]. And a mechanical
dark mode that can facilitate high-fidelity state transfer has
been demonstrated [18–20].

Nonreciprocal devices, such as circulators and isolators,
are of crucial importance in the realization of noiseless and
lossless quantum networks [21–24]. In these devices, the
transmission of information is not symmetric. For example,
quantum states at the input of one mode can be transmitted to
the output of another mode, but not vice versa. Various effects
have been exploited to implement nonreciprocal devices,
including the Faraday rotation effect in magneto-optical
crystals [21,25,26], angular momentum biasing in photonic
or acoustic systems [27–29], optical nonlinearity [30], and
the Hall effect [31]. Nonreciprocity in topological photonic
devices has been implemented by generating effective mag-
netic fields and gauge phases with time-modulated param-
eters [32,33], and similar approaches have been studied
in quantum information applications [34–36]. Isolators and
circulators have been realized in microwave devices via
parametric pumping of system parameters [24,37,38], and a
graphic method was recently developed to facilitate the design
of these devices [39]. In several works [40–43], opto- and
electro-mechanical systems were studied for unidirectional
transmission of photon states. More recently, it was shown
that nonreciprocal state conversion between directly coupled
cavities can be achieved by controlling the relative phases
of the couplings in an optomechanical system [44,45]. It has
also been demonstrated that nonreciprocal state conversion

can be realized via quantum reservoir engineering [46,47].
In [48], unidirectional state transfer between microwave and
optical photons via two mechanical resonators was studied;
however, noise in the strongly damped mechanical resonator
can be transmitted to the cavity outputs and propagate to other
parts of the quantum network. In practice, coupling between
subsystems in different frequency ranges could induce serious
damage to the quantum coherence of the system. Hence,
despite the previous efforts, it is still challenging to implement
a nonreciprocal quantum interface that connects distinctively
different frequencies and is robust against mechanical noise.

Here we present a scheme of nonreciprocal state conversion
between microwave and optical photons via an optoelectrome-
chanical quantum interface, where mechanical noise can be
prevented from propagating into the cavity outputs. In our
system, no direct coupling exists between the microwave
and the optical cavities. Instead, an auxiliary cavity is used
to control the direction of the state flow. We find that by
manipulating the phase differences and by adjusting the
magnitudes of the linearized couplings to satisfy a generalized
impedance matching condition, nearly perfect nonreciprocal
state conversion can be achieved. The interface can function
not only as an isolator and a circulator but also as a two-way
switch that routes the input signal as demanded. This scheme is
closely related to the engineering of effective magnetic flux in
photonic and atomic systems [33–35]. During the conversion,
thermal fluctuations are largely confined within the mechanical
mode, which ensures high fidelity for the output state at
finite temperature. Our scheme can be realized with current
experimental technology [12–16], and it provides a practical
approach to achieving nonreciprocal conversion of quantum
information between microwave and optical frequencies.

This paper is organized as follows. In Sec. II, we present
the model, the Langevin equation, and the transmission matrix
between the input and output operators of the nonreciprocal
interface. We then study state conversion via this interface
at frequency ω = 0 and derive the optimal condition for
high-fidelity state transfer in Sec. III. The effect of the
mechanical noise is also discussed in this section. In Sec. IV,
we analyze the transmission matrix elements at frequency
ω and estimate the half-width of the transmission spectrum
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FIG. 1. (a) Schematic of a nonreciprocal optoelectromechanical
interface with cavity modes a,c,d and mechanical mode b. The
thick bars indicate the couplings Gα (α = a,c,d) and Gx . The
solid (dashed) arrows correspond to transmission matrix elements
of order 1 (

√
γm/�α). (b) Driving frequencies indicated by vertical

arrows together with their corresponding cavity resonances ωα and
detunings �α .

for high-fidelity nonreciprocal state conversion. In Sec. V,
we study this system in the weak-coupling limit using the
adiabatic elimination technique. The experimental realization
and practical parameters of this scheme are discussed in
Sec. VI. Conclusions are given in Sec. VII.

II. MODEL

Our system is an optoelectromechanical quantum interface
composed of three cavity modes a,c,d and one mechanical
mode b, as illustrated in Fig. 1(a). The auxiliary cavity d is
introduced to facilitate nonreciprocal state conversion between
cavities a and c, and it is directly coupled to cavity c.
Cavity a has distinctively different frequency from that of
c and d, e.g., a can be a microwave resonator and c, d are
optical cavities, or vice versa. A direct coupling between a
superconducting microwave resonator and an optical cavity
can excite quasiparticles in the superconductor, which destroys
the coherence of the microwave resonator [9]. In our setup,
no direct coupling exists between a and cavities c, d. All
three cavities are coupled to the mechanical resonator via
radiation-pressure interaction [49]. By applying strong driving
on the cavities, as shown in Fig. 1(b), the light-matter inter-
action can be linearized and the total Hamiltonian becomes
Ĥt = Ĥ0 + Ĥint in the rotating frame of the driving fields [50].
The uncoupled Hamiltonian is (h̄ = 1)

Ĥ0 =
∑

α

(−�α) α̂†α̂ + ωmb̂†b̂, (1)

where α̂ (b̂) is the annihilation operator of cavity mode α

with α = a,c,d (mechanical mode), �α is the detuning of
the cavity under the driving field, and ωm is the frequency of
the mechanical mode. We choose −�α = ωm � |Gα| with Gα

being the linearized coupling between cavity α and mechanical

mode b. The magnitude and phase of Gα can be controlled
by adjusting the driving field. Here the driving fields are
assumed to be in the linear regime, where the nonlinear
terms in radiation-pressure interaction are negligible. Under
the rotating-wave approximation, the fast-oscillating counter-
rotating terms in the interaction can be omitted and the
interaction Hamiltonian is simplified as

Ĥint =
∑

α

(Gαα̂†b̂ + G�
αb̂†α̂) + Gx(ĉ†d̂ + d̂†ĉ), (2)

where Gx is the photon hopping between cavities c and
d [51]. Details of the derivation of this Hamiltonian are given
in Appendix A. The Gα and G�

α terms in Eq. (2) generate
beam-splitter operations that are essential to cavity cooling
and quantum-state conversion.

The cavities have damping rates κα , which are assumed
to be due to external dissipation only, with the cavity input
fields α̂in(t). Similarly, the mechanical mode has damping
rate γm with the mechanical input operator b̂in(t) satisfying
〈b̂†in(t)b̂in(t ′)〉 = nthδ(t − t ′), where nth is the thermal phonon
occupation number at finite temperature. In Appendix B,
we show that this system always satisfies the stability
criterion [52].

We define a vector v̂ = [â,b̂,ĉ,d̂]T in terms of the annihila-
tion operators of the system modes. The Langevin equation
of v̂ in the interaction picture of Hamiltonian Ĥ0 can be
written as

idv̂/dt = Mv̂ + i
√

Kv̂in (3)

with the matrix

M =

⎛
⎜⎜⎝

−iκa/2 Ga 0 0
G�

a −iγm/2 Gc Gd

0 G�
c −iκc/2 Gx

0 G�
d Gx −iκd/2

⎞
⎟⎟⎠, (4)

the diagonal matrix K = Diag[κa,γm,κc,κd ], and the input
vector v̂in = [âin,b̂in,ĉin,d̂in]T [19]. For the output fields,
we let v̂out = [âout,b̂out,ĉout,d̂out]T. Following the convention
in [19] and using the input-output theorem [53], we have
v̂out = v̂in − √

Kv̂. The output states can then be obtained. In
Eq. (4), the Langevin equation of the annihilation operators is
decoupled from that of the creation operators, as the interaction
Hamiltonian (2) only contains beam-splitter operations. The
Langevin equation of the creation operators is

idv̂†dt = −v̂†M† + iv̂†
in

√
K, (5)

where v̂† = [â†,b̂†,ĉ†,d̂†] and v̂
†
in = [â†

in,b̂
†
in,ĉ

†
in,d̂

†
in].

Using the transformation ô(t) = ∫
dωe−iωt ô(ω)/2π for an

arbitrary operator ô, Eq. (3) can be converted to the frequency
domain with v̂(ω) = i(ωI − M)−1

√
Kv̂in(ω), where I is the

4 × 4 identity matrix. With the input-output theorem [53], we
derive v̂out = T (ω)v̂in, where

T (ω) = I − i
√

K(ωI − M)−1
√

K (6)

is the transmission matrix of this interface. It can be shown
that T (ω) is a unitary matrix.
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III. NONRECIPROCAL STATE CONVERSION

Without loss of generality, we assume that the couplings
Ga,c,x are positive numbers and Gd carries a nontrivial phase.
In this section, we consider the state conversion of an input
field in resonance with the cavity frequency, i.e., ω = 0 in
the interaction picture. To achieve nonreciprocity, it requires
that the transmission matrix element T13 describing state
conversion from c to a be zero and T31 describing state
conversion from a to c approach unity. With Eq. (6), we find

T13

T31
= Gc − 2iGdGx/κd

Gc − 2iG∗
dGx/κd

. (7)

The nonreciprocal conditions are Gd = e−iπ/2|Gd | with a non-
trivial phase (−π/2) and |Gd | = Gcκd/2Gx . The disappear-
ance of T13 results from the destructive quantum interference
between two possible paths for the state conversion. In one
path, the input state of cavity c is transferred to the output
of cavity a along c → b → a with a transmission amplitude
proportional to Gc. In the other path, the state transfer is facil-
itated by the coupling Gx and is along c → d → b → a with
an amplitude proportional to −2iGdGx/iκd . By choosing a
(−π/2) phase for Gd , the amplitudes of these two paths cancel
each other. In contrast, the two paths for the state conversion
from a to c have transmission amplitudes proportional to Gc

and −2iG�
dGx/iκd , respectively. Because G�

d = −Gd , the two
paths interfere constructively to enhance the matrix element
T31. The coupling Gx together with the coupling Gd provides
an indirect route for state conversion between modes a and c

that interferes with the direct transmission between a and c

via the coupling Gc. This interference is crucial for achieving
nonreciprocity.

To prevent loss of the input photon to other modes
in the interface, it requires that |Ti1/T31| 	 1 (i = 1,2,4).
By choosing Gx = (

√
κcκd )/2, we have |T41/T31| = 0. To-

gether with the nonreciprocal condition discussed above,
|Gd | = Gc

√
κd/κc, which is equivalent to the impedance

matching condition G2
c/κc = G2

d/κd between cavities c and
d [18,19]. At weak mechanical damping γm 	 4G2

c/κc,
|T21/T31| = √

κcγm/2Gc 	 1.
Under the above nonreciprocal and low-loss conditions, it

can be obtained that

T31 = 8GcGa

√
κaκc

4G2
aκc + 4G2

cκa + κaκcγm

. (8)

In Fig. 2, we plot this transmission matrix element as a function
of the coupling constant Gc at various Ga and γm values. Here
we choose the cavity damping rates to be κa,c/2π = 5 MHz.
Practical parameters of the damping rates and the coupling
constants will be discussed in Sec. VI. It can be shown
that for given values of Ga and γm, maximum transmission
can be reached at the optimal value of Gc =

√
γ̃mκc/2 with

γ̃m = �a + γm, where �α = 4G2
α/κα for each cavity mode.

In the weak-coupling limit with Gα 	 κα , �α corresponds
to the cooling rate that cavity α exerts on the mechanical
mode [1]. At the optimal coupling, the transmission matrix
element can be written as T31 =

√
�a/γ̃m. The transmission

can hence be enhanced by increasing the power of the driving
fields. With γm 	 �a , the maximum transmission T31 ≈
1 − γm/2�a , and high-fidelity nonreciprocal state conversion

T
3
1

Gc/2π (MHz)

Ga/2π = 5MHz

Ga/2π = 1MHz

FIG. 2. The transmission matrix element T31 vs the coupling Gc

under the impedance matching condition G2
c/κc = G2

d/κd and the
nonreciprocal conditions. Here κa,c,d/2π = 5 MHz and Ga/2π =
(1,5) MHz. The solid, dashed, and dotted curves correspond to
γm/2π = (0.005,1,2) MHz, respectively.

can be achieved. Furthermore, this optimal condition is
equivalent to �a ≈ �c = �d , which is a generalized impedance
matching condition for these three cavities.

The optimal condition also ensures that the output state
is robust against mechanical noise and unwanted photon
fields from other cavities. With T31 → 1, |T3j /T31| → 0
(j = 2,3,4), as the transmission matrix is unitary. The full
transmission matrix is

T =

⎛
⎜⎜⎝

−γm/�a i
√

γm/�a 0 −i(1 − γm/2�a)
i
√

γm/�a 1 − γm/�a 0
√

γm/�a

1 − γm/2�a i
√

γm/�a 0 0
0 0 i 0

⎞
⎟⎟⎠,

(9)

where we only keep the lowest-order (γm/�a) term in each
matrix element. Using this matrix, the output of cavity c can
be written as

ĉout = (1 − γm/2�a)âin + i
√

γm/�ab̂in, (10)

which is dominated by the input field âin. The contribution of
the mechanical noise b̂in is suppressed by a factor

√
γm/�a ,

which makes it possible to achieve high-fidelity nonreciprocal
state conversion at finite temperature. The output field of cavity
a is

âout = i
√

γm/�ab̂in − i(1 − γm/2�a)d̂in, (11)

where we omit the small term (−γm/�a)âin. This output
field contains no contribution from the input field ĉin, clearly
demonstrating the nonreciprocity of this scheme. Instead, it
is dominated by the input field d̂in with the mechanical noise
suppressed by the factor

√
γm/�a . For the output field of cavity

d, d̂out = iĉin, i.e., the input of cavity c is fully transferred
to the output of cavity d. Meanwhile, the mechanical output
b̂out ≈ b̂in to leading order with the mechanical noise mainly
confined in the mechanical mode.

For an input field at the single-photon level, it requires
that the cooperativity �a/γmnth > 1 for the state conversion
to be robust against thermal fluctuations. With practical pa-
rameters [3–5], γm/�a ∼ 10−6 can be reached. High-fidelity
state conversion is hence possible for nth < 106. It also shows
that the mechanical noise transferred to the cavities can be
suppressed by three orders of magnitude and will not spread
significantly to the cavity modes.
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This optoelectromechanical interface functions as a circula-
tor under the optimal condition. Quantum states are transmitted
with high fidelity along the route a → c → d → a [22].
Meanwhile, by flipping the phase of the coupling Gd from
(−π/2) to π/2, i.e., Gd = eiπ/2|Gd |, the cavity inputs are
transmitted coherently along the opposite direction c → a →
d → c, which can be illustrated by reversing the directions
of all the arrows in Fig. 1(a) and simultaneously changing
the labels from Tij to Tji . Furthermore, this interface can be
utilized as a two-way switch. By selecting the phase of Gd as
(−π/2) (or as π/2), the input state âin can be routed to the
output of cavity c (or d) on demand.

The auxiliary cavity d plays an essential role in this scheme.
Without cavity d, this interface is a standard three-mode
system with cavities a,c coupled to mechanical mode b [11–
16], where T13 ≡ T31 for input fields at arbitrary frequency and
state conversion is always symmetric [19].

IV. CONVERSION HALF-WIDTH

With Eq. (6), we study the frequency dependence of
the nonreciprocal state conversion. In Fig. 3(a), the matrix
element |T31| is plotted versus the frequency of the input field
âin under the optimal condition. Here ω = 0 corresponds to
the resonant frequency of the respective cavities. It can be
seen that |T31| has a finite half-width near ω = 0. Assume
that the cavity damping rates κα are all of the same order
of magnitude and the couplings Gα are all of the same
order of magnitude. To the first order of ω, the denominator
of T31 is −4�αO(κ3

α) + 4i[O(κ3
α) + �αO(κ2

α)]ω. With this
expression, we find that the half-width of the transmission
spectrum �ω ∼ min(�α,κα). For |Gα| < κα/2, �ω ∼ �α , and
for |Gα| > κα/2, �ω ∼ κα . This analysis reveals that the
half-width of the transmission spectrum is upper bounded by
the damping rates of the cavities.

For |Gα| > κα , two side peaks appear in the transmission
spectrum. At the position of these side peaks, |T13| for state
conversion from c to a also becomes significant, as shown in
Fig. 3(b). The state conversion at these frequencies is hence
not unidirectional. In contrast, near ω = 0, |T13| approaches

|T
3
1
|

|T
1
3
|

ω/2π (MHz)

FIG. 3. The transmission matrix elements (a) |T31| and (b) |T13|
vs the frequency of the input field ω under the optimal transmission
conditions. Here κa,c,d/2π = 5 MHz and γm/2π = 0.005 MHz. The
solid, dashed, and dotted curves are for Ga/2π = (1,5,10) MHz,
respectively.

zero with a finite half-width, which ensures that the input field
of cavity c is prevented from entering cavity a.

V. WEAK-COUPLING LIMIT

In the weak-coupling limit of |Ga| 	 κa , we can apply
the adiabatic elimination technique to study this system. We
set dâ/dt = 0 in the Langevin equation of operator â and
derive [11]

â = (−2iGab̂ + 2
√

κaâin)/κa. (12)

Substituting (12) into the Langevin equation of operator b̂, we
have

idb̂/dt = −i(γ̃m/2)b̂ + Gcĉ + Gdd̂ + i
√

γ̃mb̂′
in (13)

with b̂′
in =

√
γm/γ̃mb̂in − i

√
�a/γ̃mâin being the effective in-

put operator of the mechanical mode and γ̃m being the effective
damping rate of the mechanical mode. Under the condition
�a/γmnth � 1, b̂′

in ≈ −iâin. With (13), we find that modes
b,c,d form a closed loop. High-fidelity nonreciprocal state
conversion from b̂′

in to the output ĉout can be achieved under
the optimal condition derived in Sec. III. The loop also acts
like a circulator for the input states of these three modes. This
result agrees with the exact solution in Sec. III.

VI. REALIZATION

Optoelectromechanical interfaces that connect microwave
and optical systems have been realized in several experi-
ments [11–17]. Such an interface usually includes a microwave
cavity or field, an optical cavity or field, and a mechanical
resonator. To implement our scheme, an auxiliary cavity
coupled to either the microwave or the optical cavity with
time-dependent interaction needs to be added to the inter-
face [51]. When c, d are microwave cavities, their interaction
can be generated by coupling both cavities to an inductive
loop [54]. By modulating the magnetic flux in the loop, the
interaction in (A1) can be realized with its magnitude reaching
1–100 MHz. When c, d are optical cavities, time-dependent
coupling can be generated by connecting the cavities to other
cavity modes or waveguides [33,55,56]. For cavities in both
microwave and optical regimes, time-dependent interaction
can also be generated by coupling the cavities to a quantum
two-level system with tunable energy splitting, such as a qubit
and a defect [57,58].

For practical parameters, consider a mechanical mode
with frequency ωm/2π = 100 MHz and γm/2π = 100 Hz
(quality factor Qm = 106). For both microwave and optical
cavities, the damping rate can be κα/2π = 1–10 MHz and the
coupling strength Gα/2π can reach a few tens of MHz [3–5].
Assume, e.g., κα/2π = 5 MHz. Our scheme requires that
Gx/2π = 2.5 MHz. With |Gα|/2π = 5 MHz, the cooling rate
is �α/2π = 20 MHz, and �α/γm = 2 × 105.

In the previous sections, we neglect the effect of intrinsic
cavity dissipation on the state conversion. In practice, cavity
damping rate is a sum of the external damping rate κext

α ,
which describes the coupling between a cavity and its output
channels, and the intrinsic damping rate κ in

α , which describes
the dissipation of cavity photons in internal channels, with
κα = κext

α + κ in
α . For a finite intrinsic damping rate, the input
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field âin transmitted to the output field ĉout is reduced to be√
κext

a κext
c /κaκcT31âin [11]. Meanwhile, the output field ĉout

includes small contribution from the internal noise terms, such
as â(n)

in of cavity a. Both effects will decrease the fidelity of the
state conversion [11].

VII. CONCLUSIONS

To conclude, we present an optoelectromechanical quan-
tum interface for nonreciprocal state conversion between
microwave and optical photons without direct coupling be-
tween the microwave and the optical cavities. By introducing
an auxiliary cavity and manipulating the phase differences
between the couplings, nearly perfect nonreciprocal state
conversion can be achieved. The effect of the mechanical
noise is strongly suppressed under the impedance matching
condition, and single-photon level state conversion with high
fidelity is possible at finite temperature. This interface can
serve as an isolator, a circulator, and a two-way switch for input
photon states. Our scheme can be used to realize nonreciprocal
transmission of quantum information in hybrid quantum
networks involving distinctively different frequencies.
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APPENDIX A: HAMILTONIAN IN THE ROTATING FRAME

The original Hamiltonian of the optoelectromechanical
interface in Fig. 1(a) can be written as (h̄ = 1)

Ĥ ′
t =

∑
α

ωαα̂†α̂ + G′
αα̂†α̂(b̂ + b̂†) + ωmb̂†b̂

+
∑

α

[εα(t)α̂† + ε�
α(t)α̂]

+G′
x(t)(ĉ + ĉ†)(d̂ + d̂†), (A1)

where ωα is the frequency of cavity mode α̂ (α = a,c,d), G′
α

is the single-photon opto- and electro-mechanical coupling
between cavity α and mechanical mode b, εα(t) is the time-
dependent driving amplitude on cavity α, and G′

x(t) is the
time-dependent coupling between cavities c and d. The driving
frequency ωα

d for cavity α is below the resonant frequency ωα

of the respective cavity mode. By applying strong driving to

the cavities, the opto- and electro-mechanical couplings can
be linearized. In the rotating frame of the driving fields, the
Hamiltonian has the form

Ĥt =
∑

α

(−�α)α̂†α̂ + (Gαα̂† + G�
αα̂)(b̂ + b̂†) + ωmb̂†b̂

+G′
x(t)

(
eiωc

d t ĉ† + e−iωc
d t ĉ

)(
eiωd

d t d̂† + e−iωd
d t d̂

)
, (A2)

where �α = ωα
d − ωα − δωα is the detuning of cavity α, δωα

is the small shift of the cavity resonance due to the stationary
mechanical displacement, and Gα is the linearized coupling
between cavity mode α and mechanical mode b.

Let the detuning of cavity α be −�α = ωm and the
time-dependent coupling be G′

x = 2Gx cos(ωc − ωd )t . Under
the assumption that ωα,ωα

d ,|�α|,ωm � Gα,Gx , we apply the
rotating-wave approximation and neglect the fast-oscillating
terms in (A2). The rotating-frame Hamiltonian then becomes
Ĥt = Ĥ0 + Ĥint with Ĥ0 and Ĥint given by (1) and (2),
respectively.

APPENDIX B: STABILITY

The stability of this nonreciprocal quantum interface can
be determined from the eigenvalues of the matrix (−iM) with
M given by (4). Based on the Routh-Hurwitz criterion, this
system is stable when the real parts of all four eigenvalues of
(−iM) are negative [52].

It can be shown that the eigenvalues satisfy the following
equation:

λ4 + s3λ
3 + s2λ

2 + s1λ + s0 = 0. (B1)

The coefficients si (i = 0,1,2,3) can be derived as

s3 = (γm + κa + κc + κd )/2, (B2)

s2 = [κaκc + κaκd + κcκd + γm(κa + κc + κd )]/4

+ (
G2

a + G2
c + |Gd |2 + G2

x

)
, (B3)

s1 = G2
a(κc + κd )/2 + G2

c(κa + κd )/2

+ |Gd |2(κa + κc)/2 + G2
x(κa + γm)/2

+ [κaκcκd + (κaκc + κcκd + κaκd )γm]/8, (B4)

s0 = (
G2

aκcκd + G2
cκaκd + |Gd |2κaκc + G2

xγmκa

)
/4

+G2
aG

2
x + γmκaκcκd/16. (B5)

The conditions for stability include (1) all si > 0, (2)
s3s2 − s1 > 0, and (3) s3s2s1 − s2

1 − s0s
2
3 > 0 [52]. All three

conditions are fulfilled in our system with arbitrary parameters.

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.
Phys. 86, 1391 (2014).

[2] M. Metcalfe, Appl. Phys. Rev. 1, 031105 (2014).
[3] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K.

Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Nature (London) 475, 359 (2011).

[4] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature
(London) 478, 89 (2011).

[5] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J.
Kippenberg, Nature (London) 482, 63 (2012).

[6] M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today 65(7),
29 (2012).

[7] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin,
Phys. Rev. Lett. 105, 220501 (2010).

[8] S. Barzanjeh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali,
Phys. Rev. Lett. 109, 130503 (2012).

[9] L. Tian and P. Zoller, Phys. Rev. Lett. 93, 266403 (2004).

013808-5

https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1063/1.4896029
https://doi.org/10.1063/1.4896029
https://doi.org/10.1063/1.4896029
https://doi.org/10.1063/1.4896029
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1038/nature10787
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1103/PhysRevLett.105.220501
https://doi.org/10.1103/PhysRevLett.105.220501
https://doi.org/10.1103/PhysRevLett.105.220501
https://doi.org/10.1103/PhysRevLett.105.220501
https://doi.org/10.1103/PhysRevLett.109.130503
https://doi.org/10.1103/PhysRevLett.109.130503
https://doi.org/10.1103/PhysRevLett.109.130503
https://doi.org/10.1103/PhysRevLett.109.130503
https://doi.org/10.1103/PhysRevLett.93.266403
https://doi.org/10.1103/PhysRevLett.93.266403
https://doi.org/10.1103/PhysRevLett.93.266403
https://doi.org/10.1103/PhysRevLett.93.266403


LIN TIAN AND ZHEN LI PHYSICAL REVIEW A 96, 013808 (2017)

[10] Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys.
85, 623 (2013).

[11] L. Tian, Ann. Phys. (Berlin) 527, 1 (2015).
[12] J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N.

Cleland, Nat. Phys. 9, 712 (2013).
[13] T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen,

J. Appel, J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser,
and E. S. Polzik, Nature (London) 507, 81 (2014).

[14] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W.
Simmonds, C. A. Regal, and K. W. Lehnert, Nat. Phys. 10, 321
(2014).

[15] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W.
Lehnert, Science 342, 710 (2013).

[16] J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Nat.
Commun. 3, 1196 (2012).

[17] C. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H. Wang, Ann.
Phys. (Berlin) 527, 100 (2015).

[18] Y. D. Wang and A. A. Clerk, Phys. Rev. Lett. 108, 153603
(2012).

[19] L. Tian, Phys. Rev. Lett. 108, 153604 (2012).
[20] C. Dong, V. Fiore, M. C. Kuzyk, and H. Wang, Science 338,

1609 (2012).
[21] R. J. Potton, Rep. Prog. Phys. 67, 717 (2004).
[22] L. Deák and T. Fülöp, Ann. Phys. (Amsterdam) 327, 1050

(2012).
[23] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8, 821
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