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Intermodal nonlinear effects mediated optical event horizon in short-length multimode fiber
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The group-velocity-led optical event horizon (OEH) in optical fibers provides a convenient way to efficiently
control a weak dispersive pulse by a comparatively strong solitonic pulse. State-of-the-art experiments
demonstrating OEH make use of two different light sources, which increases the system complexity and cost.
Here, we propose an elegant and cost-effective approach to observe the OEH through intermodal nonlinear
interaction between azimuthally symmetric LP01 and LP02 modes of a specially designed triple-clad multimode
fiber through only a single pump. The simultaneous control over dispersion and the walk off of LP01 and
LP02 modes of the designed fiber pave the way for the OEH interaction. The LP02 mode possesses anomalous
dispersion, while the LP01 mode exhibits normal dispersion over the wavelength range of interest. Depending
upon the location of the input pump wavelength, the LP02 soliton can reflect a weak copropagating LP01 dispersive
pulse, which possesses the same carrier wavelength as the soliton. The findings of this work might be useful for
all-optical switching and also for the optical transistor action, where the increased feasibility is obtained by the
fact that the proposed approach does not require separate input wavelengths for the soliton and the dispersive
pulse. Moreover, a tunable pump source can be used to observe either a redshift or a blueshift in the dispersive
pulse.
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I. INTRODUCTION

An optical event horizon (OEH) [1] is a phenomenon in
which an intense soliton creates a strong refractive index
barrier for a comparatively weak dispersive pulse propagating
in the normal dispersion regime (NDR) at approximately
the same group velocity as the soliton. As a result, the
weak dispersive pulse is unable to penetrate the soliton and
gets reflected in the temporal domain. As a consequence
of the reflection, the dispersive pulse either accelerates or
slows down, leading to either a redshift or blueshift in its
wavelength [2] and an opposite shift in the soliton wavelength,
depending upon the sign of the differential group delay
(DGD) between the soliton and the dispersive pulse. The
OEH lies at the heart of the continuous or stepwise blueshift
of the supercontinuum (SC) spectrum in the NDR of the
fiber such that the dispersive pulse emitted by the soliton
itself is reflected multiple times by the soliton, leading to
the continuous or stepwise blueshift of the dispersive pulse
carrier wavelength [3–6]. Raman-induced redshifting and the
consequent temporal delay of the soliton helps it to catch its
own dispersive wave in the time domain in such a way that
the dispersive wave is always temporally localized behind the
soliton [4–6]. Although this effect is named dispersive-wave
trapping by the soliton, its underlying mechanism is the OEH
interaction occurring in a continuous fashion all along the
soliton trajectory. In the frequency domain, the effect manifests
in the ceaseless blueshifting of the dispersive wave all along the
fiber. The redshifting soliton catches its own dispersive wave
only once throughout the propagation, causing its reflection
and subsequent blueshift of the dispersive wave [3]. The
reflection forces the dispersive wave to be bounced temporally
far from the soliton, making further reflections impossible.
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This leads to stepwise blueshifting of the dispersive radiation.
The phenomenon has also been utilized to generate highly
coherent SC by launching two separate pulses simultaneously
in the fiber, one in the NDR, forming a dispersive pulse, and
another in the anomalous dispersion regime (ADR) [7,8],
traveling as a soliton, such that both pulses have nearly
identical group velocities. An octave spanning highly coherent
SC generation in a 5-μm silica strand in air was reported
in [7]. Demircan et al. [8] extended the scheme to obtain a
highly coherent SC spectrum covering the whole transparency
region of silica by proposing the scheme of cascaded soliton
dispersive-wave reflection in order to nullify the detrimental
effects of the Raman self-frequency shift of the soliton on the
OEH efficiency. In addition, the scheme enables the temporal
compression of broadband SC spectra into a short pulse. The
evolution of a dispersive pulse trapped in a solitonic cage is
studied numerically in [9,10] and experimentally in [11]. The
solitonic cage is realized by launching two temporally shifted
solitons in the fiber in which the dispersive pulse is trapped
between the solitons. The dispersive pulse approaches each
soliton in an alternative fashion and gets reflected a number
of times. This multiple-reflection phenomenon leads to the
back-and-forth wavelength conversion of the dispersive pulse.
The key mechanism behind the process is the OEH, which
is exploited to realize all-optical switching, as demonstrated
in [12,13]. The connection between the frequency shifting
of a dispersive pulse at an OEH and the cascaded four-
wave mixing (FWM) was established recently in [14]. Under
favorable conditions, the OEH interaction also changes the
soliton parameters considerably in addition to influencing the
dispersive pulse. This prospect of OEH has been employed to
generate optical rogue waves in [15–17].

The phenomenon of OEH can be categorized under the
more general area of wave reflection. In the context of fiber
Bragg gratings, the temporal reflection of a weak probe pulse
by a strong pump pulse was reported in the 1990s [18,19]
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and was named the optical push-broom effect. Recently, a
considerable amount of work has been done on the temporal
analog of the reflection and refraction [20,21], and it has been
shown that the optical pulses undergo a change in frequency
on the temporal reflection and refraction when they encounter
a temporal boundary separating two different refractive-index
regions. The effect is equivalent to the reflection and refraction
of optical beams on the spatial boundary, which change the
emergent angle (direction) of the beam. In the temporal analog,
the change occurs in the frequency. The mode analysis of the
temporal waveguide was reported recently in [22,23]. The
reflection at the temporal boundary can be mimicked by
exploiting the OEH effect, although there are also other means
to establish a temporal boundary.

The OEH effect results from the cross-phase modulation
(XPM) interaction between the soliton and dispersive pulse.
Apart from the XPM, the soliton and the dispersive wave can
also interact through FWM. The theoretical and experimental
study of the phase-matching conditions and the efficiency of
the nonlinear FWM interaction between the soliton and the
dispersive pulse was carried out in [24,25]. A recent study [26]
established the phase-matching and efficiency calculations for
the FWM interaction between a soliton and a cross-polarized
dispersive pulse.

The OEH interaction reported so far in the literature
represents the simplest scenario, in which both the dispersive
pulse and the soliton pulse belong to the same spatial mode
of the waveguide. In order to achieve an OEH interaction to
realize all-optical switching or optical transistor action, one has
to use two different wavelengths possessing approximately the
same group delay. In other words, to have an all-optical control
on a pulse at a desired carrier wavelength, one has to launch a
second pulse with a separate carrier wavelength, which should
be selected approximately such that the condition for OEH
is fulfilled. The need for two different input wavelengths
adds complexity to the system and also increases the cost.
However, this issue can be resolved by utilizing separate
spatial modes of the fiber such that one of the modes is in
the anomalous dispersion regime and the other mode exhibits
normal dispersion at the desired wavelength. Depending upon
the DGD between the modes, one can then launch two separate
pulses that have the same carrier wavelength but belong to
different modes. The initial temporal delay between these
modes can be adjusted to achieve an efficient OEH interaction.

In the present work, we propose a triple-clad silica
fiber (TCSF) supporting multiple modes in order to con-
firm that the OEH interaction between different spatial
modes can indeed occur. We design the TCSF in such
a way that the modes which we are interested in exhibit a
walk-off length of the order of a few centimeters so that a
sufficient intermodal interaction might occur between them for
a femtosecond pump. Depending on the sign of the walk-off
length, the dispersive pulse propagating in one of the modes
gets reflected by the soliton in the other mode, leading to
either a redshift or blueshift in the spectrum of the former. In
some cases we also observe radiation generated at wavelengths
other than that of the reflected radiation. Through our extensive
numerical simulations, we investigate and confirm their origin.
We also derive the phase-matching conditions (PMCs) for all
the new spectral components generated in the propagation.

FIG. 1. Left: Schematic cross section of proposed TCSF with
overlaid refractive index profile, indicated by the dashed line. Right:
Mode profiles of the LP01 mode (top) and LP02 mode (bottom) at
1100 nm.

Solutions of PMCs agree well with our numerical simulation.
This paper is organized as follows. In Sec. II we propose the
TCSF design and perform its modal analysis. In Sec. III, we
numerically solve the pulse propagation problem and study in
detail the effect of various intermodal interactions. In Sec. IV,
we validate our results through analytical PMC calculations.
Finally, we conclude in Sec. V.

II. FIBER DESIGN AND MODAL CHARACTERISTICS

The schematic of a triple-clad silica fiber along with the
refractive index profile is shown in Fig. 1. The fiber has a
Ge-doped silica core with radius R1, low-index (F-doped)
silica trench with radius R2 surrounded by a Ge-doped silica
ring with radius R3, and fused silica as cladding. The fractional
molar Ge-doping concentration in the high-index silica core is
represented by X1, while it is denoted by X2 for the Ge-doped
silica ring (X2 < X1). The fluorine-doping concentration in
the silica trench is fixed at 2 wt %. The effective indices
of the various spatial modes guided in the structure can be
manipulated by changing the dimensions of various regions
and/or the Ge- and fluorine-doping concentrations.

The design we are interested in was previously fabricated in
[27]. The fiber reported in [27] exhibits anomalous dispersion
in the spectral region of 900–1200 nm for the higher-order LP02

mode, whereas the fundamental mode falls in the NDR in the
aforementioned wavelength range. This fiber was subsequently
used in [28] to generate femtosecond pulses near 1300 nm
utilizing intermodal phase matching between an LP02 soliton
and an LP11 dispersive wave. As mentioned earlier, we are
interested in designing a fiber which exhibits tremendous
flexibility to engineer the dispersion of the various modes
and simultaneously exhibit walk-off lengths on the order of
a few centimeters for the femtosecond pumping scenario.
Photonic crystal fibers (PCFs) with a smaller core radius
are a very promising platform for the dispersion engineering.
However, for very small core area, various modes show a
large DGD, which leads to an intermodal walk-off length
on the order of only a few millimeters [29]. On the other
hand, a large core fiber such as the graded-index fibers used
in recent multimode SC generation experiments [30–32] can
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TABLE I. Parameters of the TCSF.

X1 X2 R1(μm) R2(μm) R3(μm)

0.14 0.10 2 3 6

provide walk-off lengths on the order of centimeters. But
for these fibers the dispersion of various modes approaches
the material dispersion of the fiber material. This restricts
the flexibility to selectively enhance or suppress specific
intermodal nonlinear processes by dispersion control. The
proposed fiber overcomes all the bottlenecks experienced with
either PCFs or conventional graded-index fibers, providing
both the dispersion and walk-off controls simultaneously.

The modal analysis of the TCSF was performed using
the commercially available finite-element solver COMSOL

MULTIPHYSICS [33]. The refractive index dispersion of various
silica regions has been incorporated in the simulations [34,35].
Through extensive numerical simulations we found that for

the parameters listed in Table I, the TCSF exhibits an ADR
for the LP02 mode in the spectral region of 1000–1250 nm,
while the LP01 mode possesses normal dispersion in the same
wavelength range.

The normalized electric-field profiles of the LP01 and LP02

modes at 1100 nm are shown in Fig. 1.
Figure 2(a) shows the dispersion behavior of LP01 and LP02

modes, whereas the spectral dependence of delay for a 5-m-
long TCSF is plotted in Fig. 2(b). It is clearly evident that
the fiber presents dispersion suitable to launch a soliton in the
LP02 mode, while a small fraction of the energy from the pump
can be seeded to excite the dispersive pulse in the LP01 mode.
The group velocity of the LP01 and LP02 modes matches at
1170 nm, indicating that in a spectral region around 1170 nm,
a walk-off length of the order of centimeters can be achieved.

III. INTERMODAL NONLINEAR
INTERACTION: ANALYSIS

We have solved the multimode generalized nonlinear
Schrodinger equation (MM-GNLSE) from [36], as given in
Eq. (1), where the symbol β(p)

q denotes the qth-order dispersion
parameter of mode p. The parameters SK

plmn and SR
plmn are

the spatial overlap integrals between different spatial modes
predicting the strength of the Kerr and Raman interactions. For
linearly polarized modes of the fibers, SK

plmn = SR
plmn = Splmn.

In numerical simulations of multimode pulse propagation,
we consider only azimuthally symmetric modes LP01 and
LP02 of the fiber assuming that if a specific azimuthally
symmetric mode is launched in a multimode fiber, the
intermodal nonlinear interactions will transfer optical power
to the modes belonging to only that symmetry class as the
input mode. Therefore, p, l, m, and n take values of 1 or
2, representing the LP01 and LP02 modes, respectively, in
our analysis. The overlap integrals of the form Sppqq and
Spqpq describe the strength of the intermodal cross-phase
modulation (IMXPM). Spppp is responsible for intramodal
nonlinear effects. The remaining overlap integrals represent

FIG. 2. (a) Dispersion characteristics of the proposed TCSF D
and (b) output delay after 5 m of TCSF.

intermodal four-wave-mixing processes (IMFWM).
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We consider two different launching conditions, viz., (i) when
the fiber is excited by a 1150-nm pump and (ii) when the
pump is at 1180 nm. It should be noted that both these
pumping scenarios can easily be realized using a single laser
source which is tunable within a few tens of nanometers.
For all calculations, we assume that the pulses are launched
simultaneously in both the modes and possess a temporal
duration of 100 fs. We solve Eq. (1) using the standard
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FIG. 3. (a) Spectral (left) and temporal (right) evolution of the
LP01 mode in the TCSF when all the overlap integrals are taken
into account. (b) As in (a) but all the IMFWM overlap integrals are
switched off. (c) The same as (a) and (b) with all IMXPM overlap
integrals switched off. The parameters of the simulation are N1 = 0.2,
N2 = 1, λp = 1150 nm, and input pulse duration is 100 fs. The LP01

mode is launched prior to LP02 by 2 ps.

split-step Fourier method with an adaptive step-size algorithm
[37].

The evolution of the LP01 mode through 5 m of the TCSF
is shown in Fig. 3 (at 40-dB scale) when the light is launched
at 1150 nm. The LP01 mode is excited with a dispersive
pulse which has peak power of 110 W, corresponding to a
soliton order of 0.2. A fundamental soliton with peak power
of 7 kW is launched in the LP02 mode. At 1150 nm, the LP01

FIG. 4. Spectral (left) and temporal (right) evolution of the LP02

mode in the TCSF when all the overlap integrals are taken into
account. The parameters of the simulation are the same as those
in Fig. 3. The LP01 mode is launched prior to LP02 by 2 ps.

mode propagates at a slower group velocity than LP02, which
is apparent from Fig. 2(b). Therefore, in order to achieve
sufficient interaction between both modes, LP01 is launched
prior to LP02 by 2 ps. The corresponding evolution of the LP02

mode in the TCSF is shown in Fig. 4 (at 40-dB scale).
Figures 3(a) and 4 depict the propagation when all the

overlap integrals are taken into account. From Fig. 3(a), we
find that the LP01 mode disperses in time as it propagates. At a
distance of about 50 cm, the trailing edge of the LP01 dispersive
pulse meets the LP02 soliton [compare temporal evolutions of
Figs. 3(a) and 4]. Afterwards, from 50 cm to 1 m, the LP02

soliton crosses the LP01 dispersive pulse in the time domain.
The trailing edge of the LP01 dispersive pulse interacts with
the soliton to give an IMFWM peak at 1130 nm at a distance
of 80 cm. Finally, the leading edge of the dispersive pulse
gets reflected by the LP02 soliton at a distance of nearly 1 m
[marked with a horizontal dashed black line in Fig. 3(a)]. As
a consequence of reflection, the leading edge of the dispersive
pulse gets advanced in the time domain, producing a redshift.
The radiation at 1200 nm is an outcome of this reflection
process, i.e., OEH.

Besides those from the radiation at 1130 and 1200 nm, we
also observe a quite strong peak at 1115 nm and a weak peak at
1226 nm. As confirmed through PMC calculations discussed
in Sec. IV and the Appendix, the 1115-nm peak arises due
to the IMFWM between the LP02 soliton and the LP01 peak
generated at 1200 nm. The radiation at 1226 nm appears due to
the IMFWM between the LP02 soliton and the residual optical
power left in the LP01 mode at 1145 nm. Figure 4 represents
the propagation of the LP02 soliton. It is clearly evident that
the evolution of the LP02 soliton remains unperturbed even
in the presence of the LP01 dispersive pulse.

Figure 3(b) represents the propagation of the LP01 mode
when all the IMFWM terms are switched off and only IMXPM
terms are retained in the calculations. We observe quite
different behavior. The peaks at 1130, 1115, and 1226 nm
disappear, while the peak at 1200 nm remains. This confirms
that the origin of the former radiation (at 1130, 1115, and
1226 nm) is mainly due to intermodal four-wave mixing. The
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FIG. 5. Top: Spectrogram evolution for the LP01 mode. Bottom: Spectrogram evolution for the LP02 mode of the proposed TCSF. The
spectrograms are taken at specified lengths shown on the plots themselves. All the overlap integrals are taken into account. Dashed black and
solid red lines denote the delay profiles of the LP01 and LP02 modes, respectively.

propagation in the LP02 mode remains similar to that already
shown in Fig. 4; hence, it is not shown separately.

Finally, to observe the effect of IMFWM terms alone on
the intermodal propagation, we turn off the overlap integrals
responsible for IMXPM. The propagation in the LP01 mode
is displayed in Fig. 3(c). One can observe from Fig. 3(c)
that when IMXPM terms are switched off, the radiation at
1130 nm and the weaker radiation at 1226 nm appear in the
course of propagation, while the peak at 1200 nm is absent.
This confirms that the peak at 1200 nm that appears as a
consequence of the reflection process is due to the IMXPM
interaction. The evolution of the LP02 mode in this case
remains similar to what was already observed.

The spectrogram evolutions of the LP01 and LP02 modes
corresponding to the full study of Figs. 3(a) and 4 are shown
in Fig. 5. The spectrograms clearly reveal the detailed spatial
and spectrotemporal structure of the output. We observe that
the IMFWM peak generated at 1130 nm lags behind the LP02

soliton, and the IMFWM radiation at 1226 nm leads the LP02

soliton in the time domain. The peak at 1115 nm is delayed
with respect to all other radiation generated in the LP01 mode.
It is also observed that some residual light in the LP01 mode
travels temporally locked with the LP02 soliton. The IMFWM
interaction between this residual LP01 radiation and the LP02

soliton gives rise to weaker radiation at 1226 nm.
Having considered the 1150-nm pump case, we next explore

the possibility of OEH interaction for the case when the LP01

mode travels faster than the LP02 mode. For this, we choose
a pump wavelength of 1180 nm and launch an LP01 pulse
at a later time than the LP02 pulse. The peak power in the
LP01 mode is 110 W, corresponding to a soliton order of 0.2,
whereas the peak power in the LP02 mode is 8 kW, forming a
fundamental soliton.

Figure 6 shows the propagation of the LP01 mode in
a 5-m-long TCSF. It is seen that the LP02 mode remains
unaltered for the 1180-nm pump case too. From Fig. 6, we
infer that the redshifting LP02 soliton catches up with the LP01

dispersive pulse at a length of 80 cm and then crosses the
dispersive pulse in the time domain. At an ∼1-m propagation
length the LP01 dispersive pulse gets reflected by the LP02

soliton. Contrary to the case of 1150-nm pump, the dispersive

pulse gets delayed after reflection, leading to its blueshift.
The blueshifted radiation appears at 1140 nm. In the present
scenario, no radiation is generated due to IMFWM terms,
and hence, the dynamics remains unaffected even if all the
IMFWM terms are switched off.

The efficiency of the reflection process in both the pumping
scenarios, 1150 and 1180 nm, is computed. We observed a
reflection efficiency η of 70% in the case of the 1180-nm
pump. However, it is very poor (<10%) in the case of the
1150-nm pump, which is due to the maximum power carried
by the IMFWM-generated peaks. This issue can be solved
by increasing the soliton order of the LP02 mode. This would
change the peak power in the LP02 mode, effectively modifying
the PMCs. Consequently, the IMFWM peaks can be effectively
suppressed.

The conversion efficiency for both the pumping scenarios
can be further enhanced by increasing the pulse duration and
decreasing the peak power of the LP01 dispersive pulse, as
discussed in [38]. We can also change the initial temporal

FIG. 6. Spectral (left) and temporal (right) evolution of the LP01

mode at the 1180-nm pump in TCSF when all the overlap integrals are
taken into account. The parameters of the simulation are N1 = 0.2,
N2 = 1, and the input pulse duration is 100 fs. The LP01 mode is
launched after LP02 by 2 ps.

013807-5



MISHRA, SINGH, HALDAR, MONDAL, AND VARSHNEY PHYSICAL REVIEW A 96, 013807 (2017)

FIG. 7. (a) Variation of the conversion efficiency η with the initial absolute temporal shift |�t | between both modes. The FWHM pulse
duration of the LP01 mode is set at 400 fs. (b) Variation of the conversion efficiency η with the FWHM pulse duration tFWHM of the LP01 mode.
The initial temporal shift between both pulses is set at −2 ps for the 1150-nm pump, and it equals 2 ps for the 1180-nm pump.

separation between both pulses to improve the conversion
efficiency. The variation of the conversion efficiency as a
function of initial temporal offset �t and the FWHM duration
of the LP01 pulse tFWHM is shown in Figs. 7(a) and 7(b),
respectively. Note that �t is negative for the 1150-nm pump,
while it is positive for the 1180-nm pump. For the 1150-nm
pump, the conversion efficiency is calculated for P1 = 110 W,
N2 = 1.2, whereas for the pump at 1180 nm, the efficiency is
plotted for P1 = 110 W,N2 = 1. P1 denotes the peak power
of the LP01 pulse. The LP02 soliton has been assumed to have
a FWHM width of 100 fs like before.

From Fig. 7, we observe that the conversion efficiency
can be effectively enhanced by proper selection of the initial
intermodal temporal separation. With an increase in the
temporal duration of the LP01 dispersive pulse, the efficiency
increases monotonically. However, at large temporal FWHM
of the LP01 pulse, the efficiency tends to saturate, as depicted
in Fig. 7. Note that 100% reflection can never be attained
[3,14]. The reflection efficiencies observed in our study are
comparable to the experimentally observed efficiencies in the
single-mode OEH case [3,39].

The intermodal XPM-induced phase shift might help the
formation of multimode solitons by canceling the intermodal
dispersion [30,31]. In [31], the generation of intense visible
peaks has been explained by assuming that the multimode
pulse creates a nonlinear temporal cavity that resonantly
amplifies parts of the generated continuum through the OEH
effect. But it was not confirmed that the visible peaks are due
to the OEH effect. In a subsequent paper [32], the authors
confirmed that the underlying mechanism behind the process
is the parametric instability due to the periodic intensity
fluctuations in the graded-index fibers. To our understanding,
this instability has no connection to the OEH interaction.
Intermodal XPM-induced nonlinear interaction has also been
studied theoretically [40], which induces temporal attraction
between two bright (dark) solitons, while it leads to temporal
attraction or repulsion between bright and dark solitons de-
pending upon the initial temporal offset between the solitons.
In a recent work [41], the polarization modulation instability
between the orthogonally polarized and frequency-shifted
fundamental fiber modes resulted in the generation of a dark
rogue wave. The generated rogue wave was accompanied by
the formation of the optical event horizon. The frequency

FIG. 8. (a) Solutions of the PMCs for the 1150-nm pump case
and (b) spectral output in the LP01 mode. Solid blue curve: Left-hand
side (LHS) of PMCs for λs = 1145 nm. Dashed black curve: Right-
hand side (RHS) of PMC (2b) for λs = 1145 nm, λ1 = 1145 nm.
Red curve with open circles: RHS of PMC (2c) for λs = 1145 nm,
λ1 = 1145 nm. Solid magenta curve with solid circles: LHS of PMCs
for λs = 1155 nm. Solid blue curve with solid triangles: RHS of PMC
(2c) for λs = 1155 nm, λ1 = 1155 nm. Horizontal red curve with
open triangles: RHS of PMC (2a) for λ1 = 1200 nm, λs = 1155 nm.

013807-6



INTERMODAL NONLINEAR EFFECTS MEDIATED OPTICAL . . . PHYSICAL REVIEW A 96, 013807 (2017)

FIG. 9. (a) The solutions of the PMCs for the 1180-nm pump
case and (b) spectral output in the LP01 mode. Solid blue curve: LHS
of PMCs. Red curve with open circles: RHS of PMC (2c).

redshifts and blueshifts resulting from the OEH interaction
were found to fully disappear after the rogue wave had
vanished due to the transient nature of the OEH interaction.

IV. PHASE-MATCHING CONDITION

The following PMCs describing the generation in the
fundamental mode can be derived by equating the phases on
both sides of Eqs. (A8) and (A9) derived in the Appendix:

D1(ωg1 ) = D1(ω1), (2a)

D1(ωg1 ) = 2q2 − D1(ω1), (2b)

D1
(
ωg1

) = D1(ω1) + (ω1 − ωg1 )
(
β

(1)
1 − β

(2)
1

)
. (2c)

The solutions of the PMCs for the 1150-nm pump case
are shown in Fig. 8(a) together with the spectral output in
the LP01 mode shown in Fig. 8(b), where λ1 stands for the
dispersive pump wavelength present in the LP01 mode and
λs denotes the wavelength of the LP02 soliton. We observe
that the PMC solutions do not match numerical simulations
when we assume both the soliton and LP01-mode dispersive

pulse at 1150 nm, which is because the PMC derivation is
based on the assumption of a cw for the dispersive pulse.
However, on increasing the dispersive-pulse duration, the
numerically obtained output wavelengths tend to converge to
the PMC solutions which are calculated by assuming both
the soliton and the dispersive pulse at the carrier wavelength
of 1150 nm. To get solutions of the PMCs consistent with
the numerical results, the wavelengths of the dispersive pulse
pump and the soliton are slightly offset from their carrier
wavelength of 1150 nm. This is reliable because both the
soliton and dispersive pulse pump exhibit 3-dB bandwidths
of ∼7 nm on both sides of the carrier wavelength. Moreover,
in the IMFWM interactions the trailing edge of the dispersive
pulse interacts with the trailing edge of the soliton, and in
the reflection process the leading edge of the dispersive pulse
interacts with the leading edge of the soliton. This indicates
that only part of the dispersive pulse spectrum interacts with the
soliton. These arguments justify why to get the correct PMC
solutions for the 1150-nm pump case we have to take slightly
shifted wavelengths for the dispersive pulse and the soliton.
PMC solutions thus obtained agree well with the spectral
radiation observed at the output. The PMC analysis for the
1180-nm pump case is also shown in Fig. 9(a), and the spectral
output is shown in Fig. 9(b). We find good agreement between
the PMC solution and the numerical simulation.

V. CONCLUSIONS

We have proposed a TCSF design to achieve OEH interac-
tion in the intermodal nonlinear regime. We have observed that
efficient OEH interaction is possible between a soliton and a
dispersive pulse propagating at the same carrier wavelength but
in a different spatial mode than the soliton itself. Depending
upon the intermodal walk off between the pulses at the
pump wavelength, the dispersive pulse can be redshifted or
blueshifted by a proper choice of the initial delay between
the pulses. The effect of various overlap integrals was also
considered, and it was found that the IMXPM overlap integrals
are responsible only for the OEH dynamics observed.

The spatial degree of freedom of the fiber utilized here
might be useful for realizing all-optical switching [12] and
optical transistor action [13] while relaxing the need for two
input wavelengths to achieve the desired functionality. We
believe that experimental realization of our study might pave
the way for ultrafast all-optical control in robust all-fiber
platforms through a single source.
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APPENDIX: PMC DERIVATION

In this appendix, we derive the phase-matching conditions
for the intermodal interaction between the LP01 dispersive
pulse and the LP02 soliton as observed in Sec. IV. We follow
an approach similar to that given in [24]. We look for the
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solutions of Eq. (1) in the form

Ap = Fp(tp) + gp(zp,tp), (A1a)

tp = t − z
(
β

(p)
1 − β

(1)
1

)
, (A1b)

Fp(tp) = ψp(tp)eiqpzp , (A1c)

where t is the time in the reference frame of the fundamental
mode and tp is the time in the reference frame of the pulse in
mode p. ψp is the soliton solution of the single-mode GNLSE
in mode p when all dispersion parameters higher than β2 are
absent; gp accounts for all the radiation in mode p other than
the soliton, including the dispersive pulse pump; zp is the prop-
agation distance in mode p, which is always the same as the
physical distance; and qp is the phase of the soliton in mode p.

In Eq. (1) we represent the dispersive operator by Dp(i∂t ),
given as

Dp(i∂t ) = (
β

(p)
0 − β

(1)
0

) + (
β

(p)
1 − β

(1)
1

)
(i∂t ) +

∞∑
q=2

(i∂t )
q β

(p)
q

q!
.

(A2)

We also have

∂z = ∂zp
− (

β
(p)
1 − β

(1)
1

)
∂tp , (A3a)

∂t = ∂tp . (A3b)

Using Eqs. (A1)–(A3) in Eq. (1) and after doing simple
mathematics, we get

i

[
Dp(i∂tp ) + 1

2
β

(p)
2 ∂2

tp
− (

β
(p)
1 − β

(1)
1

)(
i∂tp

)]{ψp(tp)eiqpz} + i
n2ω0

c

p′∑
l,m,n

Splmnψl(tl)ψm(tm)ψn(tn)ei(ql+qm−qn)z

+ i
n2ω0

c

∑
l,m,n

Splmn{gmψl(tl)ψn(tn)ei(ql−qn)z + glψm(tm)ψn(tn)ei(qm−qn)z + g∗
nψm(tm)ψl(tl)e

i(qm+ql )z}

= ∂zp
gp − iDp

(
i∂tp

)
gp − (

β
(p)
1 − β

(1)
1

)
∂tpgp. (A4)

The use of p′ in the upper limit of the summation in the second term of Eq. (A4) signifies that the term in which all l, m, and n
equal p is to be excluded from the summation. We assume that gq consists of two parts: one is the input pump with amplitude wq

that has a frequency detuning of ωq from the soliton carrier frequency, and the second is the generated wave represented by φq ;
that is,

gq = wqe
iDq (ωq )z−iωq tq + φq. (A5)

Using Eq. (A5), Eq. (A4) can be recast as

i

[
Dp(i∂tp ) + 1

2
β

(p)
2 ∂2

tp
− (β(p)

1 − β
(1)
1 )(i∂tp )

]
{ψp(tp)eiqpz} + i

n2ω0

c

p′∑
l,m,n

Splmnψl(tl)ψm(tm)ψn(tn)ei(ql+qm−qn)z

+ i
n2ω0

c

∑
l,m,n

Splmn{φmψl(tl)ψn(tn)ei(ql−qn)z + φlψm(tm)ψn(tn)ei(qm−qn)z + φ∗
nψm(tm)ψl(tl)e

i(qm+ql )z}

+ i
n2ω0

c

∑
l,m,n

Splmn{wmψl(tl)ψn(tn)ei[Dm(ωm)+ql−qn]z−iωmtm + wlψm(tm)ψn(tn)ei[Dl (ωl )+qm−qn]z−iωl tl }

+ i
n2ω0

c

∑
l,m,n

Splmnwnψm(tm)ψl(tl)e
i[qm+ql−Dn(ωn)]z+iωntn

= ∂zp
φp − i

[
Dp

(
i∂tp

) − i
(
β

(p)
1 − β

(1)
1

)
∂tp

]
φp + iωpwp

(
β

(p)
1 − β

(1)
1

)
eiDp(ωp)z−iωptp . (A6)

Our case corresponds to a specific situation in which the dispersive pulse pump is in the LP01 mode, labeled here as 1, and the
soliton is in the LP02 mode, labeled as 2. Therefore, we can write

wq = w1δ1q,

Fq = F2δ2q, (A7)

tq = tp − z
(
β

(q)
1 − β

(p)
1

)
.
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With the help of Eqs. (A7) in Eq. (A6), separate propagation equations for mode 1 and mode 2 can be derived and are respectively
given as

i
n2ω0

c

[
S1222ψ

3
2 eiq2z + {S1212 + S1122}w1ψ

2
2 eiD1(ω1)z−iω1t1 + S1221w1ψ

2
2 ei(2q2−D1(ω1))z+iω1t1

]

= ∂zφ1 − iD1(i∂t1 )φ1 − i
n2ω0

c
{S1212 + S1122}ψ2

2 φ1 − i
n2ω0

c
S1221φ

∗
1ψ2

2 e2iq2z, (A8)

i

[
D2

(
i∂t2

) + 1

2
β

(2)
2 ∂2

t2
− i

(
β

(2)
1 − β

(1)
1

)
∂t2

]
{ψ2e

iq2z}

+ i
n2ω0

c
{S2212 + S2122}w1ψ

2
2 ei[D1(ω1)+ω1(β(1)

1 −β
(2)
1 )]z−iω1t2 + i

n2ω0

c
S2221e

i[2q2−D1(ω1)−ω1(β(1)
1 −β

(2)
1 )]z+iω1t2

= ∂zφ2 − i
[
D2

(
i∂t2

) − i
(
β

(2)
1 − β

(1)
1

)
∂t2

]
φ2 − i

n2ω0

c
{S2212 + S2122}ψ2

2 φ1 − i
n2ω0

c
S2221φ

∗
1ψ2

2 e2iq2z (A9)

We represent φq as

φq ∼ eiDq (ωgq )z−iωgq tq . (A10)

Equating the phases on both sides of Eqs. (A8) and (A9), the following PMCs describing the generation in mode 1, which are
relevant to our study, can be derived:

D1
(
ωg1

) = D1(ω1), (A11a)

D1
(
ωg1

) = 2q2 − D1(ω1), (A11b)

D1
(
ωg1

) = D1(ω1) + (ω1 − ωg1 )
(
β

(1)
1 − β

(2)
1

)
. (A11c)

In Eqs. (A11), ωg1 represents the frequency of the generated wave in mode 1, while ω1 represents the frequency of the
dispersive pulse pump present in mode 1. Equations (A11) are the same as Eqs. (2) in Sec. IV.

[1] T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and
U. Leonhardt, Science 319, 1367 (2008).

[2] A. Demircan, S. Amiranashvili, and G. Steinmeyer, Phys. Rev.
Lett. 106, 163901 (2011).

[3] S. F. Wang, A. Mussot, M. Conforti, A. Bendahmane, X. L.
Zeng, and A. Kudlinski, Phys. Rev. A 92, 023837 (2015).

[4] A. V. Gorbach and D. V. Skryabin, Nat. Photonics 1, 653
(2007).

[5] S. P. Singh, V. Mishra, and S. K. Varshney, J. Opt. Soc. Am. B
33, D65 (2016).

[6] J. C. Travers and J. R. Taylor, Opt. Lett. 34, 115 (2009).
[7] A. Demircan, S. Amiranashvili, C. Brée, and G. Steinmeyer,

Phys. Rev. Lett. 110, 233901 (2013).
[8] A. Demircan, S. Amiranashvili, C. Brée, U. Morgner, and G.

Steinmeyer, Opt. Express 22, 3866 (2014).
[9] A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin,

Opt. Express 21, 14481 (2013).
[10] R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, Opt.

Express 21, 19091 (2013).
[11] S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A.

Kudlinski, Opt. Lett. 40, 3320 (2015).
[12] N. Nishizawa and T. Goto, Opt. Express 11, 359 (2003).
[13] P. Kanakis and T. Kamalakis, Opt. Lett. 41, 1372 (2016).
[14] Z. Deng, X. Shi, C. Tan, and X. Fu, J. Opt. Soc. Am. B 33, 857

(2016).
[15] A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F.

Mitschke, and G. Steinmeyer, Sci. Rep. 2, 850 (2012).
[16] A. Demircan, S. Amiranashvili, C. Brée, F. Mitschke, and

G. Steinmeyer, Nonlinear Phenom. Complex Syst. 16, 24
(2013).

[17] A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F.
Mitschke, and G. Steinmeyer, Appl. Phys. B 115, 343
(2014).

[18] C. M. de Sterke, Opt. Lett. 17, 914 (1992).
[19] N. G. R. Broderick, D. Taverner, D. J. Richardson, M.

Ibsen, and R. I. Laming, Phys. Rev. Lett. 79, 4566
(1997).

[20] B. W. Plansinis, W. R. Donaldson, and G. P. Agrawal, Phys. Rev.
Lett. 115, 183901 (2015).

[21] B. W. Plansinis, W. R. Donaldson, and G. P. Agrawal, IEEE J.
Quantum Electron. 52, 1 (2016).

[22] J. Zhou, G. Zheng, and J. Wu, Phys. Rev. A 93, 063847
(2016).

[23] B. W. Plansinis, W. R. Donaldson, and G. P. Agrawal, J. Opt.
Soc. Am. B 33, 1112 (2016).

[24] D. V. Skryabin and A. V. Yulin, Phys. Rev. E 72, 016619
(2005).

[25] A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly,
F. G. Omenetto, A. J. Taylor, and P. Russell, Phys. Rev. Lett. 95,
213902 (2005).

[26] C. M. Arabí, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin,
and M. Conforti, Phys. Rev. A 94, 063847 (2016).

[27] S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P.
Wisk, E. Monberg, and F. V. Dimarcello, Opt. Lett. 31, 2532
(2006).

[28] J. H. Lee, J. v. Howe, C. Xu, S. Ramachandran, S. Ghalmi, and
M. F. Yan, Opt. Lett. 32, 1053 (2007).

[29] F. Poletti and P. Horak, Opt. Express 17, 6134 (2009).
[30] L. G. Wright, W. H. Renninger, D. N. Christodoulides, and

F. W. Wise, Opt. Express 23, 3492 (2015).

013807-9

https://doi.org/10.1126/science.1153625
https://doi.org/10.1126/science.1153625
https://doi.org/10.1126/science.1153625
https://doi.org/10.1126/science.1153625
https://doi.org/10.1103/PhysRevLett.106.163901
https://doi.org/10.1103/PhysRevLett.106.163901
https://doi.org/10.1103/PhysRevLett.106.163901
https://doi.org/10.1103/PhysRevLett.106.163901
https://doi.org/10.1103/PhysRevA.92.023837
https://doi.org/10.1103/PhysRevA.92.023837
https://doi.org/10.1103/PhysRevA.92.023837
https://doi.org/10.1103/PhysRevA.92.023837
https://doi.org/10.1038/nphoton.2007.202
https://doi.org/10.1038/nphoton.2007.202
https://doi.org/10.1038/nphoton.2007.202
https://doi.org/10.1038/nphoton.2007.202
https://doi.org/10.1364/JOSAB.33.000D65
https://doi.org/10.1364/JOSAB.33.000D65
https://doi.org/10.1364/JOSAB.33.000D65
https://doi.org/10.1364/JOSAB.33.000D65
https://doi.org/10.1364/OL.34.000115
https://doi.org/10.1364/OL.34.000115
https://doi.org/10.1364/OL.34.000115
https://doi.org/10.1364/OL.34.000115
https://doi.org/10.1103/PhysRevLett.110.233901
https://doi.org/10.1103/PhysRevLett.110.233901
https://doi.org/10.1103/PhysRevLett.110.233901
https://doi.org/10.1103/PhysRevLett.110.233901
https://doi.org/10.1364/OE.22.003866
https://doi.org/10.1364/OE.22.003866
https://doi.org/10.1364/OE.22.003866
https://doi.org/10.1364/OE.22.003866
https://doi.org/10.1364/OE.21.014481
https://doi.org/10.1364/OE.21.014481
https://doi.org/10.1364/OE.21.014481
https://doi.org/10.1364/OE.21.014481
https://doi.org/10.1364/OE.21.019091
https://doi.org/10.1364/OE.21.019091
https://doi.org/10.1364/OE.21.019091
https://doi.org/10.1364/OE.21.019091
https://doi.org/10.1364/OL.40.003320
https://doi.org/10.1364/OL.40.003320
https://doi.org/10.1364/OL.40.003320
https://doi.org/10.1364/OL.40.003320
https://doi.org/10.1364/OE.11.000359
https://doi.org/10.1364/OE.11.000359
https://doi.org/10.1364/OE.11.000359
https://doi.org/10.1364/OE.11.000359
https://doi.org/10.1364/OL.41.001372
https://doi.org/10.1364/OL.41.001372
https://doi.org/10.1364/OL.41.001372
https://doi.org/10.1364/OL.41.001372
https://doi.org/10.1364/JOSAB.33.000857
https://doi.org/10.1364/JOSAB.33.000857
https://doi.org/10.1364/JOSAB.33.000857
https://doi.org/10.1364/JOSAB.33.000857
https://doi.org/10.1038/srep00850
https://doi.org/10.1038/srep00850
https://doi.org/10.1038/srep00850
https://doi.org/10.1038/srep00850
https://doi.org/10.1007/s00340-013-5609-9
https://doi.org/10.1007/s00340-013-5609-9
https://doi.org/10.1007/s00340-013-5609-9
https://doi.org/10.1007/s00340-013-5609-9
https://doi.org/10.1364/OL.17.000914
https://doi.org/10.1364/OL.17.000914
https://doi.org/10.1364/OL.17.000914
https://doi.org/10.1364/OL.17.000914
https://doi.org/10.1103/PhysRevLett.79.4566
https://doi.org/10.1103/PhysRevLett.79.4566
https://doi.org/10.1103/PhysRevLett.79.4566
https://doi.org/10.1103/PhysRevLett.79.4566
https://doi.org/10.1103/PhysRevLett.115.183901
https://doi.org/10.1103/PhysRevLett.115.183901
https://doi.org/10.1103/PhysRevLett.115.183901
https://doi.org/10.1103/PhysRevLett.115.183901
https://doi.org/10.1109/JQE.2016.2626081
https://doi.org/10.1109/JQE.2016.2626081
https://doi.org/10.1109/JQE.2016.2626081
https://doi.org/10.1109/JQE.2016.2626081
https://doi.org/10.1103/PhysRevA.93.063847
https://doi.org/10.1103/PhysRevA.93.063847
https://doi.org/10.1103/PhysRevA.93.063847
https://doi.org/10.1103/PhysRevA.93.063847
https://doi.org/10.1364/JOSAB.33.001112
https://doi.org/10.1364/JOSAB.33.001112
https://doi.org/10.1364/JOSAB.33.001112
https://doi.org/10.1364/JOSAB.33.001112
https://doi.org/10.1103/PhysRevE.72.016619
https://doi.org/10.1103/PhysRevE.72.016619
https://doi.org/10.1103/PhysRevE.72.016619
https://doi.org/10.1103/PhysRevE.72.016619
https://doi.org/10.1103/PhysRevLett.95.213902
https://doi.org/10.1103/PhysRevLett.95.213902
https://doi.org/10.1103/PhysRevLett.95.213902
https://doi.org/10.1103/PhysRevLett.95.213902
https://doi.org/10.1103/PhysRevA.94.063847
https://doi.org/10.1103/PhysRevA.94.063847
https://doi.org/10.1103/PhysRevA.94.063847
https://doi.org/10.1103/PhysRevA.94.063847
https://doi.org/10.1364/OL.31.002532
https://doi.org/10.1364/OL.31.002532
https://doi.org/10.1364/OL.31.002532
https://doi.org/10.1364/OL.31.002532
https://doi.org/10.1364/OL.32.001053
https://doi.org/10.1364/OL.32.001053
https://doi.org/10.1364/OL.32.001053
https://doi.org/10.1364/OL.32.001053
https://doi.org/10.1364/OE.17.006134
https://doi.org/10.1364/OE.17.006134
https://doi.org/10.1364/OE.17.006134
https://doi.org/10.1364/OE.17.006134
https://doi.org/10.1364/OE.23.003492
https://doi.org/10.1364/OE.23.003492
https://doi.org/10.1364/OE.23.003492
https://doi.org/10.1364/OE.23.003492


MISHRA, SINGH, HALDAR, MONDAL, AND VARSHNEY PHYSICAL REVIEW A 96, 013807 (2017)

[31] L. G. Wright, D. N. Christodoulides, and F. W. Wise, Nat.
Photonics 9, 306 (2015).

[32] L. G. Wright, S. Wabnitz, D. N. Christodoulides, and F. W. Wise,
Phys. Rev. Lett. 115, 223902 (2015).

[33] COMSOL MULTIPHYSICS, https://www.comsol.com/.
[34] J. W. Fleming, Appl. Opt. 23, 4486 (1984).
[35] J. W. Fleming and D. L. Wood, Appl. Opt. 22, 3102 (1983).
[36] P. Horak and F. Poletti, Recent Progress in Optical Fiber

Research (InTech, Croatia, 2012), Chap. 1.

[37] G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego,
2007).

[38] S. Pickartz, U. Bandelow, and S. Amiranashvili, Phys. Rev. A
94, 033811 (2016).

[39] L. Tartara, IEEE J. Quantum Electron. 48, 1439 (2012).
[40] V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin,

Opt. Lett. 14, 805 (1989).
[41] B. Frisquet, B. Kibler, P. Morin, F. Baronio, M. Conforti, G.

Millot, and S. Wabnitz, Sci. Rep. 6, 20785 (2016).

013807-10

https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1038/nphoton.2015.61
https://doi.org/10.1103/PhysRevLett.115.223902
https://doi.org/10.1103/PhysRevLett.115.223902
https://doi.org/10.1103/PhysRevLett.115.223902
https://doi.org/10.1103/PhysRevLett.115.223902
https://www.comsol.com/
https://doi.org/10.1364/AO.23.004486
https://doi.org/10.1364/AO.23.004486
https://doi.org/10.1364/AO.23.004486
https://doi.org/10.1364/AO.23.004486
https://doi.org/10.1364/AO.22.003102
https://doi.org/10.1364/AO.22.003102
https://doi.org/10.1364/AO.22.003102
https://doi.org/10.1364/AO.22.003102
https://doi.org/10.1103/PhysRevA.94.033811
https://doi.org/10.1103/PhysRevA.94.033811
https://doi.org/10.1103/PhysRevA.94.033811
https://doi.org/10.1103/PhysRevA.94.033811
https://doi.org/10.1109/JQE.2012.2213584
https://doi.org/10.1109/JQE.2012.2213584
https://doi.org/10.1109/JQE.2012.2213584
https://doi.org/10.1109/JQE.2012.2213584
https://doi.org/10.1364/OL.14.000805
https://doi.org/10.1364/OL.14.000805
https://doi.org/10.1364/OL.14.000805
https://doi.org/10.1364/OL.14.000805
https://doi.org/10.1038/srep20785
https://doi.org/10.1038/srep20785
https://doi.org/10.1038/srep20785
https://doi.org/10.1038/srep20785



