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Identification of nonclassical properties of light with multiplexing layouts

J. Sperling,1,* A. Eckstein,1 W. R. Clements,1 M. Moore,1 J. J. Renema,1 W. S. Kolthammer,1 S. W. Nam,2 A. Lita,2 T. Gerrits,2

I. A. Walmsley,1 G. S. Agarwal,3 and W. Vogel4
1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England, United Kingdom

2National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
3Texas A&M University, College Station, Texas 77845, USA

4Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23, D-18059 Rostock, Germany
(Received 27 January 2017; published 6 July 2017)

In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent
method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed
analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts
with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality
probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to
our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded
multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-
Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept
of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our
data.
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I. INTRODUCTION

The bare existence of photons highlights the particle nature
of electromagnetic waves in quantum optics [1]. Therefore,
the generation and detection of photon states are crucial
for a comprehensive understanding of fundamental concepts
in quantum physics; see Refs. [2,3] for recent reviews on
single photons. Beyond this scientific motivation, the study
of nonclassical radiation fields is also of practical importance.
For instance, quantum communication protocols rely on the
generation and detection of photons [4,5]. Yet, unwanted
attenuation effects—which are always present in realistic
scenarios—result in a decrease of the nonclassicality of a
produced light field. Conversely, an inappropriate detector
model can introduce fake nonclassicality even to a classical
radiation field [6–8]. For this reason, we seek robust and
detector-independent certifiers of nonclassicality [9].

The basic definition of nonclassicality is that a quantum
state of light cannot be described in terms of classical
statistical optics. A convenient way to represent general states
is given in terms of the Glauber-Sudarshan P function [10,11].
Whenever this distribution cannot be interpreted in terms of
classical probability theory, the thereby represented state is
a nonclassical one [12,13]. A number of nonclassicality tests
have been proposed; see Ref. [14] for an overview. Most of
them are formulated in terms of matrices of normally ordered
moments of physical observables; see, e.g., Ref. [15]. For
example, the concept of nonclassical sub-Poisson light [16] can
be written and even generalized in terms of matrices of higher-
order photon-number correlations [17]. Other matrix-based
nonclassicality tests employ the Fourier or Laplace transform
of the Glauber-Sudarshan P function [18,19].

In order to apply such nonclassicality probes, one has
to measure the light field under study with a photodetector
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[20,21]. The photon statistics of the measured state can be
inferred if the used detector has been properly characterized.
This can be done by a detector tomography [22–26], i.e.,
measuring a comparably large number of well-defined probe
states to construct a detection model. Alternatively, one can
perform a detector calibration [27–29], i.e., the estimation of
parameters of an existing detection model with some reference
measurements. Of particular interest are photon-number-
resolving detectors of which superconducting transition-edge
sensors (TESs) are a successful example [30–34]. Independent
of the particular realization, photon-number-resolving devices
allow for the implementation of quantum tasks, such as
state reconstruction [35,36], imaging [37,38], random num-
ber generation [39], and the characterization of sources of
nonclassical light [40–43]—even in the presence of strong
imperfections [44]. Moreover, higher-order [45–47], spatial
[48–50], and conditional [51] quantum correlations have been
studied.

So far, we did not distinguish between the detection scheme
and the actual detectors. That is, one has to discern the optical
manipulation of a signal field and its interaction with a sensor
which yields a measurement outcome. Properly designed
detection layouts of such a kind render it possible to infer or use
properties of quantum light without having a photon-number-
resolution capability [52–54] or they do not require a particular
detector model [55,56]. For instance, multiplexing layouts
with a number of detectors that can only discern between the
presence (“on”) or absence (“off”) of absorbed photons can
be combined into a photon-number-resolving detection device
[57–63]. Such types of schemes use an optical network to split
an incident light field into a number of spatial or temporal
modes of equal intensities which are subsequently measured
with on/off detectors. The measured statistics is shown to
resemble a binomial distribution [8] rather than a Poisson
statistics, which is obtained for photoelectric detection models
[64]; see also Refs. [65,66] in this context. For such detectors,
the positive-operator-valued measure (POVM), which fully
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describes the detection layout, has been formulated [8,67].
Recently, the combination of a multiplexing scheme with
multiple TESs has been used to significantly increase the
maximal number of detectable photons [68].

Based on the binomial character of the statistics of
multiplexing layouts with on/off detectors, the notion of sub-
binomial light has been introduced [69] and experimentally
demonstrated [70]. It replaces the concept of sub-Poisson
light [16], which applies to photoelectric counting models
[64], for multiplexing arrangements using on/off detectors.
Nonclassical light can be similarly inferred from multiplexing
devices with nonidentical splitting ratios [71]. In addition, the
on-chip realization of optical networks [72] can be used to
produce integrated detectors to verify sub-binomial light [73].

In this paper, we derive the quantum-optical click-counting
theory for multiplexing layouts which employ arbitrary
detectors. Therefore, we formulate nonclassicality tests in
terms of normally ordered moments, which are independent
of the detector response. This method is then applied to
our experiment which produces heralded multiphoton states.
Our results are discussed in relation with other notions of
nonclassical photon correlations.

In Ref. [9], we study the same topic as we do in this
paper from a classical perspective. There, the treatment of
the detector-independent verification of quantum light is
performed solely in terms of classical statistical optics. Here,
however, we use a complementary quantum-optical perspec-
tive on this topic. Beyond that, we also consider higher-order
moments of the statistics, present additional features of our
measurements, and compare our results with previously known
nonclassicality tests as well as simple theoretical models.

This paper is organized as follows. In Sec. II, the theoretical
model for our detection layout is elaborated and nonclassicality
criteria are derived. The performed experiment is described
in Sec. III with special emphasis on the used TESs. An
extended analysis of our data, presented in Sec. IV, includes
the comparison of different forms of nonclassicality. We
summarize and conclude in Sec. V.

II. THEORY

In this section, we derive the general, theoretical toolbox
for describing the multiplexing arrangement with arbitrary
detectors and for formulating the corresponding nonclassi-
cality criteria. The measurement layout under study is shown
in Fig. 1. Our detection model shows that for any type of
employed detector the measured statistics can be described
in the form of a quantum version of a multinomial statistics
[Eq. (8)]. This leads to the formulation of nonclassicality
criteria in terms of negativities in the normally ordered matrix
of moments [Eq. (12)]. Especially, covariance-based criteria
are discussed and related to previously known forms of
nonclassicality.

A. Preliminaries

We apply well-established concepts in quantum optics
in this section. Namely, any quantum state of light ρ̂ can
be written in terms of the Glauber-Sudarshan representation

FIG. 1. Outline of the multiplexing scheme for a coherent state
|α〉. A balanced optical network—represented by the unitary U (N )—
splits the incident coherent state |α〉 into |α/

√
N〉⊗N . The nth detector

(n ∈ {1, . . . ,N}) gives an outcome kn ∈ {0, . . . ,K}. The number of
detectors which deliver the same given outcome k defines Nk .

[10,11]:

ρ̂ =
∫

d2α P (α)|α〉〈α|. (1)

From this diagonal expansion in terms of coherent states |α〉,
one observes that one can formulate the detection theory
in terms of coherent states. A subsequent integration over
the P function then describes the model for any state.
Furthermore, the definition of nonclassicality is also based on
this representation. Namely, the state ρ̂ is a classical state if and
only if P can be interpreted in terms of classical probability
theory [12,13], i.e., P (α) � 0. Whenever this cannot be done,
ρ̂ refers to a nonclassical state.

Moreover, the P function of a state is related to the normal
ordering (denoted by : · · · :) of measurement operators. For a
detailed introduction to bosonic operator ordering, we refer to
Ref. [74]. It can be shown in general that any classical state
obeys [75]

〈:f̂ †f̂ :〉 cl.
� 0, (2)

for any operator f̂ . In addition, we may recall that expectation
values of normally ordered operators and coherent states can
be simply computed by replacing the bosonic annihilation â

and creation operator â† with the coherent amplitude α and its
complex conjugate α∗, respectively. A violation of constraint
(2) necessarily identifies nonclassicality, which will be also
used to formulate our nonclassicality criteria.

B. Multiplexing detectors

The optical detection scheme under study, shown in Fig. 1,
consists of a balanced multiplexing network which splits
a signal into N modes. Those outputs are measured with
N identical detectors which can produce K + 1 outcomes,
labeled as k = 0, . . . ,K . Let us stress that we make a clear
distinction between the well-characterized optical multiplex-
ing, the individual and unspecified detectors, and the resulting
full detection scheme.

In the multiplexing part, a coherent-state input |α〉 is
distributed over N output modes. Further on, we have vacuum
|vac〉 = |0〉 at all other N − 1 input ports. In general, the N

input modes—defined by the bosonic annihilation operators
ân,in (â1,in = â)—are transformed via the unitary U (N ) =
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(Um,n)Nm,n=1 into the output modes:

âm,out = Um,1â1,in + · · · + Um,N âN,in. (3)

Taking the balanced splitting into account, it holds that
|Um,n| = 1/

√
N . Adjusting the phases of the outputs properly,

we get the following input-output relation:

|α〉 ⊗ |0〉⊗(N−1) U (N)�−→ |α/
√

N〉⊗N . (4)

Note that a balanced but lossy network similarly yields |τα〉 ⊗
· · · ⊗ |τα〉 for τ � 1/

√
N .

For describing the detector, we do not make any specifica-
tions. Nevertheless, we will be able to formulate nonclassical-
ity tests. The probability pk for the kth measurement outcome
(0 � k � K) for any type of detector can be written in terms of
the expectation value of the POVM operators :π̂ ′

k:, pk = 〈:π̂ ′
k:〉.

Note that any operator can be written in a normally ordered
form [74,75] and that the POVM includes all imperfections
of the individual detector, such as the quantum efficiency or
nonlinear responses. For the coherent states |α/

√
N〉, we have

pk(α) = 〈α/
√

N |:π̂ ′
k:|α/

√
N〉 = 〈α|:π̂k:|α〉, (5)

whereby we also define :π̂k: in terms of :π̂ ′
k: through the

mapping â �→ â/
√

N .
We find that for a measurement with our N detectors

and our coherent output state (4) the probability to measure
the outcome kn with the nth detector—more rigorously a
coincidence (k1, . . . ,kN ) from the N individual detectors—is
given by

pk1 (α) · · ·pkN
(α) = 〈α|:π̂k1 · · · π̂kN

:|α〉, (6)

where we used the relation 〈α|:Â:|α〉〈α|:B̂:|α〉 = 〈α|:ÂB̂:|α〉
for any two (or more) operators Â and B̂ and Eq. (5). The
Glauber-Sudarshan representation (1) allows one to write for
any quantum state ρ̂

p(k1,...,kN ) =
∫

d2α P (α)pk1 (α) · · ·pkN
(α)

= 〈
:π̂k1 · · · π̂kN

:
〉
.

(7)

So far we studied the individual parts, i.e., the optical
multiplexing and the N individual detectors, separately. To
describe the full detection scheme in Fig. 1, we need some addi-
tional combinatorics, which is fully presented in Appendix A.
There, the main idea is that one can group the individual
detectors into subgroups of Nk detectors which deliver the
same outcome k. Suppose the individual detectors yield the
outcomes (k1, . . . ,kN ). Then, Nk is the number of individual
detectors for which kn = k holds. In other words, (N0, . . . ,NK )
describes the coincidence that N0 detectors yield the outcome
zero, N1 detectors yield the outcome 1, etc. Note that the total
number of detectors is given by N = N0 + · · · + NK .

The POVM representation �̂(N0,...,NK ) for the event
(N0, . . . ,NK ) is given in Eq. (A2). In combination with Eq. (7),
we get for the detection layout in Fig. 1 the click-counting
statistics of a state ρ̂ as

c(N0,...,NK ) = tr
[
ρ̂�̂(N0,...,NK )

]

=
〈
:

N !

N0! · · · NK !
π̂

N0
0 · · · π̂NK

K :

〉
,

(8)

which is a normal-ordered version of a multinomial distribu-
tion. The click-counting statistics (8) yields the probability
that N0 times the outcome k = 0 together with N1 times
the outcome k = 1, etc., is recorded with the N individual
detectors. Using Eq. (1), we can rewrite the click-counting
distribution:

c(N0,...,NK ) =
∫

d2α P (α)
N !

N0! · · · NK !

× p0(α)N0 · · · pK (α)NK .

(9)

In this form, we can directly observe that any classical
statistics, P (α) � 0, is a classical average over multinomial
probability distributions.

C. Higher-order nonclassicality criteria

Our click-counting model (8) describes a multiplexing
scheme and applies to arbitrary detectors. One observes
that its probability distribution is based on normally ordered
expectation values of the form 〈:π̂m0

0 · · · π̂mK

K :〉. Hence, we can
formulate nonclassicality criteria from inequality (2) while
expanding

f̂ =
∑

m0+···+mK�N/2

fm0,...,mK
π̂

m0
0 · · · π̂mK

K . (10)

This operator is chosen such that it solely includes the
operators that are actually measured. We can write

〈:f̂ †f̂ :〉 =
∑

m0 + · · · + mK � N/2
m′

0 + · · · + m′
K � N/2

f ∗
m0,...,mK

× 〈
:π̂

m0+m′
0

0 · · · π̂mK+m′
K

K :
〉
fm′

0,...,m
′
K

= �f †M �f ,

(11)

with a vector �f = (fm0,...,mK
)(m0,...,mK ), using a multi-index no-

tation, and the matrix of normally ordered moments M , which

is defined in terms of the elements 〈:π̂m0+m′
0

0 · · · π̂mK+m′
K

K :〉.
Also note that the order of the moments is bounded by
the number of individual detectors, N � m0 + · · · + mK +
m′

0 + · · · + m′
K , as the measured statistics (8) only allows for

retrieving them.
As the non-negativity of the expression (11) holds for

classical states [condition (2)] and for all coefficients �f , we
can equivalently write the following: A state is nonclassical if

0 � M. (12)

Conversely, the matrix of higher-order, normal-ordered mo-
ments M is positive semidefinite for classical light. Note,
it can be also shown (Appendix A in Ref. [76]) that the
matrix of normally ordered moments can be equivalently
expressed in a form that is based on central moments,
〈:(�π̂0)m0+m′

0 · · · (�π̂K )mK+m′
K :〉.

For example and while restricting to the second-order
submatrix, we get nonclassicality conditions in terms of
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normal-ordered covariances:

0 � M (2) = (〈:�π̂k�π̂k′ :〉)k,k′=0,...,K

=

⎛
⎜⎝

〈:(�π̂0)2:〉 . . . 〈:(�π̂0)(�π̂K ):〉
...

. . .
...

〈:(�π̂0)(�π̂K ):〉 . . . 〈:(�π̂K )2:〉

⎞
⎟⎠.

(13)

The relation 〈:π̂K :〉 = 1 − [〈:π̂0:〉 + · · · + 〈:π̂K−1:〉] of gen-
eral POVMs implies that the last row of M (2) is linearly
dependent on the other ones. This further implies that zero is
an eigenvalue of M (2). Hence, we get for any classical state that
the minimal eigenvalue of this covariance matrix is necessarily
zero.

In order to relate our nonclassicality criteria to the mea-
surement of the click-counting statistics (8), let us consider
the generating function, which is given by

g(z0, . . . ,zN ) = z
N0
0 · · · zNK

K

=
∑

N0+···+NK=N

c(N0,...,NK )z
N0
0 · · · zNK

K

= 〈:(z0π̂0 + · · · + zKπ̂K )N :〉.

(14)

The derivatives of the generating function relate the measured
moments with the normally ordered ones:

∂m0
z0

· · · ∂mK

zK
g(z0, . . . ,zK )

∣∣
z0=···=zK=1

=
∑

N0+···+NK=N

c(N0,...,NK )
N0!

(N0 − m0)!
· · · NK !

(NK − mK )!

= (N0)m0
· · · (NK )mK

= (N )m0+···+mK

〈
:π̂m0

0 · · · π̂mK

K :
〉

(15)

for m0 + · · · + mK � N and (x)m = x(x − 1) · · · (x − m +
1) = x!/(x − m)! being the falling factorial. Having a closer
look at the second and third line of Eq. (15), we see that the
factorial moments (N0)m0

· · · (NK )mK
can be directly sampled

from c(N0,...,NK ). From the last two lines of Eq. (15) follows the
relation to the normally ordered moments, which are needed
for our nonclassicality tests.

D. Second-order criteria

As an example and due to its importance, let us focus on
the first- and second-order moments in detail. In addition,
our experimental realization implements a single multiplexing
step, N = 2, which yields a restriction to second-order
moments [see comment below Eq. (11)]. As a special case
of Eq. (15), we obtain

〈:π̂k:〉 = Nk

N
and 〈:π̂kπ̂k′ :〉 = NkNk′ − δk,k′Nk

N (N − 1)
(16)

for k,k′ ∈ {0, . . . ,K}. Hence, our covariances are alternatively
represented by

〈:�π̂k�π̂k′ :〉 = N�Nk�Nk′ − Nk(Nδk,k′ − Nk′)

N2(N − 1)
. (17)

As the corresponding matrix (13) of normal-ordered moments
is non-negative for classical states, we get

0
cl.
� N2(N − 1)M (2)

= (N�Nk�Nk′ − Nk[Nδk,k′ − Nk′])k,k′=0,...,K . (18)

The violation of this specific constraint for classical states has
been experimentally demonstrated for the generated quantum
light [9].

Let us consider other special cases of the general criterion.
In particular, let us study the projections that result in a
nonclassicality condition:

�f TM (2) �f < 0 (19)

[see also Eqs. (2) and (13)]. Note that M (2) is a real-valued and
symmetric (K + 1) × (K + 1) matrix. Thus, it is sufficient to
consider real-valued vectors �f = (f0, . . . ,fK )T. Further on,
let us define the operator

:μ̂: = f0:π̂0: + · · · + fK :π̂K :. (20)

Then, we can also read condition (19) as

〈:(�μ̂)2:〉 < 0. (21)

That is, the fluctuations of the observable :μ̂: are below those of
any classical light field. In the following, we consider specific
choices for �f to formulate different nonclassicality criteria.

1. Sub-multinomial light

The minimization of (19) over all normalized vectors yields
the minimal eigenvalue Qmulti of M (2). That is,

Qmulti = min
�f : �f T �f =1

�f TM (2) �f = �f T
0 M (2) �f0, (22)

where �f0 is a normalized eigenvector to the minimal eigen-
value. If we have M (2) � 0, then we necessarily get Qmulti < 0.
For classical states, we get Qmulti = 0; see the discussion below
Eq. (13). As this criterion exploits the maximal negativity from
covariances of the multinomial statistics, we refer to a radiation
field with Qmulti < 0 as sub-multinomial light.

2. Sub-binomial light

We can also consider the vector �f = (0,1, . . . ,1)T, which
yields :μ̂: = 1̂ − :π̂0:. Hence, we have effectively reduced our
system to a detection with a binary outcome, represented
through the POVMs :π̂0: and :μ̂: = 1̂ − :π̂0:. Using a proper
scaling, we can write

(N − 1) �f TM (2) �f
〈:π̂0:〉(1 − 〈:π̂0:〉) = N (�B)2 − NB + B

2

(N − B)B

= N
(�B)2

B(N − B)
− 1 = Qbin,

(23)

defining B = N1 + · · · + NK = N − N0 and using Eq. (16).
The condition Qbin < 0 defines the notion of sub-binomial
light [69] and is found to be a special case of inequality (19).
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3. Sub-Poissonian light

Finally, we study criterion (19) for �f = (0,1, . . . ,K)T. We
have :μ̂: = ∑K

k=0 k:π̂k: and we also define

A =
K∑

k=0

kNk. (24)

Their mean values are related to each other:

〈:μ̂:〉 =
K∑

k=0

k
Nk

N
= A

N
. (25)

We point out that Nk/N can be also interpreted as probabilities,
being nonnegative Nk/N � 0 and normalized 1 = N0/N +
· · · + NK/N since N = N0 + · · · + NK . Further, we can write
the normally ordered variance (21) in the form

〈:(�μ)2:〉 = �f TM (2) �f = (�A)2 − A

N (N − 1)

−
( ∑K

k=0 k2 Nk

N

)−(∑K
k=0 k Nk

N

)2 − ( ∑K
k=0 k Nk

N

)
N − 1

.

(26)

Again, we can use a proper, non-negative scaling to find

〈:(�μ)2:〉
〈:μ:〉 = QPois − Q′

Pois

N − 1
,

with QPois = (�A)2

A
− 1

and Q′
Pois =

( ∑K
k=0 k2 Nk

N

) − ( ∑K
k=0 k Nk

N

)2

( ∑K
k=0 k Nk

N

) − 1. (27)

The parameters QPois and Q′
Pois, often denoted as the Mandel

or Q parameter, relate to the notion of sub-Poisson light [16].
However, we have a difference of two such Mandel parameters
in Eq. (27). The second parameter Q′

Pois can be considered as
a correction, because the statistics of A is only in a rough
approximation a Poisson distribution. This is further analyzed
in Appendix B.

E. Discussion

We derived the click-counting statistics (8) for unspecified
POVMs of the individual detectors. This was achieved by
using the properties of a well-defined multiplexing scheme.
We solely assumed that the N detectors (with K + 1 possible
outcomes) are described by the same POVM. A deviation
from this assumption can be treated as a systematic error; see
Supplemental Material to Ref. [9]. The full detection scheme
was shown to result in a quantum version of multinomial
statistics. This also holds true for an infinite, countable (K =
|N|), or uncountable (K = |R|) set of outcomes, for which
any measurement run can only deliver a finite subsample.
For coherent light |α0〉, we get a true multinomial probability
distribution; see Eq. (9) for P (α) = δ(α − α0). For a binary
outcome, K + 1 = 2, we retrieve a binomial distribution
[8,77], which applies, for example, to avalanche photodiodes
in the Geiger mode [47,51,73] or superconducting nanowire
detectors [29,78].

Further on, we derived higher-order nonclassicality tests
which can be directly sampled from the data obtained from
the measurement layout in Fig. 1. Then, we focused on the
second-order nonclassicality probes and compared the cases
of sub-multinomial [Eq. (22)], sub-binomial [Eq. (23)], and
(corrected) sub-Poisson [Eq. (27)] light. The latter notion
is related to nonclassicality in terms of photon-number
correlation functions (see also Ref. [79]) and is a special
case of our general criteria. Additionally, our method can be
generalized to multiple multiplexing-detection arrangements
to include multimode correlations similar to the approach in
Ref. [77].

Recently, another interesting application was reported to
characterize spatial properties of a beam profile with multipixel
cameras [50]. There, the photon-number distribution itself
is described in terms of a multinomial statistics, and the
Mandel parameter can be used to infer nonclassical light.
Here, we show that a balanced multiplexing and any mea-
surement POVM yield a click-counting statistics—describing
a different statistical quantity than the photon statistics of a
beam profile—in the form of a quantum version of a multi-
nomial distribution leading to higher-order nonclassicality
criteria. We also demonstrated that in some special scenarios
(Appendix B), a relation between the click statistic and photon
statistics can be retrieved which is, however, much more
involved in the general case; see also Sec. III B.

III. EXPERIMENT

Before applying the derived techniques to our data, we
describe the experiment and study some features of our
individual detectors in this section. Especially, the response
of our detectors is shown to have a nonlinear behavior which
underlines the need for our nonclassicality criteria which are
applicable to any type of detector. Additional details can be
found in Appendix C.

A. Setup description and characterization

An outline of our setup is given in Fig. 2. It is divided into
a source that produces heralded photon states and a detection
stage which represents one multiplexing step. In total, we use
three superconducting TESs. For generating correlated pho-
tons, we employ a spontaneous parametric down-conversion

FIG. 2. Schematic setup. A parametric down-conversion (PDC)
source emits photon pairs which are separated with a polarizing
beam splitter (PBS). Conditioned on the measurement outcome of
the heralding TES, different photon-number states are produced. A
single multiplexing step is realized by splitting the photon states on
a 50/50 beam splitter and we detect them with two TESs.
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(PDC) source. Here, we describe the individual parts in some
more detail.

1. The PDC source

Our spontaneous PDC source is a waveguide-written peri-
odically poled potassium titanyl phosphate (PP-KTP) crystal
which is 8 mm long. The type-II spontaneous PDC process
is pumped with laser pulses at 775 nm and a full width at
half maximum of 2 nm at a repetition rate of 75 kHz. The
heralding idler mode has a horizontal polarization and it is
centered at 1554 nm. The signal mode is vertically polarized
and centered at 1546 nm. A polarizing beam splitter spatially
separates the output signal and idler pulses. An edge filter
discards the pump beam. In addition, the signal and idler are
filtered by 3-nm bandpass filters. This is done in order to filter
out the broadband background which is typically generated
in dielectric nonlinear waveguides [80]. In general, such PDC
sources have been proven to be well-understood and reliable
sources of quantum light [81,82]. Hence, we may focus our
attention on the employed detectors.

2. The TES detectors

We use superconducting TESs as our photon detectors [30].
These TESs are microcalorimeters consisting of 25 μm ×
25 μm × 20 nm slabs of tungsten located inside an optical
cavity with a gold backing mirror designed to maximize ab-
sorption at 1500 nm. They are secured within a ceramic ferule
as part of a self-aligning mounting system, so that the fiber core
is well aligned to the center of the detector [83]. The TESs
are first cooled below their transition temperature within a
dilution refrigerator and then heated back up to their transition
temperature by Joule heating caused by a voltage bias, which
is self-stabilized via an electrothermal feedback effect [84].
Within this transition region, the steep resistance curve ensures
that the small amount of heat deposited by photon absorption
causes a measurable decrease in current flowing through the
device. After photon absorption, the heat is then dissipated to
the environment via a weak thermal link to the TES substrate.

To read out the signal from this photon absorption process,
the current change—produced by photon absorption in the
TES—is inductively coupled to a superconducting quantum
interference device (SQUID) module where it is amplified, and
this signal is subsequently amplified at room temperature. This
results in complex time-varying signals of about 5-μs duration.
These signals are sent to a digitizer to perform fast analog-to-
digital conversion, where the overlap with a reference signal is
computed and then binned. This method allows us to process
incoming signals at a speed of up to 100 kHz.

Our TESs are installed in a dilution refrigerator operating
at a base temperature of about 70 mK and a cooling power
of 400 μW at 100 mK. One of the detectors has a measured
detection efficiency of 0.98+0.02

−0.08 [85]. The other two TESs have
identical efficiencies within the error of our estimation.

B. Detector response analysis

Even though we will not use specific detector characteristics
for our analysis of nonclassicality, it is nevertheless
scientifically interesting to study their response. This will also

FIG. 3. The counts of the heralding TES (solid, gray curve); see
also [9]. Maxima for all K + 1 = 12 intervals are shown as bullets.
The dark vertical lines give the energy levels of the maxima. A
nonlinear regression (log10 y = ax2 + bx + c, dot-dashed line) and
its tangent at the first maximum (dashed line) are additionally shown.

outline the complex behavior of superconducting detectors.
For the time being, we ignore the detection events of the TESs
1 and 2 in Fig. 2 and solely focus on the measurement of the
heralding TES.

In Fig. 3, the measurement outcome of those marginal
counts is shown. A separation into disjoint energy intervals rep-
resents our outcomes k ∈ {0, . . . ,11} (see also Appendix C).
The distribution around the peaked structures can be consid-
ered as fluctuations of the discrete energy levels (indicated
by vertical dark green, solid lines). We observe that the
difference between two discrete energies En is not constant
as one would expect from En+1 − En = h̄ω, which will be
discussed in the next paragraph. In addition, the marginal
photon statistics should be given by a geometric distribution for
the two-mode squeezed-vacuum state produced by our PDC
source; see Appendix D. In the logarithmic scaling in Fig. 3,
this would result in a linear function. However, we observe
a deviation from such a model; compare light green, dashed,
and dot-dashed lines in Fig. 3.

This deviation from the expected, linear behavior could
have two origins: The source is not producing a two-mode
squeezed-vacuum state (affecting the height of the peaks), or
the detector, including the SQUID response, is not operating
in a linear detection regime (influence on the horizontal axis).
To counter the latter, the measured peak energies En—relating
to the photon numbers n—have been fitted by a quadratic
response function n = aE2

n + bEn + c; see the inset in Fig. 4.
As a result of such a calibration, the peaked structure is
well described by a linear function in n for the heralding
TES as shown in Fig. 4 (top), which is now consistent
with the theoretical expectation. The same nonlinear energy
transformation also yields a linear n dependence for the TESs
1 and 2 (cf. Fig. 4, bottom). Note that those two detectors
only allow for a resolution of K + 1 = 8 outcomes and that
these two detectors have indeed a very similar response—the
depicted linear function is identical for both. In conclusion, it is
more likely that the measured nonlinear behavior in Fig. 4 can
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FIG. 4. A possible assignment between the measured counts and
the photon-number estimate is shown for all TESs. As an example, the
curve in the dashed box serves as the conversion from the measured
energies of the heralding TES (points depict the maxima from Fig. 3).
This conversion yields an almost exponential (log10 y = ax + b, light
green lines) decay of the counts as it is expected for the geometric
photon statistics produced by our source.

be assigned to the detectors, and the PDC source is operating
according to our expectations.

In summary, we encountered an unexpected, nonlinear
behavior of our data. To study this, a nonlinear fit was applied.
This allowed us to make some predictions about the detector
response in the particular interval of measurement while using
known properties of our source. However, a lack of such extra
knowledge prevents one from characterizing the detector. In
Sec. II, we have formulated nonclassicality tests which are
robust against the particular response function of the individual
detectors. They are accessible without any prior detector
analysis and include the eventuality of nonlinear detector
responses and other imperfections, such as quantum efficiency.
With this general treatment, we also avoid the time-consuming
detector tomography.

IV. APPLICATION

In this section, we apply the general theory, presented in
Sec. II, to our specific experimental arrangement, shown in
Fig. 2. In the first step, we perform an analysis to identify
nonclassicality which can be related to photon-number-based
approaches. In the second step, we also compare the different
criteria for sub-multinomial, sub-binomial, and sub-Poisson
light for different realizations of our multiphoton states.

A. Heralded multiphoton states

As derived in Appendix B, the connection of the operator
(20), for fk = k, to the photon-number statistics for the

idealized scenario of photoelectric detection POVMs is given
by :μ̂: = (η/N )n̂, where η is the quantum efficiency of the
individual detectors. This also relates—in this ideal case—the
quantities

〈:μ̂:〉 = η

N
〈:n̂:〉 and 〈:(�μ̂)2:〉 = η2

N2
〈:(�n̂)2:〉. (28)

Recalling :n̂: = n̂, we see that 〈:μ̂:〉 is proportional to the
mean photon number in this approximation. Similarly, we
can connect 〈:(�μ̂)2:〉 to the normally ordered photon-number
fluctuations. They are non-negative for classical states and
negative for sub-Poisson light [see Eq. (21)].

An ideal PDC source is known to produce two-mode
squeezed-vacuum states:

|q〉 =
√

1 − |q|2
∞∑

n=0

qn|n〉 ⊗ |n〉, (29)

where |q| < 1. One mode can be used to produce multiphoton
states by conditioning to the lth outcome of the heralding
detector. Using photoelectric detector POVMs, we get the
following mean value and the variances (Appendix D):

〈:μ̂:〉= η

N

λ̃ + l

1 − λ̃
and 〈:(�μ̂)2:〉

= η2

N2

(λ̃ + l)2 − l(l + 1)

(1 − λ̃)2
, (30)

with a transformed squeezing parameter λ̃ = (1 − η̃)|q|2 and
η̃ being the efficiency of the heralding detector. Note, we get
the ideal lth Fock state, |l〉, for λ̃ → 0.

The experimental result is shown in the top panel of Fig. 5.
Using Eq. (16), we directly sampled the mean value and the
variance of :μ̂: = 0:π̂0: + · · · + K:π̂K : from the measured
statistics for a heralding with l = 0, . . . ,5. In this plot, l

increases from left to right relating to the increased mean
photon numbers (including attenuations) of the heralded
multiphoton states. The idealized theoretical modeling [see
Eq. (30)] is shown in the bottom part of Fig. 5. Note, details of
the error analysis have been formulated previously in Ref. [9].

From the variances, we observe no nonclassicality when
heralding to the zeroth outcome, which is expected as we
condition on vacuum. In contrast, we can infer nonclassicality
for the conditioning to higher outcomes of the heralding TES,
〈:(�μ)2:〉 < 0 for l > 0. We have a linear relation between the
normally ordered mean and variance of :μ̂:, which is consistent
with the theoretical prediction in Eq. (30). In the ideal case,
the normal-ordered variance of the photon number for Fock
states also decreases linearly with increasing l, 〈l|n̂|l〉 = l, and
〈l|:(�n̂)2:|l〉〉 = −l. It is also obvious that the errors are quite
large for the verification of nonclassicality with this particular
test for sub-Poisson light. We will discuss this in more detail
in the next subsection.

B. Varying pump power

So far, we have studied measurements for a single pump
power of the PDC process. However, the purity of the heralded
states depends on the squeezing parameter, which is a function
of the pump power. For instance, in the limit of a vanishing
squeezing, we have the optimal approximation of the heralded
state to a Fock state. However, the rate of the probabilistic
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FIG. 5. The top panel shows the experimentally determined and
normal-ordered mean value and variance of the operator μ̂ for the lth
heralded state, increasing l from left to right and l = 0, . . . ,5. In an
ideal case, those quantities relate to the photon-number statistics [cf.
Eq. (28)]. The bottom plot shows the theoretical expectations (30)
for photon number. The solid quadratic curves show the dependence
for varying λ̃ and fixed 0 � l � 5 (lighter for increasing l). The
dashed linear curves show the dependence for varying l and fixed
λ̃ ∈ {0,0.1, . . . ,0.5} (lighter for increasing λ̃).

generation converges to zero in the same limit (Appendix D).
Hence, we have additionally generated multiphoton states for
different squeezing levels. The results of our analysis are
shown in Fig. 6 and will be discussed in the following.

Suppose we measure the counts Cl for the lth outcome
of the heralding TES. The efficiency of generating this lth
heralded state reads

ηgen = Cl∑
l Cl

. (31)

From the model in Appendix D, we expect that

ηgen = 1 − |q|2
1 − |q|2(1 − η̃)

(
η̃|q|2

1 − |q|2(1 − η̃)

)l

. (32)

The efficiency decays exponentially with l and the decay
is stronger for smaller squeezing or pump power, i.e., a
decreasing |q|2. In the left column of Fig. 6, we can observe

this behavior. It can be seen in all other parts of Fig. 6 that
ηgen influences the significance of our results. A smaller ηgen

value naturally implies a larger error because of a decreased
sample size Cl . This holds for increasing l and for decreasing
squeezing.

In the second column in Fig. 6, labeled as “sub-Poisson,”
we study the nonclassicality criterion

0 > N2(N − 1) �f TM (2) �f , for �f = (0,1, . . . ,K)T, (33)

N = 2, and K = 7, which is related to sub-Poisson light
(Sec. II D 3). The third column in Fig. 6 correspondingly shows
“sub-binomial” light (Sec. II D 2):

0 > N2(N − 1) �f TM (2) �f for �f = (0,1, . . . ,1)T. (34)

The last column, “sub-multinomial,” depicts the nonclassical-
ity criterion

0 >N2(N − 1) �f T
0 M (2) �f0, (35)

where �f0 is a normalized eigenvector to the minimal eigenvalue
of M (2) (Sec. II D 1).

For all notations of nonclassicality under study, the herald-
ing to the zeroth outcome is consistent with our expectation of a
classical state, which also confirms that no fake nonclassicality
is detected. For instance, applying the Mandel parameter to
the data of this zeroth heralded stated without the corrections
derived here [Eq. (27)], we would observe a negative value;
see also similar discussions in Refs. [8,47]. The case of a
Poisson or binomial statistics tends to be above zero, whereas
the multinomial case is consistent with the value of zero. This
expectation has been justified below Eq. (13).

A lot of information on the quantum-optical properties of
the generated multiphoton (l > 0) light fields can be concluded
from Fig. 6. Let us mention some of them by focusing on a
comparison. We have the trend that the notion of sub-Poisson
light has the least significant nonclassicality. This is due to
the vector �f [Eq. (33)], which assigns a higher contribution
to the larger outcome numbers. However, those contributions
have lower count numbers, which consequently decreases the
statistical significance. As depicted in Fig. 6, this effect is not
present for sub-binomial light, which is described by a more
or less balanced weighting of the different counts; see vector
�f in Eq. (34). Still, this vector is fixed.

The optimal vector is naturally computed by the sub-
multinomial criterion in Eq. (35). The quality of the verified
nonclassicality is much better than for the other two scenarios
of sub-Poisson and sub-binomial light in most of the cases.
Let us mention that the normalized eigenvector to the minimal
eigenvalue of the sampled matrix M (2) typically, but not
necessarily, yields the minimal propagated error. Additionally,
a lower squeezing level allows for the heralding of a state
which is closer to an ideal Fock state. This results in higher
negativities for decreasing squeezing and fixed outcomes l in
Fig. 6. However, the heralding efficiency ηgen is also reduced,
which results in a larger error.

Finally, we may point out that this comparative analysis
of sub-Poisson, sub-binomial, and sub-multinomial light from
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FIG. 6. Results of our analysis for different pump powers (indicated by an increasing squeezing from top to bottom rows) as functions of
the heralding to l. The first column shows the success rate [Eq. (31)] for generating the lth multiphoton state. The second, third, and fourth
columns depict the sub-Poisson, sub-binomial, and sub-multinomial nonclassicality criteria in Eqs. (33), (34), and (35), respectively. For a
better overview, dashed lines connect the individual data points.

data of a single detection arrangement would not be possible
without the technique that has been elaborated in this paper
(Sec. II).

V. SUMMARY

In summary, we constructed the quantum-optical frame-
work to describe multiplexing schemes that employs arbitrary
detectors and to verify nonclassicality of generated multi-
photon states. We formulated the theory of such a detection
layout together with nonclassicality tests. Further, we set up
an experimental realization and applied our technique to the
data.

In a first step, the theory was formulated. We proved
that the measured click-counting statistics of the scheme
under study is always described by a quantum version of
the multinomial statistics. In fact, for classical light, this
probability distribution can be considered as a mixture of
multinomial statistics. This bounds the minimal amount of
fluctuations which can be observed for classical radiation
fields. More precisely, the matrix of higher-order, normally
ordered moments, which can be directly sampled from data,
can exhibit negative eigenvalues for nonclassical light. As a
particular example, we discussed nonclassicality tests based on
the second-order covariance matrix, which led to establishing
the concept of sub-multinomial light. Previously studied
notions of nonclassicality, i.e, sub-Poisson and sub-binomial

light, have been found to be special cases of our general
nonclassicality criteria.

In our second part, the experiment was analyzed. Our
source produces correlated photon pairs by a parametric down-
conversion process. A heralding to the outcome of a detection
of the idler photons with a transition-edge sensor produced
multiphoton states in the signal beam. A single multiplexing
step was implemented with a subsequent detection by two
transition-edge sensors to probe the signal field. The complex
function of these detectors was discussed by demonstrating
their nonlinear response to the number of incident photons.
Consequently, without worrying about this unfavorable fea-
ture, we applied our robust nonclassicality criteria to our
data. We verified the nonclassical character of the produced
quantum light. The criterion of sub-multinomial light was
shown to outperform its Poisson and binomial counterparts
to the greatest possible extent.

In conclusion, we presented a detailed and more ex-
tended study of our approach in Ref. [9]. We formulated
the general positive-operator-valued measure and generalized
the nonclassicality tests to include higher-order correlations
which become more and more accessible with an increasing
number of multiplexing steps. In addition, details of our data
analysis and a simple theoretical model were considered.
Thus, we described a robust detection scheme to verify
quantum correlations with unspecified detectors and without
introducing fake nonclassicality.
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APPENDIX A: COMBINATORICS AND POVM ELEMENTS

Here, we provide the algebra that is needed to get from
Eq. (7) to Eq. (8). More rigorously, we use combinatorial
methods to formulate the POVM �̂(N0,...,NK ) in terms of
the POVM :π̂k1 · · · π̂kN

:. Say Nk is the number of elements
of (k1, . . . ,kN ) which take the value k. Then, (N0, . . . ,NK )
describes the coincidence that N0 detectors yield the outcome
zero, N1 detectors yield the outcome 1, etc. One specific and
ordered measurement outcome is defined by (k0,1, . . . ,k0,N ),
with

k0,n =

⎧⎪⎪⎨
⎪⎪⎩

0 for 1 � n � N0,

1 for N0 + 1 � n � N0 + N1,
...

K for N0 + · · · + NK−1 + 1 � n � N,

(A1)

which results in a given (N0, . . . ,NK ), where the total number
of detectors is N = N0 + · · · + NK . This specific example
can be used to represent all similar outcomes as we will show
now. The (k1, . . . ,kN ) for the same combination (N0, . . . ,NK )
can be obtained from (k0,σ (1), . . . ,k0,σ (N)) via a permutation
σ ∈ SN of the elements. Here SN denotes the permutation
group of N elements which has a cardinality of N !. Note
that all permutations σ which exchange identical outcomes
result in the same tuple. This means for the outcome defined
in Eq. (A1) that (k0,σ (1), . . . ,k0,σ (N)) = (k0,1, . . . ,k0,N ) for any
permutation of the form σ ∈ SN0 × · · · × SNK

. Therefore, the
POVM element for a given (N0, . . . ,NK ) can be obtained
by summing over all permutations σ ∈ SN of the POVMs of
individual outcomes :π̂k0,1 · · · π̂k0,N

: [Eq. (7)] while correcting
for the N0! · · ·NK ! multicounts. More rigorously, we can write

�̂(N0,...,NK ) = 1

N0! · · · NK !

∑
σ∈SN

:π̂k0,σ (1) · · · π̂k0,σ (N) :

= N !

N0! · · · NK !
:π̂N0

0 · · · π̂NK

K :, (A2)

where relations of the form :ÂB̂Â: = :Â2B̂: have been used.

APPENDIX B: CORRECTED MANDEL PARAMETER

For the nonclassicality test in Sec. II D 3, we could assume
a detector which can discriminate K = ∞ measurement
outcomes, which are related to measurement operators of
a Poisson form, :π̂ ′

k: = :�̂ke−�̂:/k! [64], where �̂ = ηn̂

is an example of a linear detector response function (η
quantum efficiency). Using the definition (5), we get :π̂k: =
:(�̂/N)ke−�̂/N :/k!, where the denominator N accounts for
the splitting into N modes [77]. This idealized model yields
〈:μ̂:〉 = 〈:(�̂/N):〉 and

∞∑
k=0

k2 Nk

N
= 〈:�̂2:〉

N2
+〈:�̂:〉

N
and A2 = 〈:�̂2:〉+〈:�̂:〉. (B1)

Hence, we have QPois = 〈:(��̂)2:〉/〈:�̂:〉 = NQ′
Pois and

〈:(�μ)2:〉
〈:μ:〉 = 1

N
QPois = η

N

〈:(�n̂)2:〉
〈:n̂:〉 . (B2)

Thus, we have shown that for photoelectric detection models
we retrieve the notation of sub-Poisson light, QPois < 0, from
the general form (27), which includes a correction term.

APPENDIX C: BINNING AND MEASURED
COINCIDENCES

The data in Fig. 4 (Sec. III) are grouped in disjoint intervals
around the peaks, representing the photon numbers. They
define the outcomes k = 0, . . . ,K . Because we are free in
the choice of the intervals, we studied different scenarios and
found that the given one is optimal from the information-
theoretic perspective. On the one hand, if the current intervals
are divided into smaller ones, we distribute the data of
one photon number among several outcomes. This produces
redundant information about this photon number. On the other
hand, we have a loss of information about the individual photon
numbers if the interval stretches over multiple photon numbers.
This explains our binning as shown in Fig. 4.

An example of a measured coincidence statistics for
outcomes (k1,k2) is shown in Fig. 7. There, we consider a
state which is produced by the simplest conditioning to the
zeroth outcome of the heralding TES.

Based on this plot, let us briefly explain how these
coincidences for (k1,k2) result in the statistics c(N0,...,NK ) for
(N0, . . . ,NK ) and K = 7. The counts on the diagonal, k1 =
k2 = k, of the plot yield c(N0,...,NK ) for Nk = 2 and Nk′ = 0
for k′ = k. For example, the highest counts are recorded
for (k1,k2) = (0,0) in Fig. 7 which gives c(2,0,...,0) when
normalized to all counts. Off-diagonal combinations, k1 = k2,
result in c(N0,...,NK ) for Nk1 = Nk2 = 1 and Nk = 0 otherwise.
For example, the normalized sum of the counts for (k1,k2) ∈
{(0,1),(1,0)} yields c(1,1,0,...,0). As we have N = 2 TESs in our
multiplexing scheme and N0 + · · · + NK = N , the cases k1 =
k2 and k1 = k2 already define the full distribution c(N0,...,NK ).

The asymmetry in the counting statistics between the two
detectors results in a small systematic error � 1%. One should
keep in mind that the counts are plotted in a logarithmic scale.
For all other measurements of heralded multiphoton states,
this error is in the same order [9].
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FIG. 7. Example of raw coincidence counts. kn is the outcome
of the nth individual detector (n = 1,2) for which the count was
recorded. Some additional information on the statistics is given in the
inset. The depicted state is produced by conditioning on the zeroth
outcome of the heralding TES in Fig. 2.

APPENDIX D: SIMPLIFIED THEORETICAL MODEL

Let us analytically compute the quantities which are
used for the simplified description of the physical sys-
tem under study. The PDC source produces a two-mode
squeezed-vacuum state (29), where the first mode is the
signal and the second mode is the idler or herald. In our
idealized model, the heralding detector is supposed to be a
photon-number-resolving detector with a quantum efficiency
η̃. A multiplexing and a subsequent measurement with N

photon-number-resolving detectors (K = ∞) are employed
for the click counting. Each of the photon-number-resolving
detector’s POVM elements is described by

:π̂k: = :
(ηn̂/N )k

k!
e−ηn̂/N :. (D1)

In addition, we will make use of the relations :eyn̂: = (1 + y)n̂

(cf., e.g., Ref. [86]) and

∂k
z :e[z−1]yn̂:|z=1 = :(yn̂)k:,

1

k!
∂k
z :e[z−1]yn̂:|z=0 = :

(yn̂)k

k!
e−yn̂:.

(D2)

For this model, we can conclude that the two-mode
generating function for the considered two-mode squeezed-
vacuum state reads

�(z,�x) = 〈:e[z−1]η̃n̂ ⊗ e[‖�x‖−1]ηn̂/N :〉

= 1 − |q|2
1 − |q|2(1 − η̃ + η̃z)(1 − η + η‖�x‖/N)

,
(D3)

where z ∈ [0,1] relates the heralding mode and the compo-
nents of �x ∈ [0,1]N (recall that ‖�x‖ = ∑

n xn) to the outcomes
of the N detectors in the multiplexing scheme. From this
generating function, we directly deduce the different properties
that are used in this paper for comparing the measurement with

our model. The needed derivatives are

∂
�k
�x ∂l

z�(z,�x) = ∂k
‖�x‖∂

l
z�(z,�x)

= (1 − |q|2)l!k!
[(η/N )|q|2z′]k[η̃|q|2x ′]l

[1 − |q|2x ′z′]k+l+1

×
min{k,l}∑

j=0

(k + l − j )!

j !(k + j )!(l − j )!

[
1 − |q|2x ′z′

|q|2x ′z′

]j

,

(D4)

where k = ‖�k‖, x ′ = 1 − η + η‖�x‖/N , and z′ = 1 − η̃ + η̃z.
It is also worth mentioning that the case N = 1 yields the result
for photon-number-resolving detection without multiplexing.

The marginal statistics of the heralding detector reads

p̃l = 1

l!
∂l
z�(z,�x)|z=0,x1=···=xN =1

= 1 − |q|2
1 − |q|2(1 − η̃)

(
η̃|q|2

1 − |q|2(1 − η̃)

)l

. (D5)

The marginal statistics of the nth detector is

1

kn!
∂kn

xn
�(1,�x)|xn=0,z=1=x1=···=xn−1=xn+1=···=xN

= 1 − |q|2
1 − |q|2(1 − η/N )

(
η|q|2/N

1 − |q|2(1 − η/N )

)kn

. (D6)

In addition, the case of no multiplexing (N = 1 and x ∼= �x)
yields for the lth heralded state the following first and second
normally ordered photon numbers:

〈:(ηn̂):〉 = 1

p̃l l!
∂x∂

l
z�(z,x)|z=0,x=1 = η

l + λ̃

1 − λ̃
, (D7)

〈:(ηn̂)2:〉 = 1

p̃l l!
∂2
x ∂l

z�(z,x)|z=0,x=1

= η2 [2(l + λ̃)2 − l(l + 1)]

(1 − λ̃)2
, (D8)

with λ̃ = (1 − η̃)|q|2. The corresponding photon distribution
(i.e., for η = 1) of the lth multiphoton state reads

p̃k|l = 1

p̃l

1

k!l!
∂k
x ∂l

z�(z,x)|z=x=0

=
{

0 for k < l,(
k

l

)
(1 − λ̃)l+1λ̃n−l for k � l.

(D9)

For λ̃ → 0, we have p̃k|l = δk,l , which is the photon statistics
of the lth Fock state.
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