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Impact of dispersion forces on matter-wave scattering near a dielectric disk
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The influence of the Casimir-Polder potential upon matter-wave scattering near a dielectric disk is considered.
We employ a rescaled Dyson series in order to take into account the disk geometry, and compare this with a
previously used approach based on the proximity-force approximation. In the latter approach one uses a simplified
potential that is sharply switched on in the region of the disk. This intrinsically neglects edge and saturation
effects. We show that under appropriate conditions the previous simpler model works very well for the calculation
of the phase accumulated along the full path of the particle due to approximate cancellations of the errors. We
present specific results for experimentally relevant scenarios, namely indium atoms or deuterium molecules
interacting with a silicon nitride or silicon dioxide disk. Finally we compare our calculations to the analytically
solvable problem of an infinitely thin perfectly reflecting disk, finding the expected qualitative agreement.
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I. INTRODUCTION

Matter-wave diffraction around material objects is a striking
demonstration of the wave-particle duality of nature. The
earliest examples of diffraction of massive particles were the
famous electron diffraction experiments of Davisson [1,2],
whose work started a long chain of experiments aiming to do
the same with ever-increasing particle masses. This has led
to, for example, diffraction of fullerenes [3] and porphyrin
derivates [4] using gratings of various types. A long-term
goal of these experiments is to test if the predictions of the
quantum-mechanical superposition principle apply to particles
of increasingly macroscopic size and mass [5,6], or if any
modifications of quantum theory are required to describe
macroscopic systems [7].

Here we investigate a particular class of diffraction
experiments—the “Poisson spot” (sometimes called the spot
of Arago) interferometer, where diffraction of any type of wave
around a cylindrically symmetric object results in an on-axis
bright spot. The matter-wave version of this experiment [8]
avoids some of the problems that appear in the grating
experiments discussed above (e.g., blocking of the grating,
or the need for wavelength selection). However, there is an
inevitable contribution to the phase of the matter wave from the
Casimir-Polder potential [9] arising from interaction between
the object and the diffracting matter-wave beam, which can
affect the intensity of the spot and the placement of fringes.
Calculation of Casimir-Polder potentials is in general very
complicated, as they depend on the electromagnetic field
subject to boundary conditions imposed by the geometry
of the object. This can only be worked out analytically
without approximations for the very simplest geometries
(plane, cylinder, sphere; see, for example, [10]), with anything
more complicated being tackled through numerical methods.
If one restricts to the nonretarded regime (which is most
relevant for matter-wave experiments), the potential near an
infinitely thin, conducting disk can be calculated analytically
[11]. However, the most important region in such diffraction
experiments is when the atom is passing the edge of the disk,
so the assumption of an infinitely thin disk is not necessarily
a good one there. For these reasons Casimir-Polder effects

have been accounted for in Ref. [12] using a relatively simple
model of the experiments of Ref. [8], where the potential is
considered to be zero everywhere except in the plane of the
disk, as shown in Fig. 1. In the previously used version of this
approximation the potential in the “switched-on” region was
taken to be that for a simple half-space (as shown in the inset of
Fig. 1), which corresponds to the assumption that only atoms
passing very close to the disk will have their phases noticeably
altered. In this study we will investigate in detail the validity of
this approach, which we shall refer to as the “proximity-force
approximation” (PFA), well known from Casimir physics [13].
It will be shown that the geometrical part of the PFA (the
assumption of a sharp switch-on) is a good approximation to
reality, while the size of the switched-on potential (found from
considering the disk to be an infinite half-space) is not. This
will lead us to use a hybrid of the PFA and a Dyson series in the
susceptibility of the disk, where the Casimir-Polder potential
near the plane of a disk (not a half-space) is sharply switched
on.

II. BASIC THEORY

In this section we will outline a general derivation for the
Casimir-Polder (CP) interaction for a dielectric disk and a
single ground-state atom and show that it reduces to well-
known results in asymptotic cases. We will follow the approach
of Ref. [14], which is based on the formalism introduced in
Ref. [15], now known as macroscopic quantum electrody-
namics (QED). There the system of the electromagnetic field
coupled to absorbing media can be quantized in one of several
equivalent ways, leading to the following expression for the
macroscopic QED electric field operator:

Ê(r) = i

c2

√
h̄

πε0

∫
d3r′

∫ ∞

0
dω ω2

√
Imε(r,ω)

× G(r,r′,ω) · f̂(r′,ω) + H.c., (1)

where f̂(r,ω) is a bosonic field operator corresponding to the
fundamental excitations of the combined matter-field system
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FIG. 1. Schematic of the considered setup and illustration of the
improvement our model makes over a previously used one.

and G(r,r′,ω) is the Green’s tensor that solves

∇ × ∇ × G(r,r′,ω) − ε(r,ω)
ω2

c2
G(r,r′,ω) = δ(r − r′), (2)

where ε(r,ω) is the position and frequency-dependent permit-
tivity of the system.

We begin from the expression for the CP potential for an
isotropically polarized atom in terms of the Green’s tensor
G(r,r′,ω) derived in Ref. [16],

U (rA) = μ0h̄

2π

∫ ∞

0
dξξ 2α(iξ )tr[GS(rA,rA,iξ )], (3)

where GS is the scattering part of the Green’s tensor, i.e.,
that which depends on the geometry of dielectric bodies. The
quantity α(iξ ) is the degeneracy-weighted atomic ground-state
polarizability, given by

α(iξ ) = 2

3h̄

∑
j �=0

2Jj + 1

2J0 + 1

ω0j d
2
0j

ω2
0j + ξ 2

, (4)

where ω0j is the transition frequency between the ground
state and the j th excited state and d0j is the dipole transition
moment between those states. The factor (2Jj + 1)/(2J0 + 1)
accounts for the possibly different degeneracies of the ground
and excited states, whose total angular momenta are denoted
J0 and Jj , respectively.

A. Approximating the Casimir-Polder potential

The Green’s tensor GS(rA,rA,iξ ) includes all the information
about the scattering properties of the object at hand, whatever
shape it is. However, the Green’s tensor is known analytically
only for very few geometries (bulk medium, infinite plane,
infinite cylinder, sphere and layered versions thereof), and is
in particular not known for our system of a finite-thickness
disk. Therefore approximate methods are needed. Here we
expand the Green’s tensor in a Dyson series about the vacuum
Green’s tensor G(0)(r,r ′,ω) with coupling parameter χ (r,ω) =
ε(r,ω) − 1, which is the susceptibility of the medium. One
finds for the whole Green’s tensor G (not just its scattering
part) the recursive equation:

G(r,r ′,ω) = G(0)(r,r ′,ω) + ω2

c2

∫
d3sχ (s,ω)

× G(0)(r,s,ω) · G(s,r ′,ω), (5)

from which solutions to arbitrary order in χ can be generated.
The vacuum Green’s tensor G(0) is known analytically:

G(0)(r,r ′,ω) = − c2eiωρ/c

4πω2ρ3

{[
1 − i

ωρ

c
−

(ωρ

c

)2
]

I

+
[
3 − 3i

ωρ

c
−

(ωρ

c

)2
]

eρ ⊗ eρ

}
− c2

3ω2
δ(ρ),

(6)

where ρ = |ρ| = |r − r′|, eρ is a unit vector along the direction
of ρ and ⊗ denotes the outer product. It is useful to define the
“regular part” H(0)(r,r ′,ω) of the vacuum Green’s tensor via

G(0)(r,r ′,ω) = − c2

3ω2
δ(ρ) + H(0)(r,r ′,ω). (7)

The Dyson equation can then be re-expressed as

G(r,r ′,ω) = G(0)(r,r ′,ω) + ω2

c2

∫
d3s

χ (s,ω)

1 + 1
3χ (s,ω)

H(0)(r,s,ω) · G(s,r ′,ω). (8)

The advantage of this is that the new perturbation parameter χ (s,ω)/[1 + 1/3χ (s,ω)] does not diverge for the case of a metal disk
(with its large χ ). We then solve the new Dyson equation in the usual iterative way, finding

G(r,r ′,ω) = G(0)(r,r ′,ω)

+
∞∑

K=1

ω2K

c2K

∫
d3s1

χ (s1,ω)

1 + 1
3χ (s1,ω)

· · ·
∫

d3sK

χ (sK,ω)

1 + 1
3χ (sK,ω)

H(0)(r,s1,ω) · H(0)(s1,s2,ω) · · · H(0)(sK,r ′,ω). (9)

Restricting to leading order corrections (K = 1), we find for the Dyson-series derived CP potential UD,

UD(rA) = − μ0h̄

2πc2

∫ ∞

0
dξξ 4α(iξ )

∫
d3s

χ (s,iξ )

1 + 1
3χ (s,iξ )

Tr[H(0)(rA,s,iξ ) · H(0)(s,rA,iξ )]. (10)
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After inserting the vacuum Green’s tensor (6) and carrying out the trace, the potential becomes

UD(rA) = − h̄

16π3ε0

∫ ∞

0
dξα(iξ )

∫
d3s

χ (s,iξ )

1 + 1
3χ (s,iξ )

e−2ξ
ρ

c

ρ6

[
3 + 6

(
ρξ

c

)
+ 5

(
ρξ

c

)2

+ 2

(
ρξ

c

)3

+
(

ρξ

c

)4
]
, (11)

where now ρ = rA − s.
For explicit calculations we will consider the more phys-

ically relevant limit near-field (nonretarded) limit, which is
defined by the transition wavelength being much larger than
the atom-body separation (ωjzA/c � 1). In terms of Eq. (11),

this corresponds to taking e−2 ρξ

c � 1 and also neglecting terms
of order ρξ/c or higher in the polynomial in the second
line. Furthermore we assume that the material body has a
homogenous permittivity and is described by a volume V:

χ (s,iξ ) = χ (iξ )I(s), with I(s) =
{

1 for s ∈ V
0 otherwise.

This restricts the s integral in (11), leading to the final form of
the CP potential,

UD(rA) = − 3h̄

16π3ε0

∫ ∞

0
dξα(iξ )

χ (iξ )

1 + 1
3χ (iξ )

∫
V

d3s
1

ρ6

= −C6

∫
V

d3s
1

ρ6
, (12)

with

C6 ≡ 3h̄

16π3ε0

∫ ∞

0
dξα(iξ )

χ (iξ )

1 + 1
3χ (iξ )

. (13)

This is the Hamaker approach [17] to the calculation of atom-
body interactions, where the body is approximated as being
made up of a large number of uncorrelated atoms.

There are two limits of this potential which are of interest
to estimate the quality of later results. First there is the limit
where the atom is so close to the disk that the latter can be
approximated as a half-space, in which case the s integral∫

V d3sρ−6 in (12) becomes elementary with result π/(6z3
A),

giving for the “Dyson-half-space” potential,

UDHS(zA) = −C3DHS

z3
A

, (14)

with C3DHS = π
6 C6. As the notation suggests, it is important

to distinguish the above CP potential (the nonretarded limit
for an atom near a half-space described by a Dyson series)
from the well-known nonretarded CP potential found through
direct use of the exact half-space Green’s function. The latter
potential is

UHS(zA) = −C3HS

z3
A

, (15)

with

C3HS = − h̄

16π2ε0z
3
A

∫ ∞

0
dξα(iξ )

χ (iξ )

χ (iξ ) + 2
. (16)

We will use this result to estimate the errors which stem from
the approximations involved in making the Dyson series.

B. Phase shift due to the potential

We require one more formula, which is that for the
accumulated phase of an atom (matter wave) traveling past
the disk. If the atom moves along a trajectory parallel to the
disk axis and subject to some general potential U (rA), the
collected phase is given by [8,12,18–20]

φ =
∫ ∞

−∞
dxAk(xA) =

∫ ∞

−∞
dxAk0

√
1 − U (rA)

E0
. (17)

Taking E0 = h̄2k2
0/2m = mv2

0/2 as the initial and purely
kinetic energy of the atom, as well as taking only the leading
term in a Taylor series defined by U (rA) 
 E0 gives

�φ = − 1

h̄v0

∫ ∞

−∞
dxAU (rA). (18)

In our particular case, the potential is the CP potential (12).
Using the PFA as shown in Fig. 1 together with the half-space
potentials (14) and (15) one has trivially

�φ � 1

h̄v0

C3

z3
A

∫ d/2

−d/2
dxA = C3d

h̄v0z
3
A

, (19)

where d is the thickness of the disk and C3 is either C3DHS or
C3HS depending on which version of the half-space one wishes
to use.

III. CASIMIR-POLDER POTENTIAL

To find the phase shift for real situations we need to calculate
the corresponding explicit values of C6 via Eq. (13) and C3HS

via Eq. (15), where the former will in turn give us C3DHS =
(π/6)C6. These three values will be collectively referred to
as dispersion constants. The properties of the diffracting atom
and the disk material enter into C3 via the atomic polarizability
α(ω) and the material susceptibility χ (ω), respectively, so in
order to proceed we must obtain expressions for these.

A. Material response functions

In our calculations we consider two materials for the disk:
silicon nitride (SiNx) and silicon oxide (SiO2), as well as two
different kinds of diffracting particles, elemental indium (In)
and deuterium molecules (D2). These choices are motivated
by recent and ongoing Poisson spot experiments [8,12,21].

1. Polarizabilities

The atomic or molecular polarizabilities are calculated from
Eq. (4), where as many transitions as possible should be
included for an accurate result. For indium there are only a few
dominant transitions, but for deuterium there are numerous
vibrational sublevels of the electronically excited manifolds
whose contributions are of the same order, meaning that a
large number of transitions were used. We list the transitions
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FIG. 2. Comparison of both polarizabilities as a function of
(complex) frequency ξ . It can be seen that the polarizability for indium
decreases much faster with frequency compared to that for deuterium.

(and their corresponding frequencies and dipole moments) for
indium and deuterium in the Appendix. Then, all that remains
is that these parameters have to be inserted into Eq. (4) which
leads the following static (i.e., zero frequency) polarizabilities:

αIn(0) = 4.71 × 10−40 Cm2V−1,

αD2 (0) = 4.98 × 10−41 Cm2V−1. (20)

For D2, the experimentally observed value is αD2 (0) =
8.71 × 10−41 Cm2V−1 [22], while the theoretically predicted
values range from αD2 (0) = 1.58 × 10−41 Cm2V−1 to 9.10 ×
10−41Cm2V−1 [23]. The frequency dependence is shown in
Fig. 2, where it is seen that the polarizability decreases very
rapidly for indium atoms, while for deuterium the decrease is
slower.

2. Susceptibilities

For SiNx, the susceptibility was obtained in Ref. [24], and
is given by

χSiNx(iξ ) =−1 + 2

π

∫ ∞

T

dx
f γ (x − T)2

(x2 + ξ 2)[(x2 − 2)2 + γ 2x2]
,

(21)

with the following parameters (expressed as angular frequen-
cies, i.e., they should be divided by 2π to obtain the number
of cycles per second);

T = 3.48 × 1015 rad/s,  = 1.09 × 1016 rad/s,

f = 1.13 × 1017 rad/s, γ = 1.16 × 1016 rad/s, (22)

which leads to the static value of χSiNx (0) = 2.87. A similar
calculation for crystalline, uniaxial, anisotropic SiO2 can be
found in Ref. [25] (based on [26]), and results in a static value
of χSiO2 (0) = 2.9. The dispersion constants are calculated via
Eqs. (13) and (15) as well as the limit for a perfect conductor
(ε → ∞), with results shown in Table I.

Our results for dispersion constants for deuterium interact-
ing with SiNx can be directly compared to the experimental
work of [27], where deuterium was diffracted from a SiNx

grating whose bars were considered large enough to be
approximated by infinite half-spaces. In such a situation we

TABLE I. Dispersion constants in units of 10−50 Jm3 for indium
atoms interacting with different dielectric media. Here it is easily
seen that the Dyson half-space model causes an overestimate relative
to the half-space model (i.e., C3DHS > C3HS for all combinations of
particle and disk.) The specific level of overestimation is shown in
the final column and will be used later for comparison with our full
integration that includes the shape of the disk. Finally we note that
since C3DHS = π

6 C6 one can easily see via Eqs. (13) and (16) that in the
limit of perfect conduction one will always find C3HS/C3DHS = 2/3,
as reflected in the table.

Particle Disk C6 C3HS C3DHS
C3HS/C3DHS

Indium SiNx 32.8 14.2 17.2 0.83
Indium SiO2 21.1 9.78 11.04 0.89
Indium ε → ∞ 91.0 31.8 47.6 0.67
Deuterium SiNx 7.60 3.40 3.98 0.86
Deuterium SiO2 5.44 2.57 2.85 0.90
Deuterium ε → ∞ 33.4 11.7 17.49 0.67

obtain C3HS = 3.404 × 10−50, while [27] obtained 0.33 ±
0.10 meV nm3 = (5.29 ± 1.60) × 10−50 J m3, meaning that
our result lies just slightly outside the lower error bar.

B. Results

The final ingredient in determining the Casimir-Polder
potential of the disk in the Dyson series picture is to carry out
the integral in Eq. (12) over the volume of the disk, with the
atom placed at a position {xA,ρA} as indicated in Fig. 3. There
two of three integrals are solvable analytically, but because of
the unmanageable size of the resulting analytical expression
the whole integral was solved numerically. Our results are
shown in Fig. 4 where one can clearly see the overestimation
(relative to the half-space) of the potential by the Dyson series.
This general feature of the Dyson series derived potentials
will be accounted for using phenomenological correction
factors, the results of which will be referred to as “Dyson-
compensated” potentials. The contour plot Fig. 5 shows that
for small distances the form of the potential is approximately
rectangular, while for larger distances the shape becomes more
elliptical. This is in line with the physical intuition that very

R

x

y,z

Disk axis
0

FIG. 3. The coordinate system used in our calculations of
Casimir-Polder potentials.
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FIG. 4. Casimir-Polder potential (solid line) for a deuterium
molecule at a lateral distance ρA − R = 100 nm from a SiNx disk.
The dashed lines show the potential for the Dyson half-space (14)
and half-space approximated (15) for comparison. The shaded area
represents the extent of the disk.

close to the disk it should seem like a half-space, and very far
away it should seem like a point particle.

IV. IMPACT ON MATTER-WAVE SCATTERING

A. Edge and saturation effects

We can now use Eq. (18) to calculate the influence of our
Casimir-Polder potential results on matter-wave scattering.
We assume that the atomic beam is incident perpendicular
to the disk and is generated and detected sufficiently far away
(relative to the size of the disk) that we can consider it to
be traveling over the complete distance xA ∈ (−∞,∞). The
result for the phase shift with these parameters can be seen in
Fig. 6 alongside its Dyson-compensated value. The latter was

0 0.5 1 1.5 2
29

29.5

30

30.5

31

-32
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-26

-24

FIG. 5. Detail of the Casimir-Polder potential for a deuterium
molecule near the edge of an SiNx disk of thickness 1 μm and radius
of 30 μm.

2 4 6 8 10

2

4

6

8

10

12

Collected phase with C6

Collected phase with corrected C6

FIG. 6. (Upper curve) Collected phase [found from Eq. (18)] of a
deuterium molecule moving at 1060 m/s at various distances ρA − r

from the edge of a disk with the same parameters as that shown
in Figs. 4 and 5. (Lower curve) The same quantity but multiplied
by C3HS/C3DHS = 0.86 (see Table I) in order to compensate for the
Dyson series overestimation.

also compared to the phase shift in the PFA [Eq. (19)] and can
be seen in Fig. 7. There, the difference is extremely small,
i.e., the approximation works very well. This is to be expected
as the chosen atom-disk edge distance ρA − R = 0.1 μm is
small compared to the radius (30 μm) and thickness (1 μm)
of the disk. In other words, the disk can, to a very good
approximation, be considered as a half-space with a modified
dispersion constant within the PFA—the effects of the actual
shape can be ignored.

This fact can be intuitively understood via Fig. 4, where we
plot the Casimir-Polder potentials for the two types of half-
space, as well as the disk. One can see that the full disk potential
is close to zero a long way from the disk, then suddenly
increases (where the half-space approximation has not yet been
“switched on,” so the half-space approximation is at this point
underestimating the potential), intersects the point where the
approximation would turn on (where the previous underesti-
mation then switches to an overestimation), and then reaches
the plateau where the half-space is a good approximation. Out

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

FIG. 7. The difference between the phase collected in the PFA and
the Dyson-compensated phase collection from the disk modeled by
Eq. (18). The difference is very small (tens of milliradians), showing
that our approximation works well.
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of this one can see that the underestimation on the approach
to the disk roughly cancels out the overestimation due to edge
effects. Effects due to incomplete saturation to the half-space
plateau are negligible for the parameters used. Finally we note
that of course the potential has a symmetric shape which means
that the effect occurs twice, one time when the particle flies
towards the disk and one time when it flies away.

B. Curvature effects

It is possible to evaluate the exact nonretarded Casmir-
Polder potential near a perfectly conducting disk of zero thick-
ness via Kelvin inversion of the problem for an infinite half-
sheet [11]. The requirement of zero thickness therein means
we cannot compare this directly to our Dyson series approach
which relies on the disk having some finite volume. However,
we can use the results of [11] to reinforce our conclusion that
the shape of the disk does not matter for small distances (i.e.,
those dominant in matter-wave scattering) by a simple analytic
calculation. Taking the results of Ref. [11] for an isotropically
polarizable dipole in the plane of the disk, one finds

UThin = d2

12π2ε0

R
(
3ρ2

A + 4R2
)

(R − ρA)3(ρA + R)3
≡ − C3Thin(R)

(ρA − R)3
, (23)

where d is the dipole moment and a geometry-dependent
dispersion coefficient C3Thin(R) has been defined. The
Casimir-Polder force in the nonretarded limit a distance
R − ρA from a perfectly reflecting plane is

UPM = − d2

48π2ε0(ρA − R)3
≡ − C3PM

(ρA − R)3
, (24)

which is simply the perfectly reflecting version of Eq. (15).
Taking the ratio of (23) and (24) then expanding in a
Taylor series about ρA ≈ R one finds the following result,
independent of the particle species used:

UThin

UPM
= C3Thin(R)

C3PM
= 7

2π
− 9

4πR
(ρA − R) + O(ρA − R)2.

(25)

The leading term is independent of all the geometric properties
of the disk—the next-to-leading term is the first geometry-
dependent correction. For the parameters used in Fig. 4 (ρA −
R = 100 nm, R = 30 μm) its magnitude is approximately
0.2% of the leading term, showing that simply taking an
adjusted (but geometry-independent) value for the dispersion
coefficient is enough to encapsulate most of the differences
between a disk and a half-space for the parameters chosen here.

C. Effect on the relative intensity of Poisson’s spot

In this section we present results from applying the pre-
dicted CP phase shift to numerical simulation of matter-wave
Poisson-spot diffraction experiments [8]. The simulation is
analogous to Ref. [25], where we discuss diffraction behind a
spherical diffraction obstacle. The simulation is discussed in
detail there, but to summarize, we solve the Fresnel-Kirchhoff
diffraction integral given below, to find the intensity |A(P )|2
of the wave at a point P in the shadow at a distance b behind

the disk [12,28].

A(P ) = − i

λgb

∫ 2π

0
dφ

∫ ∞

0
dρA G(φ,ρA)ρAei[ϕg (ρA)+�ϕCP(ρA)].

(26)

Here λ is the de Broglie wavelength of the matter-wave beam.
g and b are the distances from source to disk and from disk
to detector, respectively. ϕg(ρA) = π

λ
( 1
g

+ 1
b
)ρ2

A is the phase
shift due to the variation in path lengths from source to image
points via different points in the plane of the disk. ϕCP(ρA) is
the CP-induced phase shift given by Eq. (19). The aperture
function G(φ,ρA) is used to model the diffraction obstacle,
i.e., the blocking disk. It is 0 for points blocked by the disk and
1 otherwise. In order to compute the on-axis intensity for an
extended source, a convolution of the point-source diffraction
image with the source image is necessary. Therefore, A(P )
must be also evaluated for points P away from the optical axis,
which we achieve by shifting the aperture function G(φ,ρA)
appropriately. We neglect the change in the angle of the disk
with the optical axis for these off-axis points. As discussed in
Ref. [25], we restrict the numerical inclusion of the CP phase
shift to an annular region concentric with the disk, allowing
for a maximum CP phase shift of 4π and a minimal phase shift
of π/1000.

In Fig. 8 we use this method to predict the relative (to
the unobstructed case) on-axis intensity Irel of Poisson’s spot
as a function of detector distance for the deuterium Poisson
spot experiment described in Ref. [8]. In the experiment a
supersonic beam of deuterium (D2) with a measured terminal
beam velocity of v = 1060 m/s (peak of velocity distribution
and equivalent to a de Broglie wavelength of λ = 93.5 pm
[29]) and a velocity spread of �v/v = 0.054, was incident on
a silicon-nitride disk of 60 μm in diameter and with thickness
less than 1 μm. The source, which had a diameter of 50 μm,
was located 1496 mm from the disk. For the figures we have
assumed the two different dispersion constants derived here
as well as the constant C3,GRI measured by Grisenti et al.
[27]. Besides the silicon-nitride disk used in the experiment
we additionally present the case of a disk made from silicon
dioxide which could be prepared for a future experiment.
For both materials we performed the calculations for disk
thicknesses of 500 nm and 1000 nm, which corresponds to
the uncertainty interval of the experimental disk thickness.
Finally, the graphs are compared to Irel computed without
any CP phase shift. Note that also in this case the relative
intensity slightly increases with distance from the disk.
This is due to the comparatively large source diameter and
small diffraction intensities, which result in an increasingly
important contribution from the shadow’s outer edge. The
latter adds to the on-axis peak due to the farthest off-axis
source points in the extended source convolution. At smaller b

the relative diffraction intensity increases sharply as expected,
and the differences between the predicted intensities due to a
variation of the dispersion constant become more pronounced.

In addition to the on-axis intensities we display the expected
lateral distribution of the relative intensity in the shadow in
Fig. 9. The assumed experimental parameters are the same as
in Fig. 8, and we show the case of a realistic closest approach of
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FIG. 8. Effect of the CP-induced phase shift on matter-wave
diffraction. The plots show the relative on-axis intensity of Poisson’s
spot calculated for the experimental parameters used in Ref. [8]
assuming as the diffraction obstacle (a) a silicon-nitride disk, as
was used in the experiment, and (b) a silicon-dioxide disk. Irel is
given in intensity units of the undisturbed wave front (without the
sphere the plot would show Irel = 1). The on-axis intensities were
calculated using the two different dispersion constants given in Table I
as indicated. The graph in (a) labeled as C3,GRI was calculated using
the half-space dispersion constant determined in the experiment of
Ref. [27]. The thick graphs assume a disk thickness of 1 μm and the
thin graphs 0.5 μm. The graph indicated with “no CP” shows the
relative intensity of Poisson’s spot without any phase shift due to the
CP potential.

the detector of b = 30 mm and the smallest detector distance
used in the deuterium Poisson spot experiment of b = 321 mm.
In the latter case it is clear that the effect of the CP-induced
phase shift is nearly negligible, especially when compared to
the influence of disk edge corrugation and support structure
(see Fig. 10). In particular the graphs associated with the
different C3 constants overlap. However, at the smaller detector
distance we expect that the predicted differences can be tested
experimentally, as long as some experimental prerequisites can
be met, as discussed below.

The simulations shown in Figs. 8 and 9 neglect any edge
corrugation of the disk, for which a more significant reduction
in Poisson spot intensity is expected at smaller b. Furthermore,
any support structure of the disk that blocks the incident de
Broglie waves is expected to reduce the intensity of Poisson’s
spot. Thus, in order to be able to compare the simulation to
experiments both of these effects need to be accounted for.
This we illustrate in Fig. 10. There we modify the Dyson half-
space-based relative intensity simulation for the deuterium
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FIG. 9. Simulated lateral relative intensity for the deuterium
Poisson spot experiment [8] for detector distances (a) and (c)
b = 30 mm, and (b) and (d) b = 321 mm. The line styles indicate
the type of CP potential used (colors analogous to Fig. 8). Dark blue
solid lines, no CP potential; light blue dashed lines, C3HS; orange
dashdotted lines, C3DHS; green dotted lines, C3,GRI. In (b) and (d)
the difference in the simulated intensity for the different dispersion
constants is not visible; a small change, mostly on axis, can be seen
for the smaller detector distance.

experiment using two attenuation factors that were derived
and tested in Ref. [30] for light diffraction.

The factor Csupp modeling the reduction in intensity due to
support bars is defined by

Csupp = 1 − csuppnsuppwsupp

2πR
,

where nsupp is the number and wsupp is the width of the support
bars which were 4 and 3 μm in the experiment of Ref. [8],
respectively. The constant csupp we set to 1.5 as determined in
[30]. The expected attenuation due to the support structure is
shown as a gray area in Fig. 10. Next, we define the factor
Ccorr we use for taking into account disk edge corrugation of a
square wave shape and with a peak-to-peak amplitude of σcorr

as follows:

Ccorr =
{

cos2
(

π
2

σcorr
wf z

)
if σcorr < wf z

∼ 0 otherwise
.

Here, wf z =
√

R2 + λgb

(g+b) − R is the width of the Fresnel

zone adjacent to the rim of the disk. In Fig. 10 the effect of
increasing σcorr in steps of 10 nm up to 300 nm is shown
as an orange color gradient. Note that this analysis excludes
any effect the corrugation has on the CP potential. The data
points as measured in Ref. [8] are superimposed on the
gradient including their experimental uncertainty [31]. In order
to deduce the relative intensity Irel = (IPS − IBG)/(I0 − IBG)
from the experiment it is important to measure any background
intensity IBG and subtract it from the on-axis intensity IPS and
unobstructed intensity I0 of the beam.
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FIG. 10. Simulated relative on-axis intensity of Poisson’s spot
for the deuterium experiment compared to the experimental values
deduced from Ref. [8]. Here we only show the result for the normal
half-space dispersion constant C3HS and a disk thickness of 1 μm,
but include an estimate for the influence of the support bars that kept
the disk in place (intensity reduced by area shaded in gray) and an
increasing amount of disk edge corrugation (orange contour lines
correspond to increases of peak-to-peak corrugation amplitude σcorr

in steps of 10 nm). The data points agree with a corrugation amplitude
of about 200 nm.

It can be seen that the data is compatible with an edge corru-
gation of about 200 nm. This is less than the 300 nm included in
the simulation of Ref. [8], but is also in qualitative agreement
with the 250 nm determined from microscopy. This also
complies with the fact that the factor Ccorr assumes a worst case
square wave corrugation and the numerical model in Ref. [8]
used a fourth power sine corrugation function. The latter type
of corrugation requires a larger peak-to-peak amplitude to
cause the same attenuation of Poisson’s spot. A contribution
from CP to the intensity cannot be deduced with certainty,
but we can estimate the parameters needed to perform an
experiment that would allow this. First, the large uncertainty
of the data values is mainly due to the large uncertainty of
the background and unobstructed intensity values, which were
unfortunately only determined in initial measurements with
short integration times. A measurement with uncertainties of
the order of 1% seems feasible in future experiments.

Second, a reduction in the disk edge corrugation to about
σcorr = 10 nm we expect to be achievable using electron-beam
lithography or focused ion beam milling. This would allow a
measurement of the beam profiles shown in Fig. 9(a) or 9(b)
with a limited amount of attenuation. To be able to differentiate
between Dyson half-space and normal half-space dispersion
constants, it should be noted that in such an experiment the
distance b would have to be measured more precisely, as
the expected increase in Irel strongly depends on b. Finally, the
reduced Poisson spot width at the smaller distance b would
require a higher resolution detector to measure the on-axis
intensity accurately (the detector aperture was 11 μm in the
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d = 100
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FIG. 11. Simulated relative on-axis intensity of Poisson’s spot in
the shadow of a silicon-dioxide disk 200 nm in diameter and indium
atoms as beam species. The thickness of the disk we assume to be
10 nm, 50 nm, and 100 nm as indicated. Besides the CP interaction
potential the experimental parameters (wavelength λ = 6.67 pm,
source width ws = 20 μm, g = 600 mm) are the same as for the
experiment discussed in Ref. [25], where the focus is on diffraction
of indium atoms at a silicon-dioxide sphere. For comparison we show
the relative on-axis intensity behind a 200-nm diameter sphere, which
we computed using the sphere-radius dependent dispersion constant
C52 = 9.365 × 10−22 m5/2 for the CP phase shift �ϕCP, BNR =
C52/z

5/2
A in the vicinity of a sphere introduced there.

deuterium experiment). A precise knowledge of the dispersion
constants for the CP interaction of deuterium with silicon
nitride is also relevant for focusing of deuterium with Fresnel
zone plates [32,33]. It could allow an optimization of the zone
plate, for example, with regard to chromatic aberration.

Finally, we apply our results to the indium matter-wave
Poisson spot experiment discussed in Ref. [25], where the
diffracting object was a sphere, rather than a disk. We can find
the disk thickness dcrit that would give the same phase shift as
a sphere with the same diameter by setting our expression (19)
for the accumulated phase equal to Eq. (21) of [25] which is
the corresponding relation for the sphere. Solving for the disk
thickness d one finds

dcrit = 3π

4
√

2

√
RzA ≈ 1.7

√
RzA, (27)

where R is the radius of the sphere. Taking R = 100 nm and
a notional zA of 10 nm gives dcrit ≈ 54 nm which fits well
with the results of the full simulations shown in Fig. 11.
There we show plots of the relative intensity of Poisson’s
spot corresponding to the two dispersion constants for the
indium atom and silicon dioxide disk interaction assuming
three different disk thicknesses, namely 10 nm, 50 nm, and
100 nm. This we compare to the relative intensity for a
sphere with the same diameter as the disk, namely 200 nm.
The relative intensity for the sphere corresponds very well to
that for a disk of 50-nm thickness. The distinction between
half-space and Dyson half-space Poisson-spot intensities is
even less distinct than in the deuterium experiment, due to
additional fluctuations of the relative intensity as a function of
b. The latter occurs because the adjacent Fresnel zone in the
indium experiment is of smaller width than the annular zone
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in which we have to account for a CP phase shift (up to about
30 nm). In the deuterium experiment the adjacent Fresnel zone
is much wider (up to about 900 nm).

V. SUMMARY

We have investigated the effect of the attractive Casimir-
Polder potential on matter-wave scattering from a dielectric
disk, and considered a specific example of deuterium being
diffracted by SiNx, as shown in Figs 4 and 5. We have
also determined dispersion parameters for other situations
of experimental interest. We have compared our results to a
commonly used model (the PFA) where the potential is sharply
switched from zero to its half-space value when the atom enters
the plane of the disk. This comparison showed that while
the Casimir-Polder potential looks quite different in the two
cases, the phase shift (which is found by an integral over the
potential) is largely unaffected due to approximate cancellation
of errors associated with edge effects, and the smallness of
errors associated with curvature and incomplete saturation.
This is expected to break down if one moves further away from
the disk (to the region where it looks less like a half-space), but
for the experimentally motivated parameters chosen here the
approximation works very well, as demonstrated in Sec. IV B
where we have checked the consistency of our results by using
known analytic results for an infinitesimally thin disk.

We have used the calculated dispersion constants to sim-
ulate the effect of the CP potential on the relative intensity
of Poisson’s spot in deuterium and indium matter-wave
diffraction experiments. In particular we compare the predicted
on-axis intensities for the half-space and Dyson half-space
model. Furthermore, we compare the intensities to results
from the deuterium experiment of Ref. [8]. An effect from
the CP-induced phase shift could not be deduced from the
deuterium data, but this may be possible in future experiments,
the requirements of which we have also discussed.

The main conclusion of our work is that matter-wave
diffraction around a disk can be accurately modeled by
the sharply switched-on half-space model with a corrected
dispersion constant—the actual geometric properties can be
safely ignored.
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APPENDIX: TRANSITION DATA

In this section we quote transition frequencies and dipole
moments that determine the polarizability for indium (Table II)
and deuterium (Tables III, IV, and V).

TABLE II. Transition frequencies and dipole moments for indium
[34]. The transition starts from the ground state, whose electron
configuration in its outer shell is 5s2

1/25p1
1/2. Frequencies are given in

units of 1015 rad/s and dipole moments in units of 10−30 Cm.

Level j ω0j d0j

6s1
1/2 4.591 11.2995

5d1
3/2 6.1957 10.923

7s1
1/2 6.838 3.201

6d1
3/2 7.355 3.666

8s1
1/2 7.6546 1.780

7d1
3/2 7.8804 1.3055

TABLE III. Ground-to-first electronic excited state (with vibra-
tional quantum number ν) transition frequencies and dipole moments
for the Lyman (X1�+

g − B1�+
u ) system of deuterium [35]. All

frequencies ω0j are given in units of 1016rad/s, and all dipole moments
d0j are in units of 10−32 Cm.

ν ω0j d0j ν ω0j d0j ν ω0j d0j

0 1.71 22.75 18 2.03 150.46 36 2.36 30
1 1.73 49.51 19 2.05 139.03 37 2.38 27.44
2 1.74 80.68 20 2.07 128.01 38 2.4 25.09
3 1.76 112.95 21 2.09 117.54 39 2.41 22.94
4 1.78 143.48 22 2.11 107.7 40 2.43 20.97
5 1.8 170.16 23 2.12 98.52 41 2.45 19.24
6 1.82 191.87 24 2.14 90 42 2.47 17.7
7 1.83 207.92 25 2.16 82.13 43 2.49 16.27
8 1.85 218.33 26 2.18 74.91 44 2.51 14.91
9 1.87 223.54 27 2.2 68.28 45 2.52 13.59
10 1.89 224.15 28 2.21 62.24 46 2.54 12.27
11 1.91 221.08 29 2.23 56.72 47 2.56 11.03
12 1.92 215.04 30 2.25 51.72 48 2.58 9.67
13 1.94 206.67 31 2.27 47.17 49 2.6 7.99
14 1.96 196.73 32 2.29 43.03 50 2.61 6.06
15 1.98 185.74 33 2.31 39.28 51 2.63 2.72
16 2 174.08 34 2.32 35.88 52 2.65 2.31
17 2.02 162.28 35 2.34 32.8 – – –

TABLE IV. Ground-to-second electronic excited state (with
vibrational quantum number ν) transition frequencies and dipole
moments for the Werner (X1�+

g − C1�u) system of deuterium [35]
(notation and units the same as Table III).

ν ω0j d0j ν ω0j d0j

0 1.87 219.27 10 2.2 116.39
1 1.91 321.49 11 2.23 95.49
2 1.94 361.38 12 2.26 78.35
3 1.97 357.62 13 2.3 64.48
4 2 329.12 14 2.33 53.18
5 2.04 289.51 15 2.36 43.94
6 2.07 247.39 16 2.39 36.23
7 2.1 207.63 17 2.43 29.63
8 2.13 172.24 18 2.46 23.38
9 2.17 141.82 – – –
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TABLE V. Transition frequencies and dipole moments for the higher electronically excited states of deuterium [36] (notation and units the
same as Tables III and IV). The vibrational quantum number of the excited state is labeled as ν.

Level ν ω0j d0j Level ν ω0j d0j Level ν ω0j d0j Level ν ω0j d0j

5pπ 2 2.33 43.21 14pπ 2 2.4 9.19 5pπ 7 2.45 27.1 5pπ 9 2.5 24.95
10pπ 0 2.33 7.87 15pπ 2 2.4 8.5 6pπ 6 2.45 23.32 13pπ 6 2.5 9.15
11pπ 0 2.33 7.23 8pπ 3 2.4 26.79 19pπ 4 2.46 5.06 6pπ 8 2.5 19.3
13pπ 0 2.34 7.08 6pπ 4 2.4 43.64 20pπ 4 2.46 5.06 15pπ 6 2.5 8.26
4pπ 4 2.34 66.8 5pπ 5 2.41 32.4 22pπ 4 2.46 4.56 8pπ 7 2.5 13.2
7pπ 1 2.34 19.27 4pπ 7 2.41 43.65 23pπ 4 2.46 4.38 16pπ 6 2.5 5.36
16pπ 0 2.34 4.08 9pπ 3 2.41 17.07 26pπ 4 2.46 3.57 9pπ 7 2.51 13.71
17pπ 0 2.34 3.84 10pπ 3 2.41 16.21 27pπ 4 2.46 3.57 4pπ 12 2.51 20.52
8pπ 1 2.35 19.05 11pπ 3 2.42 15.1 28pπ 4 2.46 3.34 10pπ 7 2.51 13.34
6pπ 2 2.35 37.91 7pπ 4 2.42 27.63 9pπ 5 2.46 16.5 7pπ 8 2.51 17.37
9pπ 1 2.35 14.4 12pπ 3 2.42 10.02 10pπ 5 2.47 15.04 5pπ 10 2.51 19.34
5pπ 3 2.35 43.95 13pπ 3 2.42 10.57 7pπ 6 2.47 25.27 11pπ 7 2.52 8.63
10pπ 1 2.36 12.68 15pπ 3 2.43 9.11 4pπ 10 2.47 26.29 12pπ 7 2.52 9.12
11pπ 1 2.36 11.62 18pπ 3 2.43 8.24 12pπ 5 2.47 20.86 6pπ 9 2.52 16.61
4pπ 5 2.36 58.29 19pπ 3 2.43 12.27 13pπ 5 2.47 10.24 14pπ 7 2.52 7.49
12pπ 1 2.36 10.8 8pπ 4 2.43 34.56 5pπ 8 2.47 28.14 4pπ 13 2.52 17.22
7pπ 2 2.37 26.56 5pπ 6 2.43 45.51 14pπ 5 2.48 8.48 24pπ 7 2.53 7.94
15pπ 1 2.37 6.94 6pπ 5 2.43 8.23 15pπ 5 2.48 10.67 9pπ 8 2.53 8.9
16pπ 1 2.37 6.4 4pπ 8 2.43 32.32 6pπ 7 2.48 20.33 5pπ 11 2.53 23.79
8pπ 2 2.38 23.56 9pπ 4 2.44 17.61 8pπ 6 2.48 13.73 6pπ 10 2.54 15.56
6pπ 3 2.38 40.58 10pπ 4 2.44 15.95 18pπ 5 2.48 5.44 4pπ 14 2.54 12.56
5pπ 4 2.38 40.87 11pπ 4 2.44 16.47 20pπ 5 2.48 4.83 12pπ 8 2.54 6.7
9pπ 2 2.38 16.16 7pπ 5 2.44 23.9 43pπ 5 2.48 7.36 5pπ 12 2.55 15.86
4pπ 6 2.39 51.98 13pπ 4 2.45 10.56 9pπ 6 2.48 12.68 52pπ 8 2.55 5.72
11pπ 2 2.39 13.94 14pπ 4 2.45 9.92 10pπ 6 2.49 14.19 7pπ 10 2.55 10.27
12pπ 2 2.39 16.84 15pπ 4 2.45 10.38 4pπ 11 2.49 26.02 4pπ 15 2.55 10.47
7pπ 3 2.39 25.12 4pπ 9 2.45 44.21 7pπ 7 2.49 19.66 4pπ 16 2.57 14.16
13pπ 2 2.4 9.65 16pπ 4 2.45 10.76 11pπ 6 2.49 10.13 4pπ 17 2.58 9.48
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