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Pancharatnam phase: A tool for atom optics
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The Pancharatnam phase belongs to the family of geometric Berry phases. We use this optical phase to control
the phase of our atom interferometer, which involves diffraction of the atom wave by laser standing waves in the
Bragg regime. The Pancharatnam phase of the reflected beam of one standing wave controls the phase imprinted
on the atom wave by the diffraction process. In addition to the expected phase shift, the experimental data
exhibits the signature of several defects which are described and quantified. From this analysis, we estimate that
a Pancharatnam phase shifter can be reliably used to control the phase of an atom interferometer in the sub-mrad
regime. Moreover, as the geometric nature of the Pancharatnam phase renders this phase achromatic, its use in
multispecies atom interferometers may be of great interest.
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I. INTRODUCTION

Atom interferometry has been rapidly developing since
1991 and a large fraction of the impressive results thus
achieved are described in a review article by Cronin et al.
[1] and more recently in the Atom interferometry book [2]
published in 2014. In this paper, we use the Pancharatnam
phase of a light beam [3] to control the phase of an atom
interferometer. Let us first recall what the Pancharatnam phase
is before explaining its transfer to atom waves.

Following Pancharatnam and because of its tutorial interest,
we have chosen to use the Poincaré sphere [4,5] rather than
the Jones formalism [6] to represent the polarization state of a
fully polarized light beam (see Appendix A for details).

If the representative point follows a closed path on this
sphere because of its propagation through birefringent plates,
this path results in a phase shift equal to ±�/2, where � is
the solid angle spanned by the path on this sphere. This phase,
discovered by Pancharatnam in 1956 [3], is a precursor of the
geometric phase [7] discovered by Berry in 1984 (the connec-
tion between these two phases is discussed in [8]). Numerous
works on the Pancharatnam phase are reviewed by Bhandari
[9]. Because of its geometric nature, the Pancharatnam phase is
independent of the light wavelength, a property already applied
in optical interferometry for astronomy [10].

Diffraction by laser beams is the main tool for the coherent
manipulation of atom waves [1]: The absorption and stimulated
emission of photons transfer photon momenta to the atom and,
at the same time, imprint the phase of the laser waves on the
atom wave [11]. It is thus possible to imprint the Pancharatnam
phase of a laser beam on an atom wave. In the present paper,
we describe an experiment which uses the Pancharatnam phase
to scan the fringes of our lithium atom interferometer.

The interest of using the Pancharatnam phase to control the
phase of atom interferometer is twofold: (a) This phase can be
controlled by rotating a quarter-wave plate and rotations can
be measured with very high accuracy and (b) the achromatic
character of this phase opens up the possibility of producing
the same phase shift in a double atom interferometer operated
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simultaneously with two different atoms; such a double
interferometer can be used to develop a quantum test of the
Weak Equivalence Principle. After a first experimental test
[12] done with 87Rb-85Rb, several such tests have already
been performed with the K-Rb [13–15] or Yb-Rb [16] pairs
and several other tests are under development [17]. In such an
experiment, the measurement of the relative phase is usually
done by the ellipse fitting technique [15,18,19] and, in order
to minimize the relative phase extraction bias [20–22], it is
important to homogeneously scan the phases for the two
atomic species and such a common scan is possible thanks
to the Pancharatnam phase.

Another elegant technique which permits one to scan inde-
pendently two coaxial laser standing waves has been recently
developed, using polarization synthesis [23] with a relative
phase noise ∼1 mrad. This technique can compete with the use
of the Pancharatnam phase for double atom interferometers,
when extended to two different laser wavelengths.

The content of this article is organized as follows: We first
describe how to use the Pancharatnam phase to control the
phase of an atom interferometer and why it is interesting;
we then discuss a simple experiment producing such a phase;
we describe our experiment and its results; we analyze the
defects of the system producing the Pancharatnam phase; and
we discuss the prospects opened by the present study.

II. THE PANCHARATNAM AND THE ATOM
INTERFEROMETER PHASES

Among the numerous processes of atom diffraction by laser
[11], only the Bragg and Raman diffraction are frequently used.
Bragg diffraction results from the interaction of the atom wave
with a quasiresonant laser standing wave. Diffraction of order
p is due to p cycles of photon absorption and stimulated
emission. Because the absorbed and emitted photons have the
same frequency and polarization, the diffracted atom remains
in its initial internal state but its momentum has changed by
2ph̄kL, where kL is the laser wave vector. This process occurs
if the Bragg condition of order p is fulfilled and the diffraction
amplitude αp can be tuned by the choice of the laser power
density, frequency detuning with respect to the atom resonance
transition, and atom-laser interaction time. If the incident atom
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is described by a plane wave ψinc = exp [ik · r], the diffracted
wave ψp is given by

ψp(r) ≈ αp exp[ik · r + 2ipkL · (r − r0)], (1)

where r0 is the position of a node of the laser standing wave (for
instance, the mirror surface in the approximation of a perfect
metallic mirror). Because the standing wave is produced by
reflecting a laser beam, one cannot change the phase of
the diffraction amplitudes αp by modifying the laser phase
(while this is possible with Raman diffraction by changing the
relative phase of the two laser beams). As a consequence, with
Bragg diffraction, the only way to control the phase of the
diffracted atom wave is to change the positions of the nodes
of the laser standing wave, for instance, by moving the mirror
forming the laser standing wave. This displacement is usually
done by a piezoelectric device with an excellent sensitivity
in the nanometer range. Unfortunately it suffers from the
well-known defects of such devices: nonlinearity, hysteresis,
tilt, and creep. These defects, which limit the accuracy of the
mirror displacement, can be corrected by using servo-loops
coupled to a position-measuring device. Here, we replace this
mirror displacement by the use of the Pancharatnam phase,
which has the interest of being independent of the wavelength
while the phase induced by a mirror displacement is inversely
proportional to the wavelength.

A. Creation of a Pancharatnam phase

To produce a Pancharatnam phase, one of the simplest
arrangement, made of two quarter-wave plates and a mirror,
was described by Chyba et al. [24] (see also [25–27]). The
phase was then measured by a Michelson interferometer,
in very good agreement with theory. Figure 1 presents a
schematic drawing of this setup and the circuit followed
on the Poincaré sphere. In our experiment, we use the
same arrangement on a laser standing wave of our atom
interferometer.

B. Our atom interferometer and the Pancharatnam phase setup

Our Mach-Zehnder atom interferometer [28–30] (repre-
sented schematically in Fig. 2), is operated with a lithium
atomic beam produced by a supersonic expansion of an argon-
lithium mixture, with a mean lithium velocity ≈1065 m/s
corresponding to a de Broglie wavelength λdB ≈ 54 pm. Laser
diffraction in the Bragg regime is used to split, reflect, and
recombine the 7Li atom wave: The lithium atoms cross three
quasi-resonant laser standing waves produced by reflecting
three laser beams on three mirrors Mi (i ∈ {1,2,3}). One of
the complementary output beams is selected by the detection
slit DS and detected by a Langmuir-Taylor ionization detector.
The detector background signal is measured by flagging
the lithium beam and subtracted from the interferometer
signal. The intensity I of the detected beam is the corrected
interferometer signal given by

I = I0[1 + V cos(ϕd )], (2)

with ϕd = 2kL(x1 − 2x2 + x3), (3)

2θ

QWP1
QWP2

FIG. 1. (Left part) The optical arrangement of Chyba et al. [24]. A
linearly polarized laser beam crosses two quarter-wave plates QWP1
and QWP2 before being reflected by a mirror and crossing back
QWP2 and QWP1. The optical axis of QWP1 makes an angle π/4
with the polarization vector while the optical axis of QWP2 makes an
angle θ with the optical axis of QWP1. (Right part) Circuit followed
on the Poincaré sphere by the light beam polarization. The initial
linear polarization (point A) becomes right circular after QWP1 (pole
B) then linear after QWP2 (point C). The polarization, not modified
by reflection on the mirror, becomes left circular after QWP2 (pole
D) and back linear after QWP1 (point A). The angle between the
planes BAD and BCD being equal to 2θ , the solid angle spanned by
the ABCDA circuit is 4θ and the Pancharatnam phase is equal to 2θ .

where I0 is the mean intensity and V the fringe visibility.
Following Eq. (1), the fringe phase ϕd is a function of
xi (i ∈ {1,2,3}) which is the x position of a node of the standing
wave produced by mirror Mi. Usually, we scan the phase ϕd

by displacing the mirror M3 with a piezo-electric device. For
the present experiment, we use the Pancharatnam phase ϕP (θ )
produced by a setup similar to the one of Chyba et al. [24], with
two quarter-wave plates QWP1 and QWP2 and the mirror M3.
QWP1 is fixed while QWP2 rotates in its plane and a rotation
of QWP2 by an angle θ induces a variation ϕP (θ ) = 2θ of ϕd .

We have used high quality quarter-wave plates QWP1 and
QWP2 made of quartz, with the following specifications:

FIG. 2. Schematic drawing of our atom interferometer. A lithium
atomic beam (full green lines) is diffracted by three laser standing
waves produced by reflecting three laser beams on the mirrors M1,
M2, and M3. The (violet) box below M3 represents the piezo-electric
device which displaces this mirror in the x direction and modifies the
diffraction phase ϕd given by Eq. (3). In the present experiment, this
displacement is replaced by the Pancharatnam phase produced by the
quarter-wave plates QWP1 and QWP2.
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phase retardation π/2 ± π/150 for the λ = 671 nm wave-
length; quality of the transmitted wavefront better than λ/10;
antireflection coating, with a residual reflection coefficient
below 0.2% per face [31]. The ensemble made of QWP1 and
QWP2 was placed between the mirror M3 and the arms of
the atom interferometer. QWP2 was mounted on a rotatory
stage, fitted with an optical encoder (Mercury 6000V encoder
from MicroE) which measures the rotation angle θ with an
uncertainty close to 1 mrad. The challenge was to introduce
this ensemble inside the interferometer vacuum chamber, in
the 30-mm space available between the rail supporting the
mirrors Mi and the atom interferometer arms [32]. Because
of this space limitation, it was challenging to adjust finely the
QWP planes.

The interferometer signal is very sensitive to the magnetic
field gradient [33,34] and it was necessary to build the support
of QW1 and QWP2 with nonferromagnetic components: We
used a plastic ball bearing with glass balls for the rotatory
stage. The rotation was transmitted by a plastic worm drive
from a synchronous electric motor located outside the vacuum
chamber, at ∼25 cm above the atom interferometer plane.

Before putting this ensemble under vacuum, we aligned the
QWP2 plane to be as perpendicular as possible to its rotation
axis and QWP1 to be as parallel as possible to the mean plane
of QWP2. Then, with the ensemble in place, these two planes
were adjusted to be as parallel as possible to the laser standing
wave mirror M3. The angle between the optical axis of QWP1
and the polarization vector of the incident laser beam was then
adjusted to π/4 with an uncertainty εp smaller than 30 mrad.
Finally, as shown by Eq. (3), any motion of the mirrors Mi

modifies the phase of the interference signals and, in order
to minimize these motions, the ensemble made of QWP1 and
QWP2 was suspended from the top of the vacuum chamber. A
consequence of this choice is that the altitudes of the rotation
axis of QWP2 and of the atom interferometer arms may differ
by ∼1 mm.

III. RESULTS

With the atom interferometer in operation, we have first
optimized the atom interference fringe signal and we have then
used the Pancharatnam phase to record the fringes presented
in Fig. 3: The fitted visibility V = 0.743(16) is identical to the
one observed when we displace the mirror M3.

The inhomogeneities of the quarter-wave plates distort the
laser standing wave and these distortions produce a phase
spread on the diffracted atom wave and a reduction of the
fringe visibility. The observed value of this visibility, not
substantially lower than the one routinely obtained with our
interferometer, proves that these distortions are small. When
using a Pancharatnam phase, it is possible to scan indefinitely
in the same direction, whereas this is not possible by displacing
M3, but the recorded fringes are not exactly sinusoidal
contrarily to the theoretical predictions. Indeed several defects
of our optical arrangement explain this deviation. Here are, for
each defect, its origin and its contribution to ϕd (the detailed
calculations are given in the appendixes).

(a) The rotating quarter-wave plate QWP2 is slightly
prismatic, with a wedge angle α ≈ 10 μrad (this angle,
which is usually not specified in quarter-wave plates, can

FIG. 3. Atom interference fringes obtained by the rotation of
QWP2. The (red) triangles correspond to the atom count each 100 ms,
normalized to the atom flux [i.e., I/(2I0)]. Four (blue) circles indicate
typical error bars. The (black) dotted line results from a fit assuming
an ideal Pancharatnam phase ϕd = 2(θ − θ0): There are systematic
deviations due to the defects described by Eq. (8). The (green) solid
line results from a second fit using Eq. (8) with the following fitted
values u1 = 0.38(3) rad, u2 = 0.03(1) rad, and u3 = 0.000(2) rad
(see text).

be substantially reduced). If δr is the distance between the
center of rotation of QWP2 and the center of the laser beam’s
part sampled by the atoms, the rotation of QWP2 produces a
modulation of the optical path which results in a phase shift
ϕdyn,1:

ϕdyn,1 = 2kL(n̄ − 1)δrα cos(θ − C1), (4)

where n̄ = 1.547 is the mean refractive index of quartz. For
δr ≈ 1 mm, the amplitude φdyn,1 is ≈0.1 rad.

(b) The rotation axis R of QWP2, the normal N to its face,
and the laser beam axis L are not exactly parallel. If β is the
angle between N and L and if γ is the angle between R and L,
the rotation of QWP2 modulates the optical path which results
in a phase shift ϕdyn,2:

ϕdyn,2 ≈ 2kLē
n̄ − 1

n̄
βγ cos(θ − C2), (5)

where ē ∼ 1 mm is the mean thickness of QWP2. We estimate
that the βγ product should not exceed 5 × 10−5 rad2 and for
this value, we find ϕdyn,2 ≈ 0.3 rad. ϕdyn,1 and ϕdyn,2 have the
same period equal to a full rotation of QWP2.

(c) If the phase retardation of QWP1 and QWP2 differ from
their design value π/2, the path on the Poincaré sphere and
the Pancharatnam phase are both modified. We note π/2 + εI

the retardation of QWPI (I = 1,2), with εI � 1. The modified
Pancharatnam phase ϕP,1 is given by

ϕP,1(θ ) ≈ ϕP (θ ) + 2(ε1 + ε2) sin(2θ ) − ε1 sin(4θ )

+ 3
4

[
4ε1ε2 sin(2θ ) − ε2

1 sin(4θ )
]
, (6)

up to second-order terms in εI . In addition to the ideal
Pancharatnam phase ϕP (θ ) = 2θ , we get corrections which are
sinusoidal functions of 2θ and 4θ . From the plate specification
|εI | < 2 × 10−2 rad, we find that the first-order term is smaller
than 9 × 10−2 rad and the second-order term is smaller than
2 × 10−3 rad.

(d) The angle between incident polarization and the axes of
QWP1 may differ from π/4. If this angle is equal to π/4 + εp,
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the Pancharatnam phase φP,2 becomes

ϕP,2(θ ) ≈ ϕP (θ ) + 2εp[2 cos(2θ ) − 1 − cos(4θ )]

− ε2
p sin(4θ ), (7)

up to second order in εp. The correction linear in εp contains
sinusoidal functions of 2θ and 4θ , with an amplitude equal to
0.06 rad if εp reaches its maximum value 30 mrad, while the
second-order term accounts for less than 10−3 rad.

In summary, ϕdyn,1 and ϕdyn,2 are the dominant corrections,
with magnitudes 0.1–0.3 rad and the same period equal to a full
turn of QWP2. They can be represented by a single sinusoidal
function of θ . The modifications of the Pancharatnam phase
due to the QWP retardation or to misalignment of the incident
polarization have smaller amplitudes of the order of 0.1 rad and
they have a period equal to half a turn of QWP2. Summarizing
the different contributions, the phase ϕd is given by

ϕd = 2(θ − θ0) + u1 sin(θ − θ1)

+u2{2 cos[2(θ − θ0)] − 2 cos2[2(θ − θ0)]}
+u3{4 sin[2(θ − θ0)] − sin[4(θ − θ0)]}, (8)

where we have kept only the lowest order terms and have
assumed, for simplicity, that the two QWP have identical εI .
The constant θ0 takes into account that our measurement of
QWP2’s rotation angle θ is made with an arbitrary origin
and for the optical path dependent terms, we must use a
different phase reference θ1 as the geometrical orientation
is independent of the optical axis orientation. We have used
this equation to fit the measured fringes and the best fit of
our experimental data represented in Fig. 3 is quite good.
Indeed, the dynamical terms amplitude [u1 = 0.38(3) rad] is
coherent with our estimated values, 0.1 and 0.3, whose sum
depends on the relative differential phases C1 and C2 of Eqs. (4)
and (5) which were not measured. The two other parameters
u2 = 0.03(1) rad and u3 = 0.000(2) rad are compatible with
our conservative estimates 0.06 and 0.02, respectively.

IV. CONCLUSION

In this paper we have demonstrated the use of the Pancharat-
nam phase for the control of an atom interferometer’s phase.
However, in addition to the ideal Pancharatnam phase, we
have observed supplementary phase shifts due to experimental
defects.

The dominant defects are presently due to the prismatic
shape of the rotating quarter-wave plate and to a misalignment
effect. As discussed in Appendix C, these two effects can be
reduced below 10−3 rad, where they should be negligible for
most experiments.

The defects of the Pancharatnam phase itself are due to
incorrect values of the retardation of QWP1 and QWP2 and to
an incorrect direction of the incident polarization with respect
to QWP1 axes. These defects were barely accessible in our
experiment but they represent the fundamental limitations of
the technique. The retardation of a phase plate can be measured
with an uncertainty smaller than 10−3 rad [35–37] or even
10−5 rad [38] and it seems possible to produce wave plates
with a retardation equal to π/4 with an accuracy better than
10−3 rad. As discussed in Appendix D, it will be necessary to

control the plate temperature and the incidence angle in order
to keep the retardation at its nominal value but these constraints
are not very strong.

In an improved setup, with the defects reduced to a
negligible level, the Pancharatnam phase will be an ideal tool
to control the phase of an atom interferometer using atom
diffraction by laser in the Bragg regime.

(a) The Pancharatnam phase replaces the displacement of a
mirror by the rotation of a quarter-wave plate; as it is possible to
measure very accurately the rotation of the quarter-wave plate,
the variations of the Pancharatnam phase can be controlled
with enhanced sensitivity.

(b) As already stated, the Pancharatnam phase being
a geometric phase, it is achromatic: Even with imperfect
quarter-wave plates, the Pancharatnam phase increases exactly
by 2π after a half-turn of QWP2. In order to have the
same phase variation for two wavelengths, as needed for a
two-species atom interferometer, we need quarter-wave plates
with the same retardation at the two wavelengths. Achromatic
quarter-wave plates have been produced by combining plates
either of materials with different birefringence dispersion [39]
or of the same material with different axis orientations [40,41]
(for a recent review, see [42]): The usual goal is to produce
a retardation as close as possible to π/2 on a wide spectral
range. For a two-species atom interferometer, one needs only
to have the same π/2 retardation for the two wavelengths of
interest.

Symmetric interferometers using double diffraction (Bragg
or Raman) require one to phase shift the laser standing
waves used for the atom beam splitters. The solutions that
are currently considered are based on a moving reflection
mirror with a PZT. Difficulties associated with these methods
(hysteresis, nonlinearities, creep) may limit the performance
of the interferometers. The Pancharatnam phase provides a
way of controlling the phase shift of an atom interferometer
by manipulating the polarization states of the atom beam
splitters, which can overcome some limitations provided
that high quality optical components are used. Moreover,
the geometric character of the Pancharatnam phase allows
an identical phase shift simultaneously for two different
atomic species, which could find applications the dual atom
interferometers developed for a quantum test of the Weak
Equivalence Principle, for example.
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APPENDIX A: CALCULATION OF THE PANCHARATNAM
PHASE

We have chosen to calculate the Pancharatnam phase using
the result of Pancharatnam which relates it to the solid angle of
the circuit followed by the point representing the polarization
on the Poincaré sphere [4,5]. Our choice is based on the tutorial
value of this calculation.
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Another calculation can be made by using Jones formalism
[6] and both calculations give exactly the same result.
However, the calculation using Jones formalism involves the
multiplication of a series of four 2 × 2 matrices corresponding
to the four traversals of the quarter-wave plates and this
explains our choice: Such a product of matrices is very easy to
handle thanks to computer programs but the calculation does
not give the physical insight that one can get by inspecting the
corresponding trajectory on the Poincaré sphere.

The results of Pancharatnam and of Berry prove the geo-
metric nature of the Pancharatnam phase and its independence
with the wavelength. This property also appears as a result of
the calculation using Jones formalism but without any insight
in its origin.

APPENDIX B: PRISMATIC CHARACTER OF THE
ROTATING QUARTER-WAVE PLATE QWP2

1. Characterization of the defect

The quarter-wave plates are compound first-order plates,
made of two birefringent quartz plates held together by
molecular adhesion, the axes of the two plates being crossed.
The total thickness is close to 1 mm. The distortion of the wave
front of the beam transmitted by these quarter-wave plates
is guaranteed to be smaller than λ/10. Obviously, the plate
thickness is not perfectly constant and, in order to characterize
this defect, we have measured the variations of this thickness
by an interferometric method.

This method is based on the Fabry-Perot dark rings, which
can be observed in reflection, even if the two faces are not
perfectly parallel but make a small wedge angle α. In a previous
publication [43], we have used these dark rings to measure the
variation with temperature of the optical path of an uncoated
Fabry-Perot. We have used a helium-neon laser emitting at
λ = 633 nm for this measurement: This laser, which emits a
few modes extending over a 1-GHz-wide frequency range, is
sufficiently monochromatic for the measurement of a 1-mm-
thick plate. The antireflection coatings of the quarter-wave
plates (reflection coefficient <0.2 % at λ = 671 nm) reduce
the reflected intensity at the laser wavelength λ = 633 nm
and it was necessary to modify our arrangement [43] to work
with less reflected light: We replaced the spherical lens by
cylindrical lens and the photodiode by a camera. We were thus
able to record the ring pattern and to measure the diameters
of the three first dark rings with an uncertainty of the order of
1%. Because of the birefringence of the quarter-wave plates,
we used linearly polarized light, with a plate axis parallel to
the polarization vector.

We do not reproduce here the calculation [43] and simply
recall that, from the diameters of the rings, we can deduce the
fractional part ε of the quantity p0 = 2ne/λ where n is the
index of refraction of the plate (for the chosen polarization)
and λ the laser vacuum wavelength. The 1σ uncertainty on �ε

is about 0.02 and we thus get access to the local thickness of
the quarter-wave plate at the spot illuminated by the laser with
an uncertainty �e = λ�ε/2n ≈ 4 nm.

By displacing the plate in its plane along two perpendicular
directions, covering a rectangle 6 × 7.5 mm2 centered on the
plate, we get a matrix of ε values from which we can deduce

FIG. 4. Fractional part ε of the quantity p0 = 2ne/λ where e is
the thickness of the plate QWP2 as a function of the laser spot’s
position on the plate.

the variation of the plate thickness as can be seen in Fig. 4.
We have thus tested the three quarter-wave plates produced
by Optique Fichou and we selected for QWP2 the one with
the smallest thickness variations. For this plate, the thickness
variations are well approximated by assuming that the plate
has a wedge angle α ≈ 10 μrad.

2. Modification of the interference signal

When QWP2 rotates in its plane, the small wedge angle α

has two different effects: (i) The quartz thickness traversed by
the laser beam axis is modulated by the rotation of the plate
if the laser beam axis is not located on the rotation axis, and
(ii) the reflected laser beam has a precession motion on a cone.

The first effect induces a periodic variation of the mean
optical path (i.e., the optical path measured on the laser beam
axis) and this variation modulates the position of the laser
standing wave nodes and also the diffraction phase ϕd . The
atoms are sensitive to the mean position of these nodes, i.e.,
to the laser beam axis and this effect is proportional to the
distance δr from the laser beam axis to the rotation axis. The
resulting variation of ϕd is given by

ϕdyn,1 = 2kL(n̄ − 1)αδr cos(θ − θ1). (B1)

We use the notation ϕdyn,1(t) because it is a dynamical phase
shift as opposed to a geometric phase shift [7]. The factor 2
comes from the fact that QWP2 is crossed twice and n̄ is the
average of the ordinary and extraodinary refractive indices
of crystalline quartz for which (n̄ − 1) ≈ 0.547. The period
of this modulation corresponds to a full rotation period of
QWP2 and its phase origin θ1 depends on the prism orientation
with respect to the axes of QWP2. For δr = 1 mm and the
measured value of the wedge angle α ≈ 10 μrad, its amplitude
is ≈0.1 rad.

The precession of the reflected laser beam due to the second
effect has consequences on how accurately the Bragg condition
is fulfilled and on the diffraction amplitudes. The half apex
angle of the precession cone is 2(n̄ − 1)α ≈ 9 μrad.

To describe the consequence of this precession on the
interference signal, we should first evaluate the diffraction
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FIG. 5. L is the incoming laser beam and N the normal of the
QWP2 faces. The rotation axe is along Z and the rotated frame
(X

′
,Y

′
,Z

′
) with ωt + θ the rotation angle.

amplitude as a function of the direction of the reflected beam.
We should then evaluate the dependence of the signal with this
amplitude. We have not tried to make this evaluation because
it involves unknown quantities such as the angle between the
mean direction of the reflected beam and the QWP’s rotation
axis or the mismatch of the amplitudes carried by the two
interferometer arms. In any case, the resulting effect on the
fringe visibility V should be small because V varies very
slowly around its maximum value which occurs when the two
interfering beams have equal amplitudes [28].

APPENDIX C: DEFECTS OF THE ALIGNMENT OF THE
OPTICAL COMPONENTS

The rotation axis R of QWP2, the normal N to its faces,
and the laser beam axis L are not perfectly parallel. As a
result, QWP2’s rotation modulates the length of the optical
path and we evaluate this effect. In this calculation, it is a good
approximation to neglect the prismatic character of QWP2.

We first evaluate the length of the optical path difference �

due to the introduction of a parallel plate of thickness ē and
refractive index n̄ as a function of the incidence angle i and
refraction angle r = arcsin (sin(i)/n̄). For a return path (i.e., a
double traversal), we get

� = 2ē
n̄ − cos(i − r)

cos(r)

≈ 2ē

[
(n̄ − 1) + i2(n̄ − 1)

2n̄

]
, (C1)

where the approximate form assumes i � 1.
To estimate the variations of the incidence angle i due to the

plate rotation, we must describe the geometry in more details.
As shown in Fig. 5, we define a fixed reference frame X,Y,Z,
with the rotation axis R along Z and we choose the X axis so
that the laser beam axis L is in the X,Z plane, making a small
angle γ with Z.

L = X sin γ + Z cos γ. (C2)

We attach a reference frame X
′
,Y

′
,N to QWP2 with N

normal to QWP2. Because of QWP2’s rotation around the Z

axis, N makes a constant angle β with the Z axis which results
in

N = [X cos(θ − θ2) + Y sin(θ − θ2)] sin β + Z cos β, (C3)

where θ measures the rotation of the rotatory stages and θ2

accounts for the initial position of N. Equation (C3) describes
the precession of N around the Z axis. Since all the vectors are
normalized, we get

cos(i) = N · L

= cos(β) cos(γ ) + sin γ sin β cos(θ − θ2)

≈
(

1 − β2

2

)(
1 − γ 2

2

)
−βγ cos(θ−θ2). (C4)

We deduce i2 ≈ 2[1 − cos (i)] from this result and we
introduce this value in Eq. (C1). Keeping only the part of �

which depends on θ , we get the value ϕdyn,2 of the dynamical
phase shift due to this alignment defect:

ϕdyn,2 ≈ 2kLē
n̄ − 1

n̄
βγ cos(θ − θ2), (C5)

where ē ∼ 1 mm is the mean thickness of QWP2. Using a
laser beam reflected on QWP2, we have measured the angle
β = 10 ± 1 mrad. The access to the angle γ is less easy
but we estimate that it should not be larger than 5 mrad.
For the corresponding maximum value of the product βγ =
5 × 10−5 rad2, the term ϕdyn,2 has an amplitude ≈0.3 rad. With
a better construction, the two angles β and γ can be reduced
by a large factor and this effect should then be reduced to a
very low level, below 10−3 rad.

APPENDIX D: MODIFICATION OF THE
PANCHARATNAM PHASE SHIFT DUE TO DEFECTS OF

THE QUARTER-WAVE PLATES

1. The phase shift of the quarter-wave plates

The quarter-wave plates were made by Optique Fichou
[31] with the following specifications: first-order quarter-wave
plates, phase shift equal to π/2 with an error smaller than
π/150 ≈ 21 mrad. For the design wavelength λ = 671 nm,
the quartz birefringence is equal to ne − no ≈ 9.012 × 10−3 at
a temperature 20◦C. These quarter-wave plates are compound
plates made of two plates of thicknesses e1 and e2 close to
500 μm, with a thickness difference e1 − e2 = 18.6 ± 0.1 μm
chosen to produce a π/2 retardation.

It is possible to test the phase shift of a quarter-wave plate
with a very high sensitivity, below 10−3 rad [35–37] or even
10−5 rad [38]. We did not perform such an experiment because
we did not have the equipment and also because the stated
retardation of the available quarter-wave plates was sufficient.
However, we calculate the consequences of these defects.

Before presenting this calculation, we first discuss two
effects which modify the retardation of a quarter-wave plate,
namely the incidence angle i and the temperature dependence
of the birefringence.

a. Incidence angle

The retardation φ produced by a birefringent plate of
thickness e has been calculated as a function of the incidence
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TABLE I. Temperature dependence of quartz birefringence
(ne − no). We give the reference of the work, the light wavelength λ

used for the measurement, and the measured value of the derivative
d(ne − no)/dT at a temperature T = 298 K. Macé de Lepinay [45]
published in 1892 a formula giving the value of (ne − no) as a
function of λ and T from which we have extracted the derivative at
λ = 671 nm: This work does not explain if the expansion correction
(of the order of 10%) was taken into account. Toyoda and Yabe
[48] have measured separately dne/dT and dno/dT from which we
extract d(ne − no)/dT with an uncertainty difficult to evaluate.

Reference λ (nm) d(ne − no)/dT (K−1)

[31] 671 −1.17 × 10−6

[45] 671 −1.16 × 10−6

[46] 633 −1.01 × 10−6

[47] 1560 −1.02 × 10−6

[48] 671 −1.3 × 10−6

angle i, of the angle θ between the plane of incidence and the
ordinary axis and the refraction index ne and no. In the limit
i � 1 and using the fact that the quartz birefringence is small,
we get

φ ≈ kLe(ne − no)

{
1 + i2

2none

[1 − 2 cos2(θ )]

}
. (D1)

However, as shown by Hale and Day [44], for a compound
plate the term dependent on the incidence angle involves the
total thickness of the two plates. The maximum effect δϕ is
given by

δφ(i) ≈ kL(e1 + e2)
(ne − no)

2none

i2. (D2)

If the incidence angle i is always smaller than 15 mrad, the
correction δφ of the retardation verifies |δ| < 4 × 10−3 rad,
five times smaller than the specified uncertainty on the
retardation π/150 ≈ 2 × 10−2 rad. As a consequence, we have
neglected this variation of the retardation and, as this effect
scales as i2, it can be reduced to a very low value in an
improved experiment, with an incidence angle of the order
of 1 mrad.

b. Temperature dependence

Quartz birefringence (ne − no) is a function of the temper-
ature T . As shown by Hale and Day [44], a compound plate
behaves like a simple plate of thickness e1 − e2. Table 1 sum-
marizes the information we have collected on the temperature
dependence of quartz birefringence. All these results support a
value of d(ne − no)/dT ≈ −1.2 × 10−6 K−1 for T = 298 K.
As (ne − no) ≈ 9.012 × 10−3 at λ = 671 nm, a temperature
variation close to 100 K is needed to modify the retardation φ

by its specified uncertainty. The temperature of our experiment
is stable, near 25◦C, and we may safely neglect the effect of
the temperature variations on the plate retardation.

2. Modification of the Pancharatnam phase shift due to
retardation values different from π/2

For an ideal setup, the path on the Poincaré sphere is made
of two meridians as shown in Fig. 7 and, in this ideal case,

FIG. 6. Trajectory on the Poincaré sphere when the QWP
retardations is not perfect. To emphasize the deviation from the
perfect trajectory, the QWP’s defects for this figure are ε1 = 0.1
and ε2 = −0.1.

the calculation of the Pancharatnam phase’s solid angle is
straightforward. We now consider that the retardation of QWPI

is given by π/2 + εI where εI � 1. The resulting trajectory
on the Poincaré sphere is represented in Fig. 6. This trajectory
is not closed and we calculate the Pancharatnam phase ϕP

by projecting the final state on the initial one. We split the
spherical polygon in three spherical triangles V1V2V3, V3V4V5,
and V5V1V3. The result is quite voluminous and we give here

FIG. 7. Trajectory on the Poincaré sphere when the initial
polarization is not perfectly linear. For this trajectory, the Stokes
parameters for the incident light were S1 = 99.5%, S2 = 8.7%, and
S1 = 4.8% and the QWP were considered perfect. This corresponds
to εP = 0.05 rad and a very small amount of ellipticity.
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only its expansion in power series of ε1 and ε2:

φP,1(θ ) ≈ 2θ + 2(ε1 + ε2) sin(2θ ) − ε1 sin(4θ )

+ 3
4

[
4ε1ε2 sin(2θ ) − ε2

1 sin(4θ )
]
. (D3)

In addition to the 2θ value of the ideal Pancharatnam phase,
we get corrections which are sinusoidal functions of 2θ and 4θ .
From the limit on |εI | < 2 × 10−2, we know that the first-order
term is smaller than 9 × 10−2 rad while the second-order term
is smaller than 2 × 10−3 rad.

a. Modification of the Pancharatnam phase shift by an incorrect
incident polarization

Theoretically, the angle between the incident polarization
vector and one axis of the quarter-wave plate QWP1 is equal to

π/4 but in our setup, this angle may be slightly different from
this ideal value and this modifies the trajectory on the Poincaré
(see Fig. 7). If we note π/4 + εp the value of this angle, we
have calculated the Pancharatnam phase as a function of εp

and of the rotation angle θ of QWP2. We get

ϕP,2(θ ) ≈ 2θ + 2εp[2 cos(2θ ) − 1 − cos(4θ )]

− ε2
p sin(4θ ). (D4)

We estimate that |εp| < 30 mrad and the amplitude of the
linear term is smaller than 6 × 10−2 rad while the second-order
term is smaller than 10−3 rad.

[1] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod.
Phys. 81, 1051 (2009).

[2] Atom interferometry, Proceedings of The International School
of Physics “Enrico Fermi” Course 188, edited by G. M. Tino
and M. A. Kasevich (IOS Press, Amsterdam 2014).

[3] S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A 44, 247 (1956).
[4] H. Poincaré, Théorie mathématique de la lumière II, G. Carré

ed. (Paris, 1892), available on gallica.bnf.fr.
[5] M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon

Press, Oxford, 1970).
[6] R. Clark Jones, J. Opt. Soc. Am. 31, 488 (1941); 31, 493 (1941);

31, 500 (1941).
[7] M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
[8] M. V. Berry, J. Mod. Opt. 34, 1401 (1987).
[9] R. Bhandari, Phys. Rep. 281, 1 (1997).

[10] N. Baba, N. Murakami, and T. Ishigaki, Opt. Lett. 26, 1167
(2001).

[11] C. J. Bordé, in Atom Interferometry, edited by P. R. Berman
(Academic Press, San Diego, 1997), p. 257.

[12] S. Fray, C. A. Diez, T. W. Hänsch, and M. Weitz, Phys. Rev.
Lett. 93, 240404 (2004).

[13] R. Geiger et al., Nat. Commun. 2, 474 (2011).
[14] D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C.

Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel,
Phys. Rev. Lett. 112, 203002 (2014).

[15] B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, P. A.
Gominet, A. Bertoldi, P. Bouyer, and A. Landragin, New J. Phys.
17, 085010 (2015).

[16] J. Hartwig, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K.
Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, New J.
Phys. 17, 035011 (2015).

[17] J. Williams, S.-W. Chiow, N. Yu, and H. Müller, New J. Phys.
18, 025018 (2016).

[18] G. T. Foster, J. B. Fixler, J. M. McGuirk, and M. A. Kasevich,
Opt. Lett. 27, 951 (2002).

[19] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M.
Tino, Nature 510, 518 (2014).

[20] M. J. Collett and G. J. Tee, J. Opt. Soc. Am. A 31, 2573 (2014).
[21] L. R. Watkins and M. J. Collett, Appl. Opt. 53, 7697 (2014).
[22] M. J. Collett and L. R. Watkins, J. Opt. Soc. Am. A 32, 491

(2015).

[23] C. Robens, J. Zopes, W. Alt, S. Brakhane, D. Meschede, and A.
Alberti, Phys. Rev. Lett. 118, 065302 (2017).

[24] T. H. Chyba, L. J. Wang, L. Mandel, and R. Simon, Opt. Lett.
13, 562 (1988).

[25] R. Simon, H. J. Kimble, and E. C. G. Sudarshan, Phys. Rev.
Lett. 61, 19 (1988).

[26] R. Bhandari and J. Samuel, Phys. Rev. Lett. 60, 1211 (1988).
[27] R. Bhandari, Phys. Lett. A 133, 1 (1988).
[28] A. Miffre, M. Jacquey, M. Büchner, G. Trénec, and J. Vigué,

Eur. Phys. J. D 33, 99 (2005).
[29] A. Miffre, PhD. thesis, Université P. Sabatier (2005), available

on http://tel.archives-ouvertes.fr/.
[30] S. Lepoutre, V. P. A. Lonij, H. Jelassi, G. Trénec, M. Büchner,

A. D. Cronin, and J. Vigué, Eur. Phys. J. D 62, 309 (2011).
[31] Optique Fichou website http://optique-fichou.com/ and private

communication.
[32] A. Miffre, M. Jacquey, M. Büchner, G. Trénec, and J. Vigué,

Appl. Phys. B: Lasers Opt. 84, 617 (2006).
[33] M. Jacquey, A. Miffre, M. Büchner, G. Trénec, and J. Vigué,

Europhys. Lett. 77, 20007 (2007).
[34] J. Gillot, A. Gauguet, M. Büchner, and J. Vigué, Eur. Phys. J. D

67, 263 (2013).
[35] L. Yao, Z. Zhiyao, and W. Runwen, Opt. Lett. 13, 553 (1988).
[36] S. Nakadate, Appl. Opt. 29, 242 (1990).
[37] W. Liu, M. Liu, and S. Zhang, Appl. Opt. 47, 5562 (2008).
[38] S. M. Wilson, V. Vats, and P. H. Vaccaro, J. Opt. Soc. Am. B 24,

2500 (2007).
[39] C. D. West and A. S. Maicas, JOSA 39, 791 (1949).
[40] S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A 41, 137 (1955).
[41] C. M. McIntyre and S. E. Harris, JOSA 58, 1575 (1968).
[42] J. M. Herrera-Fernandez, J. L. Vilas, L. M. Sanchez-Brea, and

E. Bernabeu, Appl. Opt. 54, 9758 (2015).
[43] P.-E. Dupouy, M. Büchner, P. Paquier, G. Trńec, and J. Vigué,
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