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Quantum dynamics of bosons in a two-ring ladder: Dynamical algebra, vortexlike
excitations, and currents

Andrea Richaud and Vittorio Penna
Dipartimento di Scienza Applicata e Tecnologia and u.d.r. CNISM, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

(Received 14 April 2017; published 18 July 2017)

We study the quantum dynamics of the Bose-Hubbard model on a ladder formed by two rings coupled by the
tunneling effect. By implementing the Bogoliubov approximation scheme, we prove that, despite the presence of
the inter-ring coupling term, the Hamiltonian decouples in many independent sub-Hamiltonians Ĥk associated
with momentum-mode pairs ±k. Each sub-Hamiltonian Ĥk is then shown to be part of a specific dynamical
algebra. The properties of the latter allow us to perform the diagonalization process, to find the energy spectrum
and the conserved quantities of the model, and to derive the time evolution of important physical observables. We
then apply this solution scheme to the simplest possible closed ladder, the double trimer. After observing that the
excitations of the system are weakly populated vortices, we explore the corresponding dynamics by varying the
initial conditions and the model parameters. Finally, we show that the inter-ring tunneling determines a spectral
collapse when approaching the border of the dynamical-stability region.
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I. INTRODUCTION

Recent advances in ultracold atom physics have made
it possible to study a wide range of many-body quantum
systems of fermions, bosons, and even mixtures of two
atomic species. The phenomenology one can explore is so
rich that a new area of investigation, which goes by the
name of atomtronics, has emerged [1]. A system of ultracold
atoms subject to a spatially periodic potential features a band
diagram which is conceptually equivalent to those relevant to
electrons in standard crystal lattices. It is therefore possible to
engineer ultracold-atom equivalents of the usual electronic
materials, i.e., conductors, dielectrics, and semiconductors
[2]. Properly tailoring the periodic optical potential, one can
achieve behaviors similar to doped semiconductors. The latter
can be used to realize the atomtronic counterpart of traditional
electron devices, such as diodes and bipolar junction transistors
[3], which, in turn, can be used as building blocks for actual
circuits, such as amplifiers, flip flops, and logic gates [4,5].

In parallel, systems of ultracold neutral atoms have been
used to simulate interesting many-body phenomena in their
most simple and essential forms, avoiding the complications
usually encountered in actual materials [6,7]. The charge
neutrality of these systems does not prevent the observation
of the interesting phenomena characterizing charged particles
in a magnetic field. For example, the equivalence between the
Lorentz and the Coriolis forces allows one to realize synthetic
magnetic fields in rotating systems of neutral particles [8].
Also, the current cutting-edge technologies have enabled the
detection of bosonic chiral currents in ladders [9] and the study
of quantum transport in ultracold gases in optical lattices [10]
and of topological quantum matter [11].

In this work we focus on a specific lattice geometry, the
Bose-Hubbard ladder with periodic boundary conditions. This
kind of system was designed in [12] for a single ring and
in [13] for a ladder and has attracted increasing attention in
recent years. It consists of two vertically stacked rings whose
sites are populated by weakly interacting bosons. The current
dynamics in a two-ring system subject to a synthetic magnetic
field was studied in [13] in the weak-coupling regime by means

of two-mode Gross-Pitaevskii equations. The same mean-field
approach has been used to study angular momentum Josephson
oscillations [14] and the coherent transfer of vortices [15],
while persistent currents flowing in the two-ring system have
been demonstrated [16] to provide a physical implementation
of a qubit. The effect of an artificial magnetic field on an
open ladder was investigated in [17] and, more recently, in
[18,19]. These studies have shown that this lattice geometry
leads to the one-dimensional equivalent of a vortex lattice in a
superconductor and that a true Meissner-to-vortex transition
occurs at a certain critical field. Finally, [20] presented a
field-theoretical approach for the determination of the ground
state, while different possible currents regimes were studied
in [21,22]. Recently, the presence of the Meissner effect was
observed in the bosonic ladder [9], while the phase diagram
thereof was discussed in [23].

Motivated by the considerable interest in coupled annular
Bose-Einstein condensates in recent years, in this paper we
investigate the two-ring ladder from a different perspective,
with the aim of giving accurate insight into its quantum
dynamics. We move from the site-mode picture (where the
expectation values of operators are local order parameters
of the lattice sites) to the momentum-mode picture (where
expectation values of operators are collective order param-
eters in momentum space). In the momentum domain, we
perform the well-known Bogoliubov approximation under the
assumption that in both rings the same momentum mode r is
macroscopically occupied. The ensuing model Hamiltonian is
shown to decouple into many sub-Hamiltonians Ĥk , one for
each pair of momentum modes. Each sub-Hamiltonian Ĥk is
proved to belong to the dynamical Lie algebra so(2,3).

The recognition of a certain dynamical algebra, together
with its invariants, has been used to find the spectrum and the
time evolution of quantum systems [24–31] and, once again,
has proved to be the key element for the analytic solution
of the model under scrutiny. The remarkable importance
of this abstract mathematical property is that it provides
an effective diagonalization scheme and helps us to find
conserved quantities. Moreover, the time evolution of several
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meaningful observables belonging to the dynamical algebra
can be obtained by solving a linear system of differential
equations.

In Sec. II, we present the Bose-Hubbard (BH) Hamiltonian
associated with the two-ring ladder and implement the Bogoli-
ubov scheme. In Sec. III, we prove that the model Hamiltonian
belongs to a dynamical algebra, namely, so(2,3). We show that
the algebra Casimir invariant correctly corresponds to angular
momentum, and we find the excitation spectrum. In Sec. IV,
we apply this solution scheme to the simplest possible closed
ladder, the double trimer. Moreover, we show that the excita-
tions of the system correspond to weakly populated vortices,
we derive the time evolution of some physical observables
commonly studied in the literature, and we describe various
significant quantum processes that occur in the system. In
Sec. V, we explore the dynamics of excited bosons by varying
the initial conditions and the model parameters, emphasizing
the role played by initial phase differences. We also comment
on the fact that properly choosing certain parameters, the
system can approach dynamical instability. In particular, we
show how a spectral collapse takes place when the inter-ring
tunneling reaches a specific critical value. Section VI is
devoted to concluding remarks.

II. MODEL PRESENTATION

In this section we reformulate the BH Hamiltonian describ-
ing the ladder system and including the inter-ring tunneling
term by means of momentum modes characterizing the
Bogoliubov picture.

A. Site-mode picture

The second-quantized Hamiltonian describing bosons con-
fined in a two-ring ladder is

Ĥ = −Ta

Ms∑
j=1

(A†
j+1Aj + A

†
jAj+1) + Ua

2

Ms∑
j=1

Nj (Nj − 1)

− Tb

Ms∑
j=1

(B†
j+1Bj + B

†
jBj+1) + Ub

2

Ms∑
j=1

Mj (Mj − 1)

− T

Ms∑
j=1

(AjB
†
j + BjA

†
j ). (1)

One can recognize two intra-ring tunneling terms (Ta and
Tb), two on-site repulsive terms (Ua and Ub), and an inter-
ring tunneling term T . These site operators satisfy standard
bosonic commutators: [Aj,A

†
k] = δj,k, [Bj ,B

†
k ] = δj,k , while

[Aj,B
†
k ] = 0. Nj = A

†
jAj and Mj = B

†
jBj are number oper-

ators. The number of lattice sites in each ring is denoted by
Ms .

B. Momentum-mode picture

Due to the ring structure of the system, it is convenient
to introduce momentum-mode operators ak and bk , whose

relation to the site operator is

Aj =
Ms∑
k=1

ak√
Ms

e+ik̃aj , Bj =
Ms∑
k=1

bk√
Ms

e+ik̃aj ,

with k̃ = 2π
L

k and L = Msa. The length a is the intersite
distance, L is the ring circumference, and the summations
run on the first Brillouin zone. Notice that the use of the
momentum-mode picture is justified by the fact that we are
considering a repulsive on-site interaction U > 0, which, in
turn, is linked to a ground state where bosons are delocalized
in the system. Momentum-mode operators ak and bk inherit
bosonic commutation relations: [aj ,a

†
k] = δj,k, [bj ,b

†
k] = δj,k ,

and [aj ,b
†
k] = 0. Number operators nk = a

†
kak and mk = b

†
kbk

count the number of bosons having (angular) momentum
h̄k. In this new picture, the Hamiltonian can be written
as

Ĥ = Ua

2Ms

Ms∑
p,q,k=1

a
†
q+ka

†
p−kaqap − 2Ta

Ms∑
k=1

a
†
kak cos(ak̃)

+ Ub

2Ms

Ms∑
p,q,k=1

b
†
q+kb

†
p−kbqbp − 2Tb

Ms∑
k=1

b
†
kbk cos(ak̃)

− T

Ms∑
k=1

(akb
†
k + a

†
kbk).

Let us assume that, in both rings, momentum mode r is
macroscopically occupied. Further, for the sake of simplicity,
we assume Ms is an odd (positive) integer. Under the
hypothesis that the condensate is weakly interacting (small
U/T ) and thus is in the superfluid region of the BH phase
diagram, it is possible to perform the well-known Bogoliubov
approximation [32,33] (see Appendix A for details). We ob-
serve that this scheme can be applied as well in the case U < 0,
describing attractive bosons, provided the ratio |U |/T is small
enough. This condition guarantees that bosons are delocalized
and superfluid [34]. One thus discovers that the Hamiltonian,
apart from a constant term, decouples in (Ms − 1)/2 inde-
pendent Hamiltonians Ĥk , one for each pair of momentum
modes,

Ĥ = E0 +
∑
k>0

Ĥk, (2)

where E0=ua(N − 1)/2+ub(M − 1)/2 − 2 cos(ar̃)(TaN +
TbM) − 2T

√
NM is the ground-state energy, and

Ĥk = 2 sin(ar̃) sin(ak̃)[Ta(nr+k − nr−k)

+ Tb(mr+k − mr−k)]

+ γa,k(nr+k + nr−k) + ua(a†
r+ka

†
r−k + ar+kar−k)

+ γb,k(mr+k + mr−k) + ub(b†r+kb
†
r−k + br+kbr−k)

− T (ar+kb
†
r+k + a

†
r+kbr+k + ar−kb

†
r−k + a

†
r−kbr−k).
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The parameters

γa,k = −2Ta cos(ar̃)(cos(ak̃) − 1) + ua − T

√
M

N
,

γb,k = −2Tb cos(ar̃)(cos(ak̃) − 1) + ub − T

√
N

M
,

ua = UaN

Ms

, ub = UbM

Ms

,

have been introduced to simplify the notation, and N and M are
the total numbers of bosons in the two rings. If Ta = Tb = T‖,
the whole term

2 sin(ar̃) sin(ak̃)T‖(nr+k − nr−k + mr+k − mr−k) (3)

can be shown (see Sec. III) to be a constant of motion
and thus can be incorporated into E0. The natural basis
of the Hilbert space relevant to model Hamiltonian Ĥk is
{|nr+k, nr−k,mr+k,mr−k〉}, a basis vector being labeled by
four momentum quantum numbers. In regard to the values
n0 and m0, due to the Bogoliubov approach, they inherently
depend on nr±k and mr±k , their expressions being n0 =
N − ∑

k (nr+k + nr−k) and m0 = M − ∑
k (mr+k + mr−k).

III. DYNAMICAL ALGEBRA

In general, a dynamical algebra A is a Lie algebra, i.e., n-
dimensional vector space spanned by n generators (operators)
ê1,ê2, . . . ,ên closed under commutation. The closure property
means that the commutator of any two algebra elements is
again an algebra element. A Lie algebra is univocally specified
once all the commutators [êj ,êk] = i

∑
m fjkm êm are given,

namely, when the set of the so-called structure constants
{fjkm} is specified [25]. A model Hamiltonian Ĥ belongs to a
dynamical algebra A = span{ê1,ê2, . . . ,ên} whenever Ĥ can
be expressed as a linear combination Ĥ = ∑

j hj êj of the
generators of A. The important consequences of this property
are that (a) conserved physical quantities correspond to the
algebra’s invariants, (b) the diagonalization process of Ĥk

becomes straightforward, and (c) the Heisenberg equations
can be shown to form a simple linear system of differential
equations. Under the assumption Ta = Tb = T‖, Hamiltonian
Ĥk is recognized to be an element of the dynamical algebra
A = so(2,3), a ten-dimensional Lie algebra spanned by the
operators

A+ = a
†
r+ka

†
r−k, B+ = b

†
r+kb

†
r−k,

A− = (A+)†, B− = (B+)†,

A3 = nr+k + nr−k + 1

2
, B3 = mr+k + mr−k + 1

2
,

S+ = a
†
r+kbr+k + a

†
r−kbr−k, S− = (S+)†,

K+ = a
†
r−kb

†
r+k + a

†
r+kb

†
r−k, K− = (K+)†. (4)

One can easily see that Ĥk , up to an inessential constant
quantity −∑

k>0(γa,k + γb,k), can be written as

Ĥk = 2γa,kA3 + ua(A+ + A−) + 2γb,kB3 + ub(B+ + B−)

− T (S+ + S−),

where operators {A+, A−, A3}, associated with ring A, gen-
erate a su(1,1) algebra marked by the well-known com-
mutators [A+,A−] = −2A3, [A3,A±] = ±A±, and operators
{B+, B−, B3}, relevant to ring B, feature the same su(1,1)
structure (an application of this dynamical algebra can be
found in [35] for a trapped condensate).

However, the important term in Ĥk is the inter-ring
tunneling term, which is responsible for an algebraic structure
considerably more complex than the simple direct sum of
two su(1,1) algebras. In Appendix B, the commutators of
A±, B±, A3, B3,K±, and S± are explicitly calculated, showing
that, indeed, they do form the algebra so(2,3).

A. The algebra invariant as a constant of motion

In the absence of the inter-ring tunneling term, i.e., if T

is zero, the two rings decouple and Ĥk could be seen as an
element of the direct sum of two commuting algebras su(1,1).
In such a case, the difference between the number of bosons
having momentum r + k and the number of bosons having
momentum r − k is a conserved quantity in each single ring.
This statement can be easily proved by using the Casimir
operator of the algebra su(1,1) for ring A,

Ca = A2
3 − 1

2 (A+A− + A−A+) = A4(A4 + 1),

where

A4 = nr+k − nr−k − 1

2
.

We recall that, by definition, the Casimir operator (or,
equivalently, A4) commutes with all the algebra generators
A±, A3. The same comment holds for Casimir operator Cb of
B± and B3.

Conversely, in the presence of the inter-ring tunneling term,
neither nr+k − nr−k nor mr+k − mr−k represents conserved
quantities any longer. Nevertheless, by applying the general
recipe described in [36], one discovers that the Casimir
operator of A = so(2,3) is

C = Ca + Cb + S+S− + S−S+
4

− K+K− + K−K+
4

.

This operator, a quadratic form involving all the algebra
elements, can be rewritten in the standard form

C = C4(C4 + 2),

where

C4 = nr+k − nr−k + mr+k − mr−k

2
− 1.

The conserved quantity Lz(k) = nr+k − nr−k + mr+k − mr−k

has a nice physical interpretation. Apart from the inessential
additive constant −1, C4 is proportional to the difference
between the numbers of bosons having momentum r + k

and momentum r − k in the whole ring ladder. Then Lz(k)
can be interpreted as the angular momentum for the modes
r ± k. This fact not only proves the ansatz on the constant of
motion (3) but, since it holds for every sub-Hamiltonian Ĥk ,
leads to the natural conclusion that the angular momentum
Lz = ∑

k>0 Lz(k) of the whole system is a conserved quantity.
In this regard, it is worth noting that the ten operators which
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generate the algebra so(2,3) always correspond to two-boson
processes in which angular momentum is conserved.

B. Spectrum and diagonalization

Once the dynamical algebra has been identified, the
Hamiltonian Ĥk can be diagonalized thanks to a simple unitary
transformation U of group SO(2,3) defined as

U = e
ϕ

2 (S−−S+)e
ξ

2 (K−−K+)e
θa
2 (A−−A+)e

θb
2 (B−−B+).

This represents the central step of the dynamical-algebra
method. A suitable choice of parameters ϕ, ξ, θa , and θb, (see
Appendix C for their explicit expressions) allows us to write
the Hamiltonian

Ĥk = U−1 Ĥk U = [c1 cosh θa − c2 sinh θa]A3

+ [c3 cosh θb − c4 sinh θb]B3

as a linear combination of A3 and B3, operators which are
diagonal in the Fock-state basis. The explicit expression
of coefficients c1, c2, c3, and c4 is given in Appendix C,
showing that they are complex functions of the interaction
and the tunneling parameters. Based on the definitions (4), the
spectrum of Hamiltonian Ĥk is found to be

Ek(nr+k,nr−k,mr+k,mr−k)

= +[c1 cosh θa − c2 sinh θa]
nr+k + nr−k + 1

2

+ [c3 cosh θb − c4 sinh θb]
mr+k + mr−k + 1

2
,

where nr±k and mr±k now represent the quantum numbers
describing the boson populations.

C. The time evolution of algebra elements

The knowledge of the dynamical algebra A relevant to
a given model Hamiltonian Ĥ = ∑

j hj êj allows one to
derive in a direct way the equations of motion of any
physical observable O = ∑

k okêk written in terms of the
generators êk ∈ A. If [êj ,êk] = i

∑
m fjkmêm represent the

commutators of A (fjkm are the algebra structure constants),
then the Heisenberg equation for êk reduces to a simple linear
combination of the generators,

ih̄
d

dt
êk = [êk,Ĥ ] = i

∑
m

ρkmêm,

where ρkm = ∑
j hjfjkm and the commutators have been used

to explicitly calculate [êk,Ĥ ]. The dynamical evolution of
the whole system is thus encoded in a simple set of linear
equations whose closed form is ensured by the commutators
of the dynamical algebra and whose number corresponds to
the algebra dimension. The evolution of physical observables
O is thus fully determined by that of generators êk .

Concerning the dynamical algebra so(2,3), the linear system
of differential equations is

ih̄Ȧ3 = ua(A+ − A−) − T

(
1

2
S+ − 1

2
S−

)
,

ih̄Ȧ− = 2γa,kA− + 2uaA3 − T K−,

ih̄Ḃ3 = ub(B+ − B−) − T

(
− 1

2
S+ + 1

2
S−

)
,

ih̄Ḃ− = 2γb,kB− + 2ubB3 − T K−,

ih̄Ṡ− = γa,kS− + uaK+ − γb,kS− − ubK− + 2T (A3 − B3),

ih̄K̇− = γa,kK− + uaS+ + γb,kK− + ubS− − 2T (A− + B−).

Of course, the remaining four equations for A+, B+, S+,
and K+ are the Hermitian conjugates of the Heisenberg
equations for A−, B−, S−, and K−. Rigorously, this is a system
of operator ordinary differential equations (ODEs), as the
unknowns are the time evolution of operators. In the following
we will switch from operators to their expectation values, i.e.,
from operator ODEs to standard complex ODEs. In fact the
structure of Heisenberg equations remains unchanged when
taking the expectation values on both sides, e.g.,

ih̄
d

dt
〈A3〉 = ua(〈A+〉 − 〈A−〉) − T

(
1

2
〈S+〉 − 1

2
〈S−〉

)
.

This conceptual jump will often be made and always under-
stood throughout this paper.

IV. DOUBLE TRIMER

The formulas we have presented so far are very general
because they can capture the dynamics of physical regimes
distinguished by an arbitrary macroscopic mode r with 0 �
r � Ms − 1 and an arbitrary choice of the site number Ms and
of the other model parameters. In particular, for r �= 0, our
approach allows us to investigate the dynamics of quantum
excitations relevant to the macroscopic (semiclassical) double-
vortex state characterized by a total vorticity proportional to
r ,

Aj (t,r) =
√

N

Ms

eij r̃−ωr t , Bj (t,r) =
√

M

Ms

eij r̃−ωr t ,

where Aj , Bj are the local order parameters (of the semi-
classical Hamiltonian) associated with model (1) and ωr can
be found with the corresponding dynamical equations [37].
In this section we show a simple and yet very interesting
application of the solution scheme we have proposed. We
consider the smallest possible ladder, the one formed by two
rings with Ms = 3 sites (trimer). This system has received
considerable attention in the last decade in that it represents
the minimal circuit in which chaos can be triggered [38–40].
Moreover, we assume that the macroscopically occupied mode
is r = 0 (entailing that no macroscopic current is present),
that the upper and lower rings host an equal number of
bosons (N = M), and that the intra-ring tunneling and the
on-site repulsion parameters are equal (Ta = Tb =: T‖ and
Ua = Ub =: U ). As a consequence, γa,k = γb,k = γk . Since
the first Brillouin zone involves just three modes, k = −1, 0, 1,
then there is only one γk , which will be denoted by

γ = γ1 = 2T‖

[
1 − cos

(
2π

3

)]
+ u − T .

By performing the Bogoliubov approximation with the mo-
mentum mode r = 0 macroscopically occupied, the double-
trimer Hamiltonian can be written as Ĥ = E0 + Ĥ1, where

E0 = u(N − 1) − 2N (2T‖ + T ) − 2γ,

Ĥ1 = 2γ (A3 + B3) + u(A+ + A− + B+ + B−)

− T (S+ + S−).
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Notice that E0 is a constant quantity, while Ĥ1 rules the
dynamics of bosons having wave-number k = ±1.

As we proved in the previous section, the total angular
momentum, which is proportional to n1 − n−1 + m1 − m−1,
is a conserved quantity. In passing, we note that for a double
trimer with twin rings (γa = γb, ua = ub), a second quantity
commuting with Hamiltonian Ĥ1,

I = (a1b
†
1 + a

†
1b1) − (a−1b

†
−1 + a

†
−1b−1),

can be found. In view of the mode coupling characterizing
the hopping term of a BH model, I can be interpreted as the
difference between the tunneling energies associated with the
ring-ring boson exchange for the bosons of mode k = 1 and
the bosons of mode k = −1.

Concerning the diagonalization of Ĥ1, generalized rotation
angles ϕ, ξ, θa , and θb are, in such a system,

ϕ = π

2
, ξ = 0, tanh θa = u

γ − T
, tanh θb = u

γ + T
.

(5)

They lead to the diagonal Hamiltonian

Ĥ = E0 + 2h̄ω A3 + 2h̄
 B3, (6)

where the two frequencies

ω =
√

3T‖(3T‖ + 2u)

h̄
, (7)


 =
√

(3T‖ − 2T )(3T‖ − 2T + 2u)

h̄
(8)

have been defined. Since A3 = (nk + n−k + 1)/2 and B3 =
(mk + m−k + 1)/2, then Ĥ formally corresponds to a sys-
tem of four independent harmonic oscillators with the
spectrum Ek(nk,n−k,mk,m−k) = E0 + h̄ω(nk + n−k + 1) +
h̄
(mk + m−k + 1). The angle θa and the argument of the
square roots are well defined only in a certain region of
the three-dimensional parameter space (T‖, U, T ). From a
dynamical point of view, approaching the border of this
stability region implies that the system tends to be unstable
and many physical quantities manifest diverging behaviors.
This issue will be addressed in Sec. V.

A. Vortexlike excitations and currents

It is interesting to notice that the weak excitations in
each ring are weakly populated vortices. To show this,
let us observe that, in the semiclassical picture, site-mode
operators corresponding to momentum-mode operators a0 =√

N − n1 − n−1, a1 = √
n1e

iφ1 , a−1 = √
n−1e

iφ−1 are

Aj = 1√
3

[√
n0 + e+i 2π

3 j√n−1e
iφ−1 + e−i 2π

3 j√n1e
iφ1

]
,

where n0 = N − n−1 − n1 and j = 1,2,3 is the site index.
The structure of site operators Aj , whose expectation values
are the local order parameters, clearly shows that the state of
the system is the superposition of three contributions, namely,
a major mode a0 corresponding to a zero supercurrent and two
minor modes (a1 and a−1) corresponding to counter-rotating
weakly populated vortices. The same holds also for site-mode
operators Bj of ring B.

FIG. 1. Schematic representation of the vortexlike weak excita-
tions in our system. In each ring there can be both a clockwise current
and an anticlockwise current. J⊥ denotes the current of excited bosons
between the two rings. The macroscopically occupied modes n0 and
m0 (in gray), being semiclassic, can be considered a sort of reservoir.

Let us introduce some observables, commonly found in
the literature (see for example [18,41]), whose time evolution
allows one to illustrate the significant transport phenomena
and inter-ring exchange processes occurring in the system. We
start with the currents along the two rings,

JA = iT‖
3∑

l=1

(A†
l+1Al − A

†
l Al+1) =

√
3T‖(n1 − n−1),

JB = iT‖
3∑

l=1

(B†
l+1Bl − B

†
l Bl+1) =

√
3T‖(m1 − m−1).

These currents are proportional to the angular momenta
in each single ring. Their superposition Jtot = JA + JB is
proportional to the total angular momentum (and thus is a
conserved quantity), while Jchir = JA − JB is proportional
to the angular momentum difference between the two rings.
N∗ = n1 + n−1 + m1 + m−1 is the total number of excited
bosons. The rung excitations’ current

J⊥ = iT

3∑
l=1

(A†
l Bl − B

†
l Al)

= iT (a†
1b1 + a

†
−1b−1 − a1b

†
1 − a−1b

†
−1)

measures the flow of excited bosons from ring B to ring A.
Figure 1 sketches the scenario of physical observables which
come into play.

B. Time evolution of observables and dynamical algebra

Based on the scheme described in Sec. III C, the dynamical
algebra so(2,3) allows one to determine the equations of
motion for the total number of excited bosons N∗ and for the
rung current J⊥. Since these two observables can be written as
linear combinations of the so(2,3) generators, it is possible to
write their dynamical equations in terms of algebra elements.
Concerning N∗, the corresponding Heisenberg equation is
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FIG. 2. Five different initial conditions. (a) No initial excitations, (b) a weak vortex in one ring, (c) a pair of counter-rotating weak vortices
in the same ring, (d) two equal weak vortices in the two rings, and (e) a pair of counter-rotating weak vortices in the two rings.

found to be
dN∗
dt

= 2(Ȧ3 + Ḃ3) = −2u

h̄
i(A+ − A− + B+ − B−).

Recalling that A+ − A− + B+ − B− = a
†
1a

†
−1 − a1a−1 +

b
†
1b

†
−1 − b1b−1, this equation shows that the time variation

of N∗ is proportional to a generalized current which can be
interpreted as the boson pairs flow from the macroscopically
occupied modes a0 and b0 to the excited modes. In other words,
this is the generation rate of boson pairs populating modes
k = ±1. Such a pair is created by a

†
1a

†
−1 (annihilated by a1a−1)

extracting (releasing) bosons from (to) the macroscopically
occupied modes which, being semiclassical, have bowed out
and act as reservoirs (see Fig. 1).

In regard to the rung current, the relevant Heisenberg
equation reads

d

dt
j⊥ = iT (Ṡ+ − Ṡ−) = −4T 2

h̄
(A3 − B3)

= −2T 2

h̄
(n1 + n−1 − m1 − m−1),

showing that a population imbalance between the two rings is
responsible for the time variation of the rung current.

If one is interested in obtaining finer-grained information
about the system, e.g., finding the time evolution of a certain
population n±1 or m±1, one must consider an enlarged
dynamical algebra containing the original framework so(2,3).
This is represented by the 15-dimensional algebra so(2,4),
which, in fact, includes the 10-dimensional algebra so(2,3). It
is within this enlarged algebra (whose generators are listed in
Appendix D) that the dynamics of all the previously presented
observables can be represented. The time evolution of excited
populations is easily found to be

ih̄ṅ1 = u(a†
1a

†
−1 − a1a−1) − T (−a1b

†
1 + a

†
1b1),

ih̄ṅ−1 = u(a†
1a

†
−1 − a1a−1) − T (−a−1b

†
−1 + a

†
−1b−1),

ih̄ṁ1 = u(b†1b
†
−1 − b1b−1) − T (a1b

†
1 − a

†
1b1),

ih̄ṁ−1 = u(b†1b
†
−1 − b1b−1) − T (a−1b

†
−1 − a

†
−1b−1).

These equations clearly show that the time evolution of excited
populations can be triggered either by intra-ring processes u

or by inter-ring tunneling T . Eventually, the time evolution of
the chiral current is easily found to be

d

dt
Jchir = i

2
√

3

h̄
T‖T (a†

1b1 + a−1b
†
−1 − a1b

†
1 − a

†
−1b−1).

This equation confirms the intuitive fact that the angular
momentum difference between the two rings cannot evolve
in time if the inter-ring tunneling parameter T tends to zero.

As already noticed, the diagonal Hamiltonian (6) and the
dynamics of physical observables we have presented are
featured by two characteristic frequencies ω and 
 which,
in the limit T → 0, turn out to be equal. Different choices of
parameters (T‖, u, T ) result in different physical regimes, an
aspect that will be discussed in the next section.

V. VORTEXLIKE EXCITATIONS AND CURRENT
DYNAMICS

With reference to the double trimer, in the semiclassical
picture, the expectation values of momentum-mode operators
(expressed in terms of complex order parameters) can be
written as

a1 = √
n1e

iφ1 , a−1 = √
n−1e

iφ−1 ,

b1 = √
m1e

iψ1 , b−1 = √
m−1e

iψ−1 .

In this section we show how different initial conditions (i.e.,
moduli and phases of the aforementioned operators at t = 0)
together with different choices of parameters T‖, u, and T

lead to different dynamical regimes. The explicit solutions
of Heisenberg equations giving the time evolution of excited
populations [n±1(t) and m±1(t)] and of the rung current J⊥(t)
can be found in the Supplemental Material [42]. Figure 2
sketches the five different initial conditions we will focus on.

(a) No initial excitations. If, at t = 0, n1 = n−1 = m1 =
m−1 = 0, meaning that no excitations are present in the initial
state, as time goes on, excitation pairs are periodically created
and annihilated according to the relations

n±1(t) = m±1(t) = 1

2

u2

h̄2

[
sin2(ω t)

ω2
+ sin2(
 t)


2

]
.

This example clearly shows how a nonzero on-site repul-
sive term u determines fluctuations of the vacuum state
|n1,n−1,m1,m−1〉 = |0,0,0,0〉. Chiral and rung currents are
identically zero.

The plots of n1(t) and m1(t), up to quantum fluctuations,
show the periodic tunneling of the weakly populated vortex
between the two rings, while the plots of n−1(t) and m−1(t)
show the fluctuations of the vacuum state. Notice that chiral
and rung currents’ phases are permanently shifted of π/2,
one being maximum (or minimum) when the other is zero.
They somehow play a complementary role, analogous to that
of position and momentum in a harmonic oscillator. This

013620-6



QUANTUM DYNAMICS OF BOSONS IN A TWO-RING . . . PHYSICAL REVIEW A 96, 013620 (2017)

0 2 4 6 8 100

0.006

0.012

0 2 4 6 8 10

- 15

0

15

FIG. 3. Population and current dynamics for T‖ = 2, U =
0.01, T = 1, h̄ = 1, N = 1000, n1(0) = 10, and n−1(0) = m±1(0) =
0. Top: n1(t) corresponds to the red dashed line, while n−1(t)
corresponds to the blue solid line. m1(t) and m−1(t) feature the same
behavior but are shifted by a semiperiod. Bottom: Jchir(t) is depicted
by the black dashed line, and J⊥(t) is shown by the green solid line.

statement is exact in the limit u → 0, a case where the
expressions of chiral and rung currents simplify as follows:

Jchir(t) =
√

3n1(0)T‖ cos

(
2tT

h̄

)
,

J⊥(t) = −n1(0)T sin

(
2tT

h̄

)
.

Notice that the bigger the value of parameter T is, the
wider the oscillations of the rung current are, and the higher
the frequencies of Jchir and J⊥ are. In short, a big value of T

is linked to a fast and efficient transfer of bosons between the
two rings.

The presence of a nonzero on-site repulsion is responsible
for the periodic creation and annihilation of excited bosons
pairs, which correspond to the high-frequency ripple in
n±1(t),m±1(t), and J⊥(t) (see Fig. 3). As a consequence,
the bigger the value of u is, the wider the high-frequency
oscillations of excited populations is (and the smaller their
period is). This is a crucial point in order to obtain a both
realistic and reliable description of the system: the global
maximum of the excited populations must always be much
less than the total number of bosons present in the system;
otherwise, the Bogoliubov approximation is invalidated, and

0 2 4 6 8 100

0.012

0.024

0 2 4 6 8 10

- 30

0

30

FIG. 4. Population and current dynamics for T‖ = 2, U =
0.01, T = 1, h̄ = 1, N = 1000, n1(0) = n−1(0) = 10, and m±1(0) =
0. Since the tunneling process always involves pairs of bosons, there
cannot be momentum transfer between the two rings; hence, chiral
current is identically zero. m1(t) and m−1(t) feature the same behavior
of n±1(t) but are shifted by a semiperiod.

the model’s predictions turn unphysical. According to the
analysis we have carried out, the Bogoliubov approximation
ceases to be valid for relatively small values of U/T‖ and
certainly before approaching Mott’s lobes borders [43].

Moreover, it is interesting to notice that the inter-ring
tunneling parameter T also affects the amplitude of excited-
population oscillations and, when it approaches a certain upper
limiting value, leads to dynamical instability. This issue will
be deepened in next section.

(b) Weak vortex and equal weak antivortex in one ring, with
no excitations in the other ring. If, at t = 0,m1 = m−1 = 0 but
n1 = n−1 �= 0, meaning that the initial state exhibits a balanced
weak vortex-antivortex pair, as time goes on, excited bosons
periodically tunnel from the first ring to the second ring and
vice versa, giving place to a periodic rung current. Notice that
the chiral current is identically zero, as the inter-ring tunneling
process always involves pairs of bosons, as depicted in Fig. 4.

In regard to the population time evolution, it is possible
to recognize a low-frequency component which corresponds
to the periodic tunneling of excited bosons between the two
rings and a high-frequency component which corresponds to
quantum fluctuations of the vacuum state, which in turn are
caused by a nonvanishing u. In this respect, notice that the on-
site repulsion term u is associated with two-boson processes
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0

0.007
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FIG. 5. Populations dynamics for T‖ = 2, U = 0.01, T = 1, h̄ =
1, N = 1000, n1(0) = m1(0) = 10, n−1(0) = m−1(0) = 0, and φ1 =
ψ1 = 0. n1(t) corresponds to the red dashed line, while n−1(t)
corresponds to the blue solid line. As the tunneling is suppressed,
m1(t) and m−1(t) feature the same behavior (fluctuations) as n1(t) and
n−1(t), respectively. The chiral and the rung currents are identically
zero.

a
†
1a

†
−1, a1a−1, b

†
1b

†
−1, and b1b−1, where the momentum in each

single ring is indeed conserved.
(c) Two equal weak vortices in the two rings. Let us assume

that n−1(0) = m−1(0) = 0 and that n1(0) = m1(0) �= 0. This is
a very interesting situation because the dynamics of our system
inherently depends on the initial phase difference φ1(0) −
ψ1(0). If this difference is zero, then the inter-ring tunneling
process is suppressed, and up to quantum fluctuations, each
ring always hosts the same number of excited bosons. As a
consequence, chiral and rung currents are identically zero
(see Fig. 5). Conversely, a nonvanishing phase difference is
responsible for a periodic transfer of excited bosons from
one ring to the other and vice versa (see Fig. 6). Hence, by
observing n1(t) and m1(t) one can infer information about the
phases of the two weakly populated vortices in the two rings.
In this sense, the collective behavior which emerges in such
a configuration can be used as a quantum interferometer.

(d) Weak vortex in one ring and equal (and opposite)
weak antivortex in the other ring. Let us assume that
n1(0) = m−1(0) �= 0 and that n−1(0) = m1(0) = 0. Apart from
quantum fluctuations (which correspond, as usual, to the high-
frequency ripple in Fig. 7) excited bosons periodically tunnel
from one ring to the other and vice versa. Remarkably, at each
time, there are as many bosons which tunnel from ring A to
ring B as bosons which tunnel from ring B to ring A. As a con-
sequence, there is a continuous momentum transfer between
the two rings, i.e., a periodic Jchir, but due to the symmetry of
this tunneling process, J⊥ is identically zero (see Fig. 7).

A. Towards instability

The diagonalization scheme presented in Sec. IV shows
that there are some constraints on generalized rotation angles
θa and θb [see Eq. (5)]. The same constraints also recur in
the expression of diagonal Hamiltonian (6). Recalling that
T‖, u, and T are, by definition, non-negative numbers, all the
diagonalization schemes and the dynamical results that we

0 2 4 6 8 10
0

0.012

0.024

0 2 4 6 8 10

25

0

25

FIG. 6. Population and current dynamics for T‖ = 2, U =
0.01, T = 1, h̄ = 1, N = 1000, n1(0) = m1(0) = 10, n−1(0) = m−1

(0) = 0, and ψ1 = 0 but φ1 = π

2 . Top: n1(t) corresponds to the
red dashed line, while n−1(t) is depicted by the blue solid line.
m−1(t) features exactly the same behavior as n−1(t), while m1(t) is
shifted by a semiperiod with respect to n1(t). Apart from quantum
fluctuations, one can notice that the weakly populated vortex with
k = +1 periodically completely transfers from one ring to the other
and vice versa. Bottom: Chiral current (in black) and rung current
(in green).

have presented so far are well defined iff T < 3
2T‖. If the inter-

ring tunneling parameter T becomes large enough to approach
the limiting value 3

2T‖, one can observe the spectral collapse,
meaning that the separation between subsequent energy levels
tends to zero (see Fig. 8).

In this respect, one should recall that diagonal Hamiltonian
Ĥ is, up to a constant term E0, the sum of four harmonic
oscillators, two of them having frequency 
 and the others
having frequency ω [see Eqs. (4) and (6)]. As a consequence,
two integer quantum numbers n = n1 + n−1 and m = m1 +
m−1 are enough to label the energy levels of the system,

Ĥ = E0 + h̄
 (n + 1) + h̄ω (m + 1).

Of course an energy level labeled by quantum numbers (n,m)
is (n + 1)(m + 1) times degenerate. This is the number of
eigenstates |n1,n−1,m1,m−1〉 associated with a given energy.
Figure 8 clearly shows that, if T → 0, then 
 → ω, meaning
that one has the spectrum of a harmonic oscillator of frequency
ω whose levels are (m + 3)!/(m! 3!) times degenerate. Figure 8

013620-8



QUANTUM DYNAMICS OF BOSONS IN A TWO-RING . . . PHYSICAL REVIEW A 96, 013620 (2017)

0 2 4 6 8 10
0

0.007

0.014

0 2 4 6 8 10

25

0

25

FIG. 7. Population and current dynamics for T‖ = 2, U =
0.01, T = 1, h̄ = 1, N = 1000, n1(0) = m−1(0) = 10, and n−1(0) =
m1(0) = 0. n1 and m−1 (dashed red line) have the same time evolution,
and so do m1 and n−1 (blue solid line). The rung current is identically
zero.

illustrates well the spectral collapse of (the energy levels of)
the 
-dependent harmonic oscillator for T → 3

2T‖.
In regard to excited populations, approaching the border of

the stability region, one observes that the numbers of excited
bosons feature a diverging behavior, as Fig. 9 clearly depicts.
This circumstance is not just a mathematical accident but
serves to set the validity range of our model. Moreover, since
the spectral collapse of the energy levels and the divergence
of physical observables typically marks the appearance of
unstable regimes, this phenomenology suggests the presence

0.5 1.0 1.5
1.0006
1.0008
1.0010
1.0012
1.0014
1.0016
1.0018
1.0020

FIG. 8. Energy levels as a function of the intertunneling parame-
ter T . When T = 0, the rings are decoupled; when T → 3

2 T‖, there
is spectral collapse with respect to the first generalized harmonic
oscillator.
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FIG. 9. Populations and currents dynamics for T‖ = 2, U =
0.01, T = 2.999, h̄ = 1, N = 1000, n1(0) = 10, and n−1(0) =
m±1(0) = 0. Top: n1(t) corresponds to the red dashed line, and
n−1(t) is depicted by the blue solid line. m1(t) and m−1(t) essentially
feature the same diverging behavior. The number of excited bosons
rapidly increases and soon becomes nonphysical. Bottom: chiral
(black dashed line) and rung (green solid line) currents exhibit a
divergence too.

of a dynamical phase transition [29]. A well-known example
is supplied by the BH ring model with attractive bosons
where the interplay of the hopping parameter with the negative
interaction can cause the spectral collapse [34]. In this respect,
we emphasize how the presence of the inter-ring boson
exchange described by T allows one to trigger unstable
behaviors in the current model. The case T > 3T‖/2 will be
explored in a separate paper.

B. Instability in a general double ring

The limiting condition T < 3T‖/2 has been derived with
reference to the double trimer. Nevertheless, it is possible to
derive an analogous stability condition for a double ring which
features a general number of sites Ms . Considering formula
(2), one notices that each sub-Hamiltonian Ĥk features two
characteristic frequencies,

ωk = 1

h̄

√
(2T‖Ck + 2u)2T‖Ck, (9)


k = 1

h̄

√
(2T‖Ck − 2T )(2T‖Ck + 2u − 2T ), (10)
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where Ck := 1 − cos (2πk/Ms). In passing, can observe that,
choosing Ms = 3 and k = 1, one reobtains characteristic
frequencies (7) and (8). Recalling that T‖, u, and T are positive
parameters, the stability condition is given by

2T‖Ck − 2T > 0,

which results in

T < T‖Ck.

Since Ck is a monotonically increasing function for 0 < k <

(Ms − 1)/2, the limiting value of T is found for k = 1, i.e.,

T < T‖

[
1 − cos

(
2π

Ms

)]
.

In other words, whatever the number of sites in the system,
the sub-Hamiltonian which collapses first (due to an increase
in T ) is always Ĥ1.

As already mentioned, our model can also describe the
dynamics of systems which feature an attractive interaction
U < 0, provided that the condition that |U |/T is small enough
is fulfilled, thus guaranteeing that bosons are superfluid and
delocalized [34]. For such systems, two conditions,

u > T‖

[
cos

(
2π

Ms

)
− 1

]
,

T < T‖

[
1 − cos

(
2π

Ms

)]
+ u,

ensure that the spectrum is real and discrete. A systematic ex-
ploration of the attractive regime includes the case when |U |/T

is large. In this case the formation of solitonlike quantum
states characterized by boson localization (see, for example,
[44–46]), typically occurring in the single-ring geometry,
is expected. The quantum study of the interaction between
solitons on different rings and in complex geometries [47,48]
will be developed elsewhere along the lines of Ref. [49].

VI. CONCLUDING REMARKS

In this work we have focused on the BH two-ring ladder. In
Sec. II we showed that, moving to the momentum-mode picture
and performing the well-known Bogoliubov approximation,
the system Hamiltonian, up to a constant term E0, decouples
in (Ms − 1)/2 independent Hamiltonians Ĥk , one for each
pair of momentum modes. In Sec. III, we proved that each
Hamiltonian Ĥk belongs to a dynamical algebra so(2,3). This
property has provided not only an effective diagonalization
scheme but also the possibility of computing the conserved
quantity in the system and its dynamical equations.

Section IV was devoted to applying our solution scheme to a
simple and yet very interesting example: the double twin trimer
where the ground state features a r = 0 mode macroscopically
occupied. After finding the explicit expression of its spectrum,
we showed that the excitations of the system indeed can be
seen as weakly populated vortices. Then we introduced some
significant physical observables, which are currently used in
the literature [18,41] and computed their time evolution thanks
to the closure property of the algebraic framework.

The derived dynamical equations have highlighted the
fundamental processes which happen in the system. We have

also noticed that, while some “global” observables (namely,
N∗ and J⊥) can be written as elements of the dynamical
algebra so(2,3), in order to have a more detailed description
of microscopic physical processes (e.g., the time evolution of
boson populations) it is necessary to perform the immersion
of the algebra so(2,3) in the larger 15-dimensional algebra
so(2,4). It is within this larger algebraic framework that the
dynamics of all the observables typically used in literature
takes place.

Finally, in Sec. V, we explored the system evolution for
different choice of parameters and initial conditions. In par-
ticular, we explicitly described the vacuum-state fluctuations
and the coherent time evolution of the rung and chiral currents.
Also, we found a configuration where a different choice in the
initial phase difference of the excitation modes in the two rings
allows us to completely inhibit the boson inter-ring exchange.
In conclusion, we have analyzed the stability region of the
system and noticed that, for T → 3

2T‖, the system turns out to
be unstable, hinting at the possible presence of a dynamical
phase transition. This issue, the study of strongly interacting
attractive bosons, and the study of the excitation dynamics for
the macroscopic modes r �= 0 (vortex configurations) will be
explored in a future work.

APPENDIX A

The two terms with the triple summation can be simplified
considering just the addends which include at least two r-mode
operators:

Ms∑
p,q,k=1

a
†
q+ka

†
p−kaqap ≈ nr (nr − 1) + 4nr

∑
k �=r

nk

+ (ar )2
∑
k �=r

a
†
r+ka

†
r−k + (a†

r )2
∑
k �=r

ar+kar−k.

Of course, the same reasoning holds also for the second ring,
i.e., for the term proportional to Ub.

According to the well-known Bogoliubov approximation,
a mode operator relevant to a macroscopically occupied mode
can be declassed to a complex number whose phase can be
arbitrarily chosen to be zero. Performing the substitutions
a
†
r → √

nr, ar → √
nr, b

†
r → √

mr, br → √
mr and writing

nr as N − ∑
k �=r nk and mr as M − ∑

k �=r mk , the Hamiltonian
assumes the following form:

Ĥ = Ĥa + Ĥb + Ĥ⊥,

where

Ĥa = −2Ta

⎡
⎣N cos(ar̃) +

∑
k �=r

( cos(ak̃) − cos(ar̃))nk

⎤
⎦

+ ua

2

⎡
⎣N − 1 +

∑
k �=0

(nr+k + nr−k

+ a
†
r+ka

†
r−k + ar+kar−k)

⎤
⎦,
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Ĥb = −2Tb

⎡
⎣M cos(ar̃) +

∑
k �=r

(cos(ak̃) − cos(ar̃))mk

⎤
⎦

+ub

2

⎡
⎣M − 1 +

∑
k �=0

(mr+k + mr−k + b
†
r+kb

†
r−k

+ br+kbr−k)

⎤
⎦,

Ĥ⊥ = −2T
√

NM − T

√
M

N

∑
k �=r

nk − T

√
N

M

∑
k �=r

mk

+ T

2

∑
k �=r

(ar+kb
†
r+k+ a

†
r+kbr+k+ ar−kb

†
r−k+ a

†
r−kbr−k).

APPENDIX B

Here we give the defining commutators of our ten-
dimensional algebra. In the main text, we already
mentioned that {A+, A−, A3} generate an su(1,1) al-
gebra and {B+, B−, B3} do too. Concerning operators
{S+, S−, A3 − B3}, they generate an su(2) algebra, the
latter being marked by commutators: [S+, S−] = 2(A3 −
B3), [S±, A3 − B3] = ∓S±. Operators {K+,K−, A3 + B3}
generate another su(1,1) algebra, the defining commutators be-
ing [K+,K−] = −2(A3 + B3), [K±, A3 + B3] = ∓K±. After
recognizing the presence of these four subalgebras, we give
the commutation relations between the elements of the various
subalgebras. Any element Ai commutes with all elements Bj ,
i.e., [Ai,Bj ] = 0, with i,j = +, − ,3. Moreover,

[A+, S+] = 0, [A+, S−] = −K+, [A+,K+] = 0,

[A+,K−] = −S+, [A−, S+] = K−, [A−, S−] = 0,

[A−,K+] = S−, [A−,K−] = 0,

[A3,S±] = ±1

2
S±, [A3,K±] = ±1

2
K±,

[B+, S+] = −K+, [B+, S−] = 0, [B+,K+] = 0,

[B+,K−] = −S−, [B−, S+] = 0, [B−, S−] = K−,

[B−,K+] = S+, [B−,K−] = 0,

[B3,S±] = ∓1

2
S±, [B3,K±] = ±1

2
K±,

[S+,K+] = 2A+, [S+,K−] = −2B−,

[S−,K+] = 2B+, [S−,K−] = −2A−.

APPENDIX C

The explicit expressions of the unitary transformations
have been computed using the well-known Campbell-Baker-
Hausdorf formula

eX Y e−X =
+∞∑
k=0

1

k!
[X,Y ]k.

As we are working within an algebraic framework, the
algebra’s closure property guarantees that any commutator of

two algebra elements is still an algebra element. Generalized
rotation angles ϕ, ξ, θa , and θb are computed by imposing the
nullification of nondiagonal operators. Their expression is

tanϕ = 2T (γa,k + γb,k)

(ua + ub)(ua − ub) − (γa,k + γb,k)(γa,k − γb,k),

tanhξ = 2T (ub − ua)(
u2

a − u2
b − γ 2

a,k + γ 2
b,k

)√
1 + χ

,

χ = 4T 2(γa,k + γb,k)2(
u2

a − u2
b − γ 2

a,k + γ 2
b,k

)2 ,

tanhθa = c2

c1
, tanhθb = c4

c3
.

Coefficients c1, c2, c3, and c4 have the following expressions:

c1 = (ua − ub) sinh ξ sin ϕ + (γa,k + γb,k) cosh ξ

− 2T sin ϕ + (γa,k − γb,k) cos ϕ,

c2 = 2T sinh ξ cos ϕ + (γa,k − γb,k) sinh ξ sin ϕ

+ cosh ξ (ua + ub) + (ua − ub) cos ϕ,

c3 = (ua − ub) sinh ξ sin ϕ + (γa,k + γb,k) cosh ξ

+ 2T sin ϕ − (γa,k − γb,k) cos ϕ,

c4 = 2T sinh ξ cos ϕ + (γa,k − γb,k) sinh ξ sin ϕ

+ cosh ξ (ua + ub) − (ua − ub) cos ϕ.

APPENDIX D

The 15 generators of the algebra so(2,4) are

A+ = a
†
1a

†
−1, A− = A

†
+, A3 = 1

2 (n1 + n−1 + 1),

B+ = b
†
1b

†
−1, B− = B

†
+, B3 = 1

2 (m1 + m−1 + 1),

Q+ = a
†
1b1, Q− = Q

†
+ G+ = a

†
−1b

†
1, G− = G

†
+,

H+ = a
†
1b

†
−1, H− = H

†
+ R+ = a

†
−1b−1, R− = R

†
+,

T = 1
2 [(n1 − n−1) − (m1 − m−1)].

The relevant Casimir operator is

C = A2
3 + B2

3 + 1
2 T 2

+ 1
2 [Q+Q− + Q−Q+ + R+R− + R−R+]

− 1
2 [A+A− + A−A+ + B+B− + B−B+G+G−

+G−G+ + H+H− + H−H+],

which can be written in the standard form C = 3
2K4(K4 + 2),

where K4 = (n1 − n−1 + m1 − m−1 − 2)/2 represents the to-
tal angular momentum. This shows how the algebra so(2,4)
again features the total angular momentum as a conserved
quantity.

013620-11



ANDREA RICHAUD AND VITTORIO PENNA PHYSICAL REVIEW A 96, 013620 (2017)

[1] M. K. Olsen and A. S. Bradley, Phys. Rev. A 91, 043635 (2015).
[2] B. T. Seaman, M. Krämer, D. Z. Anderson, and M. J. Holland,

Phys. Rev. A 75, 023615 (2007).
[3] S. C. Caliga, C. J. E. Straatsma, A. A. Zozulya, and D. Z.

Anderson, New J. Phys. 18, 015012 (2016).
[4] R. A. Pepino, J. Cooper, D. Z. Anderson, and M. J. Holland,

Phys. Rev. Lett. 103, 140405 (2009).
[5] A. Benseny, S. Fernández-Vidal, J. Bagudà, R. Corbalán, A.

Picón, L. Roso, G. Birkl, and J. Mompart, Phys. Rev. A 82,
013604 (2010).

[6] I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267
(2012).

[7] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).
[8] Y.-J. Lin, R. L. Compton, K. Jimenez-Garcia, J. V. Porto, and I.

B. Spielman, Nature (London) 462, 628 (2009).
[9] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,

and I. Bloch, Nat. Phys. 10, 588 (2014).
[10] C.-C. Chien, S. Peotta, and M. Di Ventra, Nat. Phys. 11, 998

(2015).
[11] N. Goldman, J. Budich, and P. Zoller, Nat. Phys. 12, 639 (2016).
[12] L. Amico, A. Osterloh, and F. Cataliotti, Phys. Rev. Lett. 95,

063201 (2005).
[13] D. Aghamalyan, L. Amico, and L. C. Kwek, Phys. Rev. A 88,

063627 (2013).
[14] I. Lesanovsky and W. von Klitzing, Phys. Rev. Lett. 98, 050401

(2007).
[15] A. Gallemí, A. M. Mateo, R. Mayol, and M. Guilleumas, New

J. Phys. 18, 015003 (2015).
[16] L. Amico, D. Aghamalyan, F. Auksztol, H. Crepaz, R. Dumke,

and L. C. Kwek, Sci. Rep. 4, 4298 (2014).
[17] E. Orignac and T. Giamarchi, Phys. Rev. B 64, 144515

(2001).
[18] M. Piraud, F. Heidrich-Meisner, I. P. McCulloch, S. Greschner,

T. Vekua, and U. Schollwock, Phys. Rev. B 91, 140406 (2015).
[19] M. Di Dio, S. De Palo, E. Orignac, R. Citro, and M.-L. Chiofalo,

Phys. Rev. B 92, 060506 (2015).
[20] A. Tokuno and A. Georges, New J. Phys. 16, 073005 (2014).
[21] S. Uchino, Phys. Rev. A 93, 053629 (2016).
[22] T. Haug, L. Amico, R. Dumke, and L.-C. Kwek, arXiv:

1612.09109.
[23] R. Sachdeva, M. Singh, and T. Busch, Phys. Rev. A 95, 063601

(2017).
[24] M. Rasetti, Int. J. Theor. Phys. 13, 425 (1975).

[25] W.-M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62,
867 (1990).

[26] R. Kaushal and S. Mishra, J. Math. Phys. 34, 5843 (1993).
[27] E. Celeghini, L. Faoro, and M. Rasetti, Phys. Rev. B 62, 3054

(2000).
[28] R. Franzosi, V. Penna, and R. Zecchina, Int. J. Mod. Phys. B 14,

943 (2000).
[29] V. Penna, Phys. Rev. E 87, 052909 (2013).
[30] E. Torrontegui, S. Martinez-Garaot, and J. G. Muga, Phys. Rev.

A 89, 043408 (2014).
[31] F. Lingua, G. Mazzarella, and V. Penna, J. Phys. B 49, 205005

(2016).
[32] A. M. Rey, K. Burnett, R. Roth, M. Edwards, C. J. Williams,

and C. W. Clark, J. Phys. B 36, 825 (2003).
[33] K. Burnett, M. Edwards, C. W. Clark, and M. Shotter, J. Phys.

B 35, 1671 (2002).
[34] M. W. Jack and M. Yamashita, Phys. Rev. A 71, 023610 (2005).
[35] A. I. Solomon, Y. Feng, and V. Penna, Phys. Rev. B 60, 3044

(1999).
[36] R. Gilmore, Lie Groups, Physics, and Geometry: An Intro-

duction for Physicists, Engineers and Chemists (Cambridge
University Press, Cambridge, 2008).

[37] L. Casetti and V. Penna, J. Low Temp. Phys. 126, 455 (2002).
[38] P. Buonsante, R. Franzosi, and V. Penna, J. Phys. A 42, 285307

(2009).
[39] G. Arwas, A. Vardi, and D. Cohen, Sci. Rep. 5, 13433 (2015).
[40] X. Han and B. Wu, Phys. Rev. A 93, 023621 (2016).
[41] S. S. Natu, Phys. Rev. A 92, 053623 (2015).
[42] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.96.013620 for the time evolution of excited
populations and of the rung current is derived.

[43] F. E. A. dos Santos and A. Pelster, Phys. Rev. A 79, 013614
(2009).

[44] P. Buonsante, V. Penna, and A. Vezzani, Phys. Rev. A 72, 043620
(2005).

[45] G. M. Kavoulakis, Phys. Rev. A 67, 011601(R) (2003).
[46] R. Kanamoto, H. Saito, and M. Ueda, Phys. Rev. A 73, 033611

(2006).
[47] P. Buonsante, R. Burioni, D. Cassi, and A. Vezzani, Phys. Rev.

B 66, 094207 (2002).
[48] P. Buonsante, V. Penna, and A. Vezzani, Phys. Rev. B 70, 184520

(2004).
[49] S. M. Cavaletto and V. Penna, J. Phys. B 44, 115308 (2011).

013620-12

https://doi.org/10.1103/PhysRevA.91.043635
https://doi.org/10.1103/PhysRevA.91.043635
https://doi.org/10.1103/PhysRevA.91.043635
https://doi.org/10.1103/PhysRevA.91.043635
https://doi.org/10.1103/PhysRevA.75.023615
https://doi.org/10.1103/PhysRevA.75.023615
https://doi.org/10.1103/PhysRevA.75.023615
https://doi.org/10.1103/PhysRevA.75.023615
https://doi.org/10.1088/1367-2630/18/1/015012
https://doi.org/10.1088/1367-2630/18/1/015012
https://doi.org/10.1088/1367-2630/18/1/015012
https://doi.org/10.1088/1367-2630/18/1/015012
https://doi.org/10.1103/PhysRevLett.103.140405
https://doi.org/10.1103/PhysRevLett.103.140405
https://doi.org/10.1103/PhysRevLett.103.140405
https://doi.org/10.1103/PhysRevLett.103.140405
https://doi.org/10.1103/PhysRevA.82.013604
https://doi.org/10.1103/PhysRevA.82.013604
https://doi.org/10.1103/PhysRevA.82.013604
https://doi.org/10.1103/PhysRevA.82.013604
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys3531
https://doi.org/10.1038/nphys3531
https://doi.org/10.1038/nphys3531
https://doi.org/10.1038/nphys3531
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1038/nphys3803
https://doi.org/10.1103/PhysRevLett.95.063201
https://doi.org/10.1103/PhysRevLett.95.063201
https://doi.org/10.1103/PhysRevLett.95.063201
https://doi.org/10.1103/PhysRevLett.95.063201
https://doi.org/10.1103/PhysRevA.88.063627
https://doi.org/10.1103/PhysRevA.88.063627
https://doi.org/10.1103/PhysRevA.88.063627
https://doi.org/10.1103/PhysRevA.88.063627
https://doi.org/10.1103/PhysRevLett.98.050401
https://doi.org/10.1103/PhysRevLett.98.050401
https://doi.org/10.1103/PhysRevLett.98.050401
https://doi.org/10.1103/PhysRevLett.98.050401
https://doi.org/10.1088/1367-2630/18/1/015003
https://doi.org/10.1088/1367-2630/18/1/015003
https://doi.org/10.1088/1367-2630/18/1/015003
https://doi.org/10.1088/1367-2630/18/1/015003
https://doi.org/10.1038/srep04298
https://doi.org/10.1038/srep04298
https://doi.org/10.1038/srep04298
https://doi.org/10.1038/srep04298
https://doi.org/10.1103/PhysRevB.64.144515
https://doi.org/10.1103/PhysRevB.64.144515
https://doi.org/10.1103/PhysRevB.64.144515
https://doi.org/10.1103/PhysRevB.64.144515
https://doi.org/10.1103/PhysRevB.91.140406
https://doi.org/10.1103/PhysRevB.91.140406
https://doi.org/10.1103/PhysRevB.91.140406
https://doi.org/10.1103/PhysRevB.91.140406
https://doi.org/10.1103/PhysRevB.92.060506
https://doi.org/10.1103/PhysRevB.92.060506
https://doi.org/10.1103/PhysRevB.92.060506
https://doi.org/10.1103/PhysRevB.92.060506
https://doi.org/10.1088/1367-2630/16/7/073005
https://doi.org/10.1088/1367-2630/16/7/073005
https://doi.org/10.1088/1367-2630/16/7/073005
https://doi.org/10.1088/1367-2630/16/7/073005
https://doi.org/10.1103/PhysRevA.93.053629
https://doi.org/10.1103/PhysRevA.93.053629
https://doi.org/10.1103/PhysRevA.93.053629
https://doi.org/10.1103/PhysRevA.93.053629
http://arxiv.org/abs/arXiv:global advance �reakcnt @ne penalty -@M 1612.09109
https://doi.org/10.1103/PhysRevA.95.063601
https://doi.org/10.1103/PhysRevA.95.063601
https://doi.org/10.1103/PhysRevA.95.063601
https://doi.org/10.1103/PhysRevA.95.063601
https://doi.org/10.1007/BF01808325
https://doi.org/10.1007/BF01808325
https://doi.org/10.1007/BF01808325
https://doi.org/10.1007/BF01808325
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1103/RevModPhys.62.867
https://doi.org/10.1063/1.530420
https://doi.org/10.1063/1.530420
https://doi.org/10.1063/1.530420
https://doi.org/10.1063/1.530420
https://doi.org/10.1103/PhysRevB.62.3054
https://doi.org/10.1103/PhysRevB.62.3054
https://doi.org/10.1103/PhysRevB.62.3054
https://doi.org/10.1103/PhysRevB.62.3054
https://doi.org/10.1142/S0217979200001011
https://doi.org/10.1142/S0217979200001011
https://doi.org/10.1142/S0217979200001011
https://doi.org/10.1142/S0217979200001011
https://doi.org/10.1103/PhysRevE.87.052909
https://doi.org/10.1103/PhysRevE.87.052909
https://doi.org/10.1103/PhysRevE.87.052909
https://doi.org/10.1103/PhysRevE.87.052909
https://doi.org/10.1103/PhysRevA.89.043408
https://doi.org/10.1103/PhysRevA.89.043408
https://doi.org/10.1103/PhysRevA.89.043408
https://doi.org/10.1103/PhysRevA.89.043408
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/49/20/205005
https://doi.org/10.1088/0953-4075/36/5/304
https://doi.org/10.1088/0953-4075/36/5/304
https://doi.org/10.1088/0953-4075/36/5/304
https://doi.org/10.1088/0953-4075/36/5/304
https://doi.org/10.1088/0953-4075/35/7/305
https://doi.org/10.1088/0953-4075/35/7/305
https://doi.org/10.1088/0953-4075/35/7/305
https://doi.org/10.1088/0953-4075/35/7/305
https://doi.org/10.1103/PhysRevA.71.023610
https://doi.org/10.1103/PhysRevA.71.023610
https://doi.org/10.1103/PhysRevA.71.023610
https://doi.org/10.1103/PhysRevA.71.023610
https://doi.org/10.1103/PhysRevB.60.3044
https://doi.org/10.1103/PhysRevB.60.3044
https://doi.org/10.1103/PhysRevB.60.3044
https://doi.org/10.1103/PhysRevB.60.3044
https://doi.org/10.1023/A:1013786227472
https://doi.org/10.1023/A:1013786227472
https://doi.org/10.1023/A:1013786227472
https://doi.org/10.1023/A:1013786227472
https://doi.org/10.1088/1751-8113/42/28/285307
https://doi.org/10.1088/1751-8113/42/28/285307
https://doi.org/10.1088/1751-8113/42/28/285307
https://doi.org/10.1088/1751-8113/42/28/285307
https://doi.org/10.1038/srep13433
https://doi.org/10.1038/srep13433
https://doi.org/10.1038/srep13433
https://doi.org/10.1038/srep13433
https://doi.org/10.1103/PhysRevA.93.023621
https://doi.org/10.1103/PhysRevA.93.023621
https://doi.org/10.1103/PhysRevA.93.023621
https://doi.org/10.1103/PhysRevA.93.023621
https://doi.org/10.1103/PhysRevA.92.053623
https://doi.org/10.1103/PhysRevA.92.053623
https://doi.org/10.1103/PhysRevA.92.053623
https://doi.org/10.1103/PhysRevA.92.053623
http://link.aps.org/supplemental/10.1103/PhysRevA.96.013620
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.79.013614
https://doi.org/10.1103/PhysRevA.72.043620
https://doi.org/10.1103/PhysRevA.72.043620
https://doi.org/10.1103/PhysRevA.72.043620
https://doi.org/10.1103/PhysRevA.72.043620
https://doi.org/10.1103/PhysRevA.67.011601
https://doi.org/10.1103/PhysRevA.67.011601
https://doi.org/10.1103/PhysRevA.67.011601
https://doi.org/10.1103/PhysRevA.67.011601
https://doi.org/10.1103/PhysRevA.73.033611
https://doi.org/10.1103/PhysRevA.73.033611
https://doi.org/10.1103/PhysRevA.73.033611
https://doi.org/10.1103/PhysRevA.73.033611
https://doi.org/10.1103/PhysRevB.66.094207
https://doi.org/10.1103/PhysRevB.66.094207
https://doi.org/10.1103/PhysRevB.66.094207
https://doi.org/10.1103/PhysRevB.66.094207
https://doi.org/10.1103/PhysRevB.70.184520
https://doi.org/10.1103/PhysRevB.70.184520
https://doi.org/10.1103/PhysRevB.70.184520
https://doi.org/10.1103/PhysRevB.70.184520
https://doi.org/10.1088/0953-4075/44/11/115308
https://doi.org/10.1088/0953-4075/44/11/115308
https://doi.org/10.1088/0953-4075/44/11/115308
https://doi.org/10.1088/0953-4075/44/11/115308



