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Ultracold bosonic scattering dynamics off a repulsive barrier:
Coherence loss at the dimensional crossover
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We explore the impact of dimensionality on the scattering of a small bosonic ensemble in an elongated harmonic
trap off a centered repulsive barrier, thereby taking particle correlations into account. The loss of coherence as
well as the oscillation of the center of mass are studied and we analyze the influence of both particle and spatial
correlations. Two different mechanisms of coherence losses in dependence of the aspect ratio are found. For
small aspect ratios, loss of coherence between the region close to the barrier and outer regions occurs, due to
spatial correlations, and for large aspect ratios, incoherence between the two density fragments of the left and
right side of the barrier arises due to particle correlations. Apart from the decay of the center-of-mass motion
induced by the reflection and transmission, further effects due to the particle and spatial correlations are explored.
For tight transversal traps, the amplitude of the center-of-mass oscillation experiences a weaker damping, which
can be traced back to the population of a second natural orbital, and for a weaker transversal confinement, we
detect a strong decay due to the possibility of transferring energy to transversal excited modes. These effects are
enhanced if the aspect ratio is integer valued.
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I. INTRODUCTION

Moving an impurity or obstacle in a superfluid above the
critical velocity is well known to create excitations [1–4].
In particular, the dependence on the interparticle interaction
strength and external parameters, such as the flow velocity or
trap potentials, have been studied in detail for Bose–Einstein
condensates (BECs) [5]. For example, in one spatial dimen-
sion, the bosonic flow past an obstacle [6–8], or sweeping
an obstacle through a BEC, have been explored [9–12],
including the observation of solitons, chains of solitons,
and shock waves propagating upstream. Studies in higher
spatial dimensions have been performed as well, yielding the
emission of vortices [9,13,14], oblique dark solitons [15], and
Cherenkov radiation [16]. Even mesoscopic quantum states
have been predicted in these setups for attractive BECs [17–22]
and a suppression of Cherenkov radiation [23] if particle
correlations are taken into account.

For interferometric setups, inserting “obstacles” in the
interferometric pathways [24] can be used both for splitting
and recombining [25] the atomic beam or solitons [26],
similar to light impinging on a half-silvered mirror. Another
possibility of building interferometers is the free-oscillation
atom interferometer, where the ground-state wave function
in a harmonic trap is excited by a laser pulse into a left- and
right-moving part, which collides again after half an oscillation
period similar to a Michelson interferometer [27–32]. When
the trapped condensate is initially spatially displaced and
impacted by a centered impurity dissipative transport [33],
dipole oscillations [34] as well as effects of the interparticle
interactions can been studied [32]. In both interferometric se-
tups above, a coherent splitting and recombination is important
in order to increase the contrast of the interference fringes.
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Sources of coherence loss are particle correlations, excitations
of transversal modes or coupling to an environment as well
as finite temperature. Usually, the splitting and recombination
process of interferometers is described by using a quasi-one-
dimensional mean-field approach [34], which cannot cover, per
construction, loss of coherence, due to particle correlations. To
study coherence losses in the complete crossover from three
to one dimension, particle correlations and coupling to higher
transversal modes have to be taken into account. Furthermore,
in interferometers, observables of interest are the probability
of reflection and transmission of the matter wave beam or the
oscillation of the center of mass (CM) [25], which shows the
effectiveness of splitting and recombination.

In the present work, we explore the quantum dynamics of
a bosonic ensemble in an elongated trap, which is initially
displaced and exposed to by a centered Gaussian barrier,
experimentally realizable by a blue-detuned laser beam [9]
or an impurity [35–37]. We vary the aspect ratio of the trap,
thereby providing a smooth transition from three to one spatial
dimension. The initial displacement is large enough, such that,
by the dimensional coupling of the barrier, higher excited
transversal modes can be populated in a controlled manner.
In this way, our work is a natural expansion of our previous
studies, where the three-dimensional tunneling of few bosons
in a double well has been explored at low energies [38], or
for one-dimensional setups [39,40]. We analyze the influence
of particle and spatial correlations on the coherence, measured
by the first-order correlation function in longitudinal direction,
and on the decay of the CM motion. The strength of the particle
and spatial correlations depend strongly on the aspect ratio of
the system. Two mechanisms of coherence loss are identified:
In the first one, present for low aspect ratios, we observe a
loss of coherence between the region close to the barrier and
outer regions, due to the excitations of transversal modes. The
second one, at larger aspect ratios, is an incoherence between
the density fragments to the right and the left of the barrier,
emerging due to particle correlations and becoming manifest
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in the occupation of the second natural orbital. Furthermore,
the damping of the CM oscillation is reduced, if particle
correlations become dominant, whereas it is enhanced, if
spatial correlations are present. When the aspect ratio is integer
valued, we see a quantitative enhancement of these effects for
low aspect ratios.

This paper is structured as follows: In Sec. II the setup and
the preparation of the initial state are introduced. Moreover,
we provide the definitions of particle and spatial correlations
as employed in this work. To thoroughly understand the case
of interacting bosons in three dimensions, we proceed in three
steps. First, presented in Sec. III, we focus on few atoms in
a one-dimensional trap, where only particle correlations can
occur. Second in Sec. IV, we study a single atom and change
the aspect ratio continuously to cover the transition from
three to one dimension. We show how the coupling between
the dimensions (spatial correlations) reduces the amplitude of
the CM oscillation and how the coherence is modified due
to incoherent spherical scattering off the barrier. If the aspect
ratio is integer, the damping of the CM motion and the loss
of coherence are enhanced. In Sec. V, we then combine our
findings for the few-boson case in the crossover from three
to one dimension, taking both particle and spatial correlations
into account. Finally, a conclusion is given in Sec. VI. A sketch
of our numerical method and a discussion of convergence is
provided in the Appendix A.

II. SETUP AND HAMILTONIAN

We consider the quantum dynamics of N interacting,
ultracold bosons each of mass m, oscillating in a harmonic trap
and scattering off a centered barrier, experimentally realizable
by a blue-detuned laser beam or impurity. The system is
governed by the three-dimensional Hamiltonian

H3D =
N∑

i=1

[H0(ri) + V(ri)] +
∑

1�i<j�N

W(ri ,rj ), (1)

where H0(ri) = − 1
2∇2

ri
+ 1

2 (η2x2
i + η2y2

i + z2
i ) denotes the

kinetic energy and trapping potential of the ith atom at position
ri = (xi,yi,zi)T , and η = ω⊥/ω‖ defines the aspect ratio
between the transversal ω⊥ and longitudinal ω‖ trap frequency,
which give the characteristic length scales l⊥ = √

h̄/mω⊥
and l‖ = √

h̄/mω‖, respectively. The Hamiltonian is given in
dimensionless units, where the energy is scaled with respect to
h̄ω‖ and lengths are given in units of l‖. The barrier is described
by an external Gaussian potential, V(ri) = H exp(−r2

i /S2)
with height H and width S = 0.2. W(ri ,rj ) refers to the
three-dimensional short-range interaction between the ith and
j th atom, whose range defines the shortest length scale in
the problem at hand. Since zero-range interaction potentials
are, however, challenging to treat numerically in higher
dimensions (see Ref. [38] for a comprehensive discussion), we
employ a finite-range Gaussian model potential, WG(ri ,rj ) =
h exp[−(ri − rj )2/σ 2], which introduces a new length scale
to the system, the interaction range σ . The interaction strength
can be adjusted by changing the height of the Gaussian h, but
increasing h leads also to a larger effective interaction range,
∝√

h, which can overlap with other length scales in the system.
To guarantee always short-range interactions, σ < l⊥ � 1, the

Gaussian interaction potential is renormalized with respect to a
small but arbitrary energy scale of the system, ε, WG(ri ,rj ) =
ε if |ri − rj | = σ , leading to the renormalized Gaussian
interaction potential W(ri ,rj ) = h exp[−(ri − rj )2/σ 2

eff] with
the effective width σeff = σ/

√
ln(h) and where we set ε = 1.

In the limit of h → ∞, we recover the scattering properties of
a hard-wall interaction model potential with range σ . In the
following, we choose σ = 0.1.

The correspondence between the physically relevant zero-
energy scattering length a0 and our interaction model pa-
rameters h and σ can be obtained by solving numerically
the three-dimensional scattering problem in free space and
evaluating the limit E → 0 as investigated in Ref. [38].
Due to our renormalization of the Gaussian interaction
potential and restricting ourselves to repulsive interaction
potentials only, the scattering length is limited for all heights
h to a0 � σ .

The initial state is obtained by switching off the barrier V
and letting the system relax to its ground state by an imag-
inary time propagation via the ab initio Multi-Layer Multi-
Configuration Time-Dependent Hartree method for Bosons
(ML-MCTDHB) (see Appendix A). Then the wave function
is displaced by a distance b in the elongated direction and
instantaneously the barrier is switched on. The displacement of
the wave function is chosen large enough such that its overlap
with the barrier is negligible and its gained potential energy is
larger than the barrier height H , which ensures that we operate
in the over-barrier regime and not in the tunneling regime. This
initial state is then propagated numerically in real time with
the ML-MCTDHB method [38,41–43].

We are interested in the influence of the scattering process
off the barrier on particle and spatial correlations. Particle cor-
relations are defined as the deviation from a mean-field state,
where the wave function can be expressed as a product state
with respect to the particles, �(r1, . . . ,rN ) = ∏N

i=1 φ(ri) and
spatial correlations are given by the deviations from a factor-
ization with respect to the spatial directions �(r1, . . . ,rN ) =
�x(x1, . . . ,xN )�y(y1, . . . ,yN )�z(z1, . . . ,zN ). To quantify the
influence of particle and spatial correlations, we use the
eigenvalues (natural populations) a

(3D)
i , b

(s)
i of the reduced

density operators ρ(3D) = trN−1|�〉〈�| for a single boson in
three dimensions and ρ(s) = tr{1,2,3}\s ρ(3D) for the sth degree
of freedom of a single boson, respectively. The first trace stands
for an integration over N − 1 atoms and the second trace is
an integration over all but the dimension s, respectively. The
natural populations lie in [0,1] and are normalized to one∑

i a
(3D)
i = ∑

i b
(s)
i = 1 and labeled in decreasing sequence. If

only a single eigenvector of ρ(3D) (a so-called natural orbital) is
populated, a(3D)

1 = 1, all atoms must be in the same orbital, and
the many-body wave function can be expressed as a product
i.e., Gross–Pitaevskii, mean-field state. Similarly, deviations
of b

(s)
1 from unity indicate correlations between the spatial

dimension s and the other two spatial dimensions. We note that
the employed ML-MCTDHB method can resolve both particle
and spatial correlations and can be reduced in a limiting
case to a highly efficient solver for the three dimensional
(3D) Gross–Pitaevskii equation (GPE) on large girds (see
Appendix A). Simulations of the GPE are also labeled as
mean-field (MF) calculations and we refer to a simulation,
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which takes the relevant correlations into account as a beyond
mean-field (BMF) simulation.

III. FEW-BOSON ENSEMBLES IN ONE DIMENSION

In this section, we analyze the scattering dynamics of a
small ensemble of interacting bosons, displaced initially by a
distance b = 3 in a purely one-dimensional harmonic trap off
a centered barrier. First, in Sec. III A, we adiabatically reduce
the three-dimensional Hamiltonian (1) to one dimension to
derive the dependence of the corresponding one-dimensional
physical parameters on the aspect ratio η. Second, in the first
part of Sec. III B, we focus on weak interaction strengths as
well as moderate barrier heights and describe analytically the
collision dynamics by means of a time-dependent two-mode
approximation within the mean-field theory. In the remaining
part of the section, the interaction strength and barrier height
are increased and we numerically analyze the effect of particle
correlations on the oscillation of the CM and the loss of first-
order coherence by means of the ab initio ML-MCTDHB
method.

A. Dimensional reduction

We derive an effective one-dimensional Hamiltonian from
the three-dimensional one (1) by integrating out the transversal
dimensions, assuming that the energy of the first-excited
transversal mode is much larger than any other energy scale
in our system. In the limit of large aspect ratios η → ∞, this
approach becomes increasingly accurate. Then the total wave
function separates with respect to the spatial dimensions and
the transversal wave function can be described by all atoms
residing in the transversal ground state

√
η/π exp(−ηρ2),

where ρ = (x2 + y2)1/2. This simple reduction is fine for
investigating the basic scattering dynamics in a quasi-one-
dimensional setting, and we refer the interested reader to the lit-
erature [44–48] for alternative sophisticated methods. Within
our assumptions, the three-dimensional Hamiltonian (1) re-
duces to

H1D =
N∑

i=1

[H0(zi) + V (zi)] +
∑

1�i<j�N

W (zi,zj ), (2)

with H0(zi) = (−∂2
zi

+ z2
i )/2, V (zi) = H1D exp(−z2

i /S
2), and

W (zi,zj ) = h1D exp[−(zj − zi)2/σ 2
eff]. The resulting one-

dimensional parameters are H1D = HηS2/(1 + ηS2) and
h1D = hησ 2

eff/(2 + ησ 2
eff). For a pure one-dimensional setup

(η → ∞), the three-dimensional parameters are recovered
again, H1D(η → ∞) = H and h1D(η → ∞) = h.

B. Quantum dynamics in one spatial dimension

We analyze the quantum dynamics of five bosons in a one-
dimensional trap following the Hamiltonian (2). In doing so,
the interacting ground state is displaced by b = 3 and gains
an additional potential energy of E = b2/2 = 4.5, which is
larger than H1D, and thus the bosons reveal dipole oscillations
[49–53], which are modified by the presence of the barrier.
First, we consider weak interactions and small barrier heights,
where a mean-field approximation is justified, and then we
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FIG. 1. Time evolution of the numerically obtained one-body
density (first row) for N = 5 interacting atoms with h1D = 0.1293,
σ = 0.1, and barrier H1D = 0.4, S = 0.2. The color scales are
normalized with respect to the maximal value of the density. (b)–(d)
The numerically exact density profile (green line) is compared with
the approximation (10) (blue line) for three instants in time. In panel
(e), the corresponding expectation value of the CM is compared with
Eq. (9). Vertical dashed lines mark the three instants in time used in
panels (b)–(d).

switch to stronger interactions and larger barrier heights, where
particle correlations become important.

1. Small barriers and weak interactions

To understand the basic scattering behavior, we first focus
on five very weakly interacting (h1D = 0.13, σ = 0.1) bosons
and a shallow barrier (H1D = 0.38, S = 0.2). In this regime,
a fraction of the initially displaced bosons is reflected at the
barrier and causes a counter-oscillating wave packet, which
interferes with the transmitted wave packet [see Fig. 1(a)]:

i∂t�GP (z,t) = [H0 + V (z)]�GP (z,t) +
[

(N − 1)

×
∫

dZ|�GP (Z,t)|2W (z,Z)

]
�GP (z,t),

(3)

where W (z,Z) = h1D exp[−(z − Z)2/σ 2
eff]. Because we apply

the mean-field approximation to a few-body system here, it
is important to weight the interaction term with the factor
(N − 1) instead of the common approximation N − 1 ≈ N in
the GPE for large atom numbers.

Furthermore, by inspecting at Fig. 1(a), we see that the
temporal evolution of the density can be modeled by two
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counterpropagating, stiffly1 oscillating wave packets, ex-
pressed as two different, stiff modes {�i}i=1,2. For obtaining
analytical insights into the dynamics of the density, namely,
into the interference pattern and the decay of the CM oscil-
lation, we assume that the time-dependent Gross–Pitaevskii
orbital �GP (z,t) can be expanded into these two modes

�GP (z,t) = A1(t)�1(z,t) + A2(t)�2(z,t). (4)

As the two modes, we use the solutions of the time-dependent
GPE for V (z) = 0 with the corresponding GPE ground state
ϕGP and energy EGP , being displaced by ±b as the initial state:
�1,2(z,t) = exp[−i(t)] exp[±ip̄(t)z]ϕGP (z ∓ z̄(t)) (see Ap-
pendix B for the derivation and further details). Here, (t) =
EGP t + 1

2 z̄(t)p̄(t) defines the dynamical phase factor and
z̄(t) = b cos(t) as well as p̄(t) = −b sin(t) are the classical
values for position and momentum of an atom oscillating in a
harmonic trap.

These two modes represent two stiff wave packets, dis-
placed in opposite directions and counterpropagating. To
get an analytic expression for ϕGP , we use the Gaussian
trial wave function (�/π )1/4 exp(−�z2/2) and determine the
parameter �, which incorporates the effect of the interaction,
by minimizing the total energy. For a noninteracting system,
� is equal to one, and increasing the repulsive (attractive)
interaction leads to a broadening (narrowing) of the trial
wave function and thus to a smaller (larger) �. Knowing
the functional expression for ϕGP , the overlap between
�1(z,t) and �2(z,t) can be calculated analytically and equals
exp{−b2[�2 cos2(t) + sin2(t)]/�}. For large displacements b,
as regarded here, these two modes are approximately orthog-
onal for all times, of which we will make use in the following.
Inserting the expansion (4) into the time-dependent GPE (3),
projection onto the two modes, �i=1,2, and employing the
symmetries ϕGP (z) = ϕGP (−z) and V (z) = V (−z), leads to
the equations of motion for the coefficients,

i∂t

(
A1

A2

)
=

(
v11 v12

v12 v11

)(
A1

A2

)
, (5)

where the matrix elements are v11 = ∫
dz|ϕGP (z − z̄(t))|2V (z)

and v12 = ∫
dz exp[−i2p̄(t)z]ϕGP (z−z̄(t))ϕGP (z+z̄(t))V (z).

These last two integrals can be evaluated and yield

v11(t) =
√

�S2

√
1 + �S2

H1De
− �b2 cos2(t)

1+�S2 ,

v12(t) =
√

�S2

√
1 + �S2

H1De
−b2(� cos2(t)+ S2 sin2(t)

1+�S2 )
. (6)

The set of equations (5) can be solved analytically

A1(t) = e−iF (t) cos (G(t)),

A2(t) = −ie−iF (t) sin (G(t)), (7)

1In the literature, this motion is also called a coherent motion,
but in order not to confuse the reader with our other definition of
coherence [54], we call it a stiff moving wave packet, since its shape
is maintained during time evolution.
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FIG. 2. Shown is v12(t) (gray solid line), G(t) (black solid line),
and G̃ (black dashed line) versus time t , with c = 0.01. c and v12 are
obtained by using the parameters � = 1, H1D = 0.38, S = 0.2, and
b = 3.

with F (t) = ∫ t

0 v11(τ )dτ and G(t) = ∫ t

0 v12(τ )dτ . Since the
modes �1 and �2 couple only during the collisions, v12(τ )
is periodic and strongly peaked such that G(t) increases
step-like (see Fig. 2). To simplify G(t), we apply a stationary
phase approximation for v12 piecewise in the time intervals
[nπ,(n + 1)π ), with n ∈ N0, and furthermore perform a linear
fit G(t) ≈ G̃(t) = ct with

c = 1√
πb

√
�s

� − s
H1De−b2s , (8)

where s = S2/(1 + �S2). These approximations are quite
accurate, as can be seen in Fig. 2. Calculating the evolution of
the CM 〈Z〉 = ∑N

i=1〈zi〉/N ,

〈Z〉 =b cos(t) cos(2ct), (9)

we find that the classical oscillation of a displaced atom
in a harmonic trap 〈Z〉 = b cos(t) is modified by a slower
oscillation ∝ cos(2ct), causing a decay and revival of 〈Z〉.
Thus c determines the timescale on which the classical CM
oscillation “decays”; namely, td = π/(4c), and we therefore
called it the decay coefficient in the following. The decay
coefficient c depends strongly on b, and if b is increased, c

reduces towards zero, meaning that if the initial wave function
is more strongly displaced, it has more kinetic energy, travels
faster through the barrier, and thus the coupling with the barrier
is reduced. Similarly, decreasing the barrier height H1D, the
coupling to the barrier is reduced, and c → 0, leading to an
undamped CM oscillation, 〈Z〉 = b cos(t). The influence of the
interaction strength on c is rather small in the weak interacting
regime, which we address with the Gaussian trial function for
ϕGP , and in the validity of our model c can be assumed as
constant, c(h1D) ∼ const. Furthermore, the density |�(z,t)|2
can be calculated analytically:

|�(z,t)|2 = cos2(ct)|ϕGP (z − z̄)|2 + sin2(ct)|ϕGP (z + z̄)|2
+ sin(2p̄z) sin(2ct)ϕGP (z − z̄)ϕGP (z + z̄),

(10)

where we have omitted the time argument for z̄ and p̄ for
better readability. The density (10) consists of three parts. The
first two terms describe stiff, out-of-phase oscillations of the
ground-state wave functions |ϕGP (z − z̄)| and |ϕGP (z + z̄)|
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with a sinusoidal population transfer of frequency 2c between
these two states. The last term creates an interference pattern
with a contrast ∝ sin(2ct) and is strongest at t = td + nπ/2c,
n ∈ N0. In the limit of c → 0, this interference pattern blurs
and one is left with a stiff oscillation of a single wave packet.

For different instants in time, we compare the approximate
solution (10) for the density and (9) for the CM with the
full mean-field calculation (Fig. 1). Not only is the decay of
the CM 〈Z〉 oscillations well described by our simple model,
but also the interference pattern. Nevertheless, let us finally
discuss the implicit assumptions underlying our analytical
approach. Deviations in our model occur, since the barrier
can scatter atoms into higher excited modes, which are not
taken into account by the model. Therefore, the model is
only valid for small to moderate barrier heights. Furthermore,
while our model assumes elastic scattering off the barrier,
the scattering is inelastic in fact, which can be seen in the
mean-field calculations showing that the turning points of the
reflected density fraction are closer to the trap center than for
the transmitted density fraction [see Fig. 1(a)]. Finally, the
assumption of a Gaussian trial wave function limits the model
to small interactions and, summarizing, we find empirically
that the decay of the CM is slightly decreased in fact if the
interaction strength is increased, whereas our model features
the opposite trend.

2. Large barrier amplitude and stronger interactions

For stronger interactions (h1D = 1.5385) and larger barrier
height (H1D = 1.5), the dynamics cannot be described by the
GPE (3) anymore, since correlations between the atoms have
to be taken into account. Quantitative differences between a
MF and a BMF simulation are observed, for example, in the
oscillation of the CM, in the interference pattern of the density,
or in the one-body correlation function. In the following,
we explain the occurrence of these quantitative differences,
starting with the interference pattern.

While the MF density ρMF(z,t) reveals a pronounced inter-
ference pattern for all times [see Fig. 3(a)], the interference
pattern becomes smeared out as time proceeds if particle
correlations are taken into account [see Fig. 3(b)]. The reason
for the loss of coherence is a significant depletion of the first
natural orbital α1(z,t) down to 0.65 of the original population
[white line in Fig. 3(c)], which mainly stems from populating
the second natural orbital α2(z,t) up to 0.29 [white line in
Fig. 3(d)] at time t = 39. The remaining 0.06 are distributed
among further natural populations (see Appendix A for further
details).

We can approximate the BMF density ρBMF by the two
main contributing natural orbitals, ρBMF ≈ a1(t)|α1(z,t)|2 +
a2(t)|α2(z,t)|2, with a1(t) + a2(t) ≈ 1. We have observed that
the first natural orbital has a qualitatively similar structure
as the mean-field density [compare Figs. 3(a) and 3(c)],
|α1(z,t)|2 ∼ ρMF(z,t), and the BMF expectation value for the
CM can be approximated as

〈Z〉BMF ∼ [1 − a2(t)]〈Z〉MF + a2(t)
∫

dZZ|α2(Z,t)|2.
(11)

Inspecting Fig. 4(a), where we show the second part δBMF =∫
dZZ|α2(Z,t)|2 multiplied by a2(t), we notice that δBMF is
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FIG. 3. Temporal evolution of the density both within (a) the
one-dimensional GPE and (b) when taking particle correlations into
account, for N = 5 bosons in a harmonic trap with barrier H1D =
1.54, S = 0.2 and interaction h1D = 2.01, σ = 0.1. Panels (c) and
(d) show the first and second natural orbitals α1(z,t) and α2(z,t)
weighted with their natural populations a1 and a2, which are shown
as white solid lines. The color scales are normalized with respect to
the maximal value of the density.

in phase with the classical harmonic oscillation. By increasing
a2(t), this in-phase oscillation becomes more pronounced in
〈Z〉BMF and therefore the decay of the CM is reduced and td
is increased. This effect can be also seen in Fig. 4, where both
〈Z〉BMF and 〈Z〉MF are presented.

Next, we study the probability for two bosons being on
the same side of the barrier, which effectively measures the
probability of pairwise transmission or reflection at the barrier

p(t) = 1

N (N − 1)

∑
1�i<j�N

[〈(zi)(zj )〉+〈(−zi)(−zj )〉],

(12)

where  is the Heaviside function. The probability p(t) is
enhanced, if particle correlations are taken into account [see
Fig. 4(b)], identifying pair correlation. So, the bosons like
to be transmitted or reflected pairwise. Pair correlations have
already been observed in a double-well scenario [55], similar
to our setup, but focusing on tunneling dynamics. This feature
of enhanced pair correlation causes a decrease of the one-
body coherence in the dynamics, which is consistent with
the disappearance of the interference pattern in the temporal
evolution of the density.

Finally, we analyze how the emergent particle correlations
affect the spatial coherence of the bosonic ensemble by
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FIG. 4. Panel (a) shows the CM oscillation and panel (b) shows
the probability to find two bosons on the same side of the trap; see
Eq. (12). The same parameters as in Fig. 3 are used. For both figures,
the dark blue line represents the mean-field result (3) and the green
light line denotes a ML-MCTDHB result, where particle correlations
are taken into account. The magenta line represents the expectation
value of δBMF = 〈z〉 evaluated with respect to the second natural
orbital and weighted with its population.

inspecting the first-order correlation function

g1(z,z′) = ρ1D(z,z′)/
√

ρ(z)ρ(z′), (13)

where ρ1D is the one-dimensional (1D) one-body density
matrix and ρ(z) = ρ1D(z,z) the one-dimensional one-body
density. The absolute value of the first-order correlation
function equals unity in a MF simulation and features values
|g1(z,z′)| < 1 if particle correlations are present. In Fig. 5,
|g1(z,z′)| is given for three different times t = 9π , 9.5π , and
10π . The first and the last instant in time correspond to the
9th and 10th classical turning point of the CM oscillation
and t = 9.5π refers to the tenth collision with the barrier.
At the classical turning points, we find that the coherence
between the density fragments to the right and the left of the
barrier has been reduced due to the depletion of the dominant
natural orbital such that the interference contrast is reduced
at the subsequent collision. At the collision times, however,
the coherence function features an involved ripple structure,
which is difficult to interpret.

t=9π

z
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z
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0

3

t=9.5π

z
−3 0 3

t=10π

z
−3 0 3

0

0.2

0.4

0.6

0.8

1

FIG. 5. Absolute value of the first-order correlation function for
three different times t = {9π, 9.5π, 10π}. The black lines indicate
the density profiles at the corresponding time instants and the dashed
lines mark the position of the barrier. Areas of density smaller than
10−6 are colored in black.

ρ(1)(x, t) = ρ(2)(y, t)
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x
,y

(b)
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(a)
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3

FIG. 6. Panels (a) and (b) show the longitudinal and transversal
density profiles, respectively. Parameters are barrier height H = 5,
width S = 0.2, displacement b = 3, and aspect ratio η = 2. The color
scales are normalized with respect to the respective maximal value of
the density.

IV. ONE ATOM IN THREE DIMENSIONS

In this section, we analyze the scattering dynamics of a
single atom at the barrier in the crossover from three to one
spatial dimension by varying the aspect ratio in order to focus
solely on the impact of spatial correlations without any particle
correlations. The atom is initially displaced by b = 3 in the
longitudinal dimension (z direction i.e., s = 3) and oscillates
longitudinally back and forth and scatters (approximately
spherically) at the centered barrier (H = 5). First, we inspect
the temporal evolution of the density in both the transversal and
longitudinal directions, and then discuss the effect of integer
and noninteger aspect ratios on the participating scattering
channels, followed by an analysis of the CM oscillation and
the loss of longitudinal first-order coherence in the system.

In Figs. 6(a) and 6(b), we depict the time-evolution of the
longitudinal and transversal density profiles, respectively. No
interference pattern is observed in the longitudinal density
profile and the density becomes much more delocalized as
well as more irregular compared with the one-dimensional
simulations (cf. Fig. 3). While in one dimension, the atom can
only be transmitted or reflected, in three dimensions transversal
modes may also be populated, since the barrier induces a
coupling between the longitudinal and transversal modes. The
transversal excitations manifest themselves as a breathing of
the density [see Fig. 6(b)] [56–58]. Scanning the aspect ratio,
we empirically find that the transversal breathing excitations
are enhanced if the aspect ratio is integer valued, i.e., η ∈ N.
The mechanism of breathing mode excitation is discussed later
in detail.

To analyze the channels participating in the scattering pro-
cess as well as the influence of the aspect ratio, we project the
numerically ML-MCTDHB-obtained wave function �(r,t)
onto the following comoving basis:

φn,l,m(r,t) = ϕ2D
n,l (ρ,θ )φm(z,t),

013618-6



ULTRACOLD BOSONIC SCATTERING DYNAMICS OFF A . . . PHYSICAL REVIEW A 96, 013618 (2017)

which are products of the one-dimensional, periodically
moving, stiff wave functions φm(z,t) multiplied by static
transversal harmonic-oscillator eigenfunctions ϕ2D

n,l (ρ,θ ). For
the complete orthonormal basis states in the longitudinal
direction, we take the solutions φm(z,t) of the time-dependent
Schrödinger equation for a one-dimensional harmonic os-
cillator with the mth harmonic-oscillator eigenstate ϕ1D

m

initially at rest and displaced by b as the corresponding
initial condition (for a derivation see Appendix B). The stiff
wave functions φm(z,t) have the following functional form
φm(z,t) = e−im(t)e+ip̄(t)zϕ1D

m (z − z̄(t)), with m(t) = Emt +
1
2 z̄(t)p̄(t) and the harmonic-oscillator eigenenergies Em. Both
z̄(t) = b cos(t) and p̄(t) = −b sin(t) are the classical values
for the position and momentum of an atom oscillating in
a harmonic trap. Pictorially, one may view this comoving
basis as the instantaneous eigenstates in a harmonic potential
with the trap center z̄(t), which are modified by a momentum
boost exp[ip̄(t)z]. By projecting onto this basis, we effectively
measure excitations on top of the stiff dipole oscillation of a
particle in a harmonic trap.

The initial state of the problem at hand is the Gaussian
ground state displaced by z̄(0) = b in the longitudinal direc-
tion, i.e., �(r,0) = φ0,0,0(r,0). Without the barrier, the stiff
Gaussian wave packet φ0,0,0(r,t), oscillating in the longitudinal
direction, would exactly coincide with the solution of the time-
dependent Schrödinger equation. In contrast to this, the barrier
V couples various φn,l,m(r,t) while respecting the following
symmetry-induced selection rule: The Hamiltonian H3D =
H0 + V commutes with the z component of the angular-
momentum operator Lz. Since φn,l,m(r,t) is an eigenstate
of Lz with eigenvalue l, which holds, in particular, for the
initial state φ0,0,0(r,0) with l = 0, the barrier may only couple
states with vanishing angular quantum number, i.e., φn,0,m(r,t).
To monitor both transversal excitations and deviations from
the stiff Gaussian wave packet oscillation, we show the
probabilities

dn,m(t) ≡ |〈�(t)|φn,0,m(t)〉|2

for an integer aspect ratio η = 3 (solid lines) and a noninteger
aspect ratio η = 2.5 (dashed lines) in Fig. 7(a). If the aspect
ratio is integer valued, the population of the mode φ0,0,0 is
transferred both to the second-excited transversal harmonic-
oscillator state ϕ2D

2,0 measured by d2 ≡ ∑∞
m=0 d2,m as well as

to higher excited longitudinal states in the comoving frame
with the transversal degrees of freedom being in the ground
state, measured by d0 ≡ ∑∞

m=1 d0,m, which destroys the stiff
oscillation of the wave function. We find that (for our parameter
values) essentially no other states participate in the dynamics,
i.e., d0,0 + d2 + d0 ≈ 1, because the first-excited transversal
state cannot be excited for symmetry reasons and the excitation
energy is not sufficient to populate even higher transversal
modes. In the considered time interval, the population d2

saturates, whereas the population of d0 monotonically in-
creases. Since these higher-excited longitudinal modes are
more delocalized, the density becomes more delocalized, too
(see Fig. 6).

In contrast to the integer-valued case, no significant
population of ϕ2D

2,0 can be observed for the noninteger aspect
ratio η = 2.5, i.e., d2 is negligible. In total the loss of

t
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FIG. 7. (a) Populations of d0,0 (dark blue), d2 = ∑∞
m=0 d2,m (red),

d0 = ∑∞
m=1 d0,m (light green) for the aspect ratio η = 3 (solid lines)

and for η = 2.5 (dashed lines). (b) Normalized transversal energy
E⊥(t)/E⊥(0) for the integer aspect ratio η = 3 (dark blue solid line)
and the half-integer aspect ratio (light green solid line) for the first
oscillation periods, continued in panel (c) for longer times. Black
dotted lines mark times, when the atom scatters with the barrier. All
other parameters are as in Fig. 6.

population of the mode φ0,0,0 is weaker for noninteger aspect
ratios. Furthermore, d0 is also decreased for noninteger aspect
ratios, representing a reduced population of higher-excited
longitudinal states (transversal ground state) and therefore
the longitudinal density is more localized compared with the
integer-aspect-ratio case.

The suppression of transversal excitations for noninteger-
valued η can be explained by a simple multiple-scattering
model, focusing on the transversal degrees of freedom only
and assuming instantaneous collisions with the barrier: At
the first collision (t1 = π/2) of the wave function with
the barrier, the second transversal mode ϕ

(2D)
2,0 is excited,

since the first transversal mode cannot be populated due to
symmetry constraints. Directly afterwards, the time evolution
is governed by H0 only. Neglecting correlations between the
spatial directions induced by the scattering, the time-dependent
transversal wave function for t ∈ (π/2,3π/2] is therefore
given by

b00ϕ
(2D)
0,0 + b02e

−i2η(t−t1)ϕ
(2D)
2,0 ,

and up to a global phase factor with the amplitudes b00 and b02,
which determine the transitions ϕ

(2D)
0,0 → ϕ

(2D)
0,0 and ϕ

(2D)
0,0 →

ϕ
(2D)
2,0 , respectively. This excitation leads to a transversal

breathing in the density with frequency 2η. After the time
interval �t = π , the wave function collides with the barrier
again, leading to a new excitation from the ground state to the
second transversal mode and vice versa. Excitations to higher
modes are neglected again. At this instant in time (t2 = 3π/2),
two additional scattering processes have to be taken into
account: ϕ(2D)

2,2 → ϕ
(2D)
2,0 and ϕ

(2D)
2,2 → ϕ

(2D)
2,2 with the amplitudes

b20 and b22, respectively. The time-dependent transversal wave
function is then

B0ϕ
(2D)
0,0 + B2ϕ

(2D)
2,0 ,
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FIG. 8. (a) The oscillation of the CM for η = 2 (dark blue line),
η = 2.5 (light green line), and η = 3 (magenta dashed line). Panel (b)
depicts the fitted decay coefficient c of model (9) for various aspect
ratios. All other parameters coincide with those of Fig. 6.

with B0 = b00b00 + b02b20e
−i2ηπ and B2 = b00b02(1 +

e−i2ηπb22/b00). Within first-order time-dependent perturbation
theory, the amplitudes b22 and b00 are of the same order as
b22 � b00 and have the same phase relation. We approximate
B2 � 2b02b00 for an integer aspect ratio η = n and B2 � 0
for the half-integer aspect ratio η = (2n + 1)/2, with n ∈ N0.
In other words, the breathing excitations induced by the
first and the second collision interfere constructively for
integer aspect ratios, whereas they interfere destructively for
half-integer-valued η.

This feature can also be clearly seen in the transversal
energy, E⊥ = 〈−(∂2

x + ∂2
y )/2 + η2(x2 + y2)/2〉 [see Figs. 7(b)

and 7(c)]. At the first scattering event off the barrier (t1 = π/2),
longitudinal kinetic energy is transformed into transversal
excitation energy both for the integer and noninteger aspect
ratio. But at the second scattering event at t2 = 3π/2,
the transversal excitation energy is reduced again for the
noninteger-valued case, whereas in the integer-valued case
more energy is deposited transversally. This effect causes the
step-like structure in E⊥(t) for integer aspect ratios for times
t < 20. As times goes by, the wave function becomes more
and more delocalized and the matrix element 〈�(t)|V (1)|�(t)〉
couples the transversal and longitudinal dimensions not only
at the main scattering events [i.e., at t = (2n + 1)/2π with
n ∈ N0] but all the time. Thus, following a main scattering
event, where energy is pumped into the transversal degrees
of freedom, energy can “flow” continuously back to the
longitudinal degree of freedom. This causes the change from
the step-like transversal energy increase to a peak-like one [see
Fig. 7(c)]. Summarizing, varying the number of oscillation
events with the barrier and the aspect ratio might be used for
preparing the atom in a certain state involving longitudinal and
transversal excited modes.

Due to the spatial coupling (in the case of a low integer
aspect ratio), we expect also a modification of the CM oscilla-
tion, since the barrier can transfer longitudinal kinetic energy
into transversal energy, inducing this way a decay mechanism
for the longitudinal CM oscillation 〈Z〉. In Fig. 8(a), we show
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FIG. 9. First-order correlation function |g1(z,z′)| for different
aspect ratios η at the time instant t = 9π . Areas of density smaller
than 10−6 are colored in black. The black-white dashed line marks
the position of the barrier and the black solid line is the longitudinal
density profile. Same physical parameters are used as in Fig. 6.

the CM oscillation for η ∈ {2,2.5,3} and observe that the CM
oscillations decay faster for the integer cases, where significant
excitations of the transversal mode are possible. To analyze
the influence of the aspect ratio on the decay of the CM
oscillations, we fit the model (9) to our numerical data and
extract the decay coefficient c [see Fig. 8(b)]. If the aspect
ratio is integer valued, c is peaked, indicating the mentioned
decay mechanism with respect to the transversal excitation.
These peak heights are reduced for larger aspect ratios since a
higher initial excitation energy would be needed to populate the
transversal modes. For even larger aspect ratios, c saturates and
corresponds to a pure one-dimensional simulations with the
effective physical parameters stated in Sec. III A (not shown).

To analyze the loss of coherence in the longitudinal
direction due to correlations between the spatial directions,
we compare the first-order correlation function

g1(z,z′) = ρ(s=3)(z,z′)√
ρ(s=3)(z)ρ(s=3)(z′)

,

where the longitudinal one-dimensional density ρ(s=3)(z′)
and one-dimensional density matrix ρ(s=3)(z,z′) are obtained
by integrating out the transversal degrees of freedom, e.g.,
ρ(s=3)(z,z′) = ∫

dxdyρ(3D)(x,y,z; x,y,z′). The absolute value
of the first-order correlation function is shown in Fig. 9 for
different aspect ratios at the turning point t = 9π of the
corresponding classical oscillation. For integer aspect ratios,
we find a pronounced loss of coherence between the region
close to the barrier and outer regions. This incoherent density
fraction stems from nearly spherical, incoherent scattering
(involving the second-excited transversal mode) off the barrier.
Due to a stronger coupling of the spatial directions, this loss of
coherence is enhanced for decreasing η. Accordingly, there is
only a faint incoherent density fraction for noninteger aspect
ratios, being hardly visible in the case η = 3.5. Noninteger
aspect ratios are thus favorable if one needs to propagate an
initial wave function coherently with respect to the longitudinal
direction in the presence of a perturber or impurity. We
finally remark that g1(z,z′) contains for large aspect ratios
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an asymmetry with respect to the barrier in comparison with
smaller aspect ratios at the time instant t = 9π . A symmetric
arrangement of g1 around the barrier can be found at an earlier
time instant in which the time shift increases.

V. FEW BOSONS IN THREE DIMENSIONS

We combine now the knowledge, which we have gained
for a few atoms in one dimension, with one atom in three
dimensions, in order to study few atoms in three dimensions
taking into account correlations. We simulate the temporal
evolution of five interacting bosons, (h = 91.125) with a
centered barrier (H = 9) and vary the aspect ratio η between
1.5 and 8.0 in order to see the influence of the dimensionality
on the scattering behavior. To ensure short-range interactions
and properly resolve the interaction potential, a large number
of grid points have to be used. The ML-MCTDHB method (see
Appendix A) is tailored to effectively treat a large number of
grid points and we perform our simulations with 800 and 200
grid points in the longitudinal and each transversal direction,
respectively. For a convergence study and other numerical
parameters, see also Appendix A.

To quantify particle and spatial correlations, we analyze the
integrated depletions in dependence of η,

D(3D)(η) = 1 − 1

Tmax

∫ Tmax

0
a

(3D)
1 dt,

D(s)(η) = 1 − 1

Tmax

∫ Tmax

0
b

(s)
1 dt,

where a
(3D)
1 and b

(s)
1 are the first natural populations of ρ(3D)

and ρ(s) for the dimension s ∈ {1,2,3},2 respectively, and Tmax

is the maximal simulation time. These quantities may be
interpreted as followed: The larger the averaged depletion
D(3D)(η), D(s)(η) is, the more important correlations are
between the atoms and between the spatial dimension s and
the other two spatial dimensions in the dynamics, respectively.
Comparing the integer- and noninteger-valued cases (see
Fig. 10 and its inset), we see that the general characteristics
of the depletions are similar, with the only difference that for
smaller aspect ratios η < 5, the spatial depletions D(s) are
much stronger in the integer-valued case.

More precisely, we see that, for small aspect ratios the
system is spatially correlated but particle correlations are
negligible such that the mean-field approximation is applica-
ble. Increasing the aspect ratios, particle correlations increase
while spatial correlations decrease. In this regime (η ∼ 4),
only a BMF simulation in three dimensions, as performed
here with the ML-MCTDHB method, can resolve all the
correlations playing a substantial role. Further increasing the
aspect ratio, the spatial correlations between the transversal
and longitudinal degrees of freedom become negligible and
thus the many-body wave function can be approximated
first as a product state with respect to the dimensions and
second as a transversally condensed state, where all atoms
reside in the same transversal wave function, �(r1, . . . ,rN ) =
[
∏N

i=1 φ(xi)φ(yi)]ϕ(z1, . . . ,zN ). This regime can be tackled

2Note D(1) = D(2) due to symmetry.
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FIG. 10. Time-averaged depletions (for a definition see text) for
integer (half integer) aspect ratios in the main figure (inset), measuring
particle (D(3D), dark blue), spatial transversal (D(s=1,2), light green),
and longitudinal (D(s=3), magenta) correlations. Circles denote
MF simulations, and stars represent BMF simulations. Physical
parameters are N = 5, H = 9, S = 0.2, h = 91.125, and σ = 0.1.
Data points are connected by a line to guide the eye.

by a purely one-dimensional approach with the transversal
degrees of freedoms being integrated out (see Sec. III A).

The CM dynamics of the few-boson ensemble does not
differ qualitatively from the single-atom case discussed in
Sec. IV [see Fig. 11(a)] but only quantitatively due to
the presence of interactions. As already observed, the CM
oscillation for integer aspect ratios features a stronger decay,
since energy can be stored in transversal modes. Fitting again
the model (9) to the numerical data [Fig. 11(b)], we see that the
decay coefficient c features a similar dependence on η as for a
single atom (Fig. 8), but the peak structure is less pronounced.
Furthermore, for larger aspect ratios, a discrepancy in c is
observed between MF and BMF simulations. This effect has
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FIG. 11. (a) The CM dynamics is shown for the different aspect
ratios η = 2, 2.5, 3. Panel (b) shows the fitted decay constant c of
the model (9) as a function of η. The parameters are the same as in
Fig. 10.
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the position of the barrier and the black solid line is the longitudinal
density profile. The physical parameters are the same as used in
Fig. 10.

already been encountered in the purely one-dimensional case,
where the second natural orbital becomes populated, leading
to a reduction of the decay coefficient (see Sec. III).

In Fig. 12, the absolute value of the first-order correlation
functions g1(z,z′) is given for different aspect ratios, at the
right classical turning point (t = 9π ). For the aspect ratios
η = 1.5, 2, we see that the correlation function exhibits the
characteristic structure observed for a single atom in three
dimensions (see Fig. 9); namely, the loss of coherence between
the region close to the barrier and outer regions. This structure
is more pronounced for the integer aspect ratio η = 2 because
of the enhanced population of the second transverse excited
mode. Increasing the aspect ratio to η = 3.5, 4, enhances the
overall coherence. For η = 3.5, we even find almost perfect
coherence in the longitudinal direction. This regime is well
suited for propagating the initial wave function coherently
in a harmonic trap with the presence of a scatterer, such as a
beam splitter. For large aspect ratios η = 7.5, 8, the differences
between the integer and noninteger aspect ratios disappears
and an incoherent structure emerges, which is similar to the

results for few bosons in one dimensions (see Fig. 5), but with
a sharp borderline between coherent regions.

VI. CONCLUSIONS

In this work, we analyzed the temporal evolution of an
interacting few-boson ensemble initially displaced from the
trap center of an elongated harmonic trap. The bosonic
ensemble evolves in time and scatters off a centered barrier.
We explored the change in the amplitude of the oscillation of
the center of mass and the loss of first-order coherence in the
longitudinal direction due to spatial and particle correlations in
dependence on the aspect ratio. The analysis has been divided
into three parts.

First we investigated few bosons in one dimension (where
only particle correlations are present), second, one boson in
three dimensions (where only spatial correlations are present)
and, finally, five bosons in three dimensions, taking particle
and spatial correlations into account.

We identified two mechanisms of coherence loss: In the
first one, present for low aspect ratios, loss of coherence is
observed, manifested between positions close to the barrier
and outer regions, due to the excitations of transversal modes.
The second one, for larger aspect ratios, is an incoherence
between the density fragments to the right and the left of
the barrier, emerging due to particle correlations. In between,
we found a regime (η = 3.5) where coherent transport of the
wave function is possible, even in the presence of a scatterer,
and therefore the regime may be suitable to avoid decoherences
in beam-splitter and matter-wave interferometers.

In addition, we explored the oscillation of the center of mass
as a function of the aspect ratio, which was changed smoothly
from three to one dimension. Due to multiple scattering off
the barrier, each event resulting in a reflected and a transmitted
density fraction, the CM oscillation decays. In addition to this
simple mechanism, we identified two effects influencing the
CM dynamics. First, for weak aspect ratios, the barrier couples
the dimensions and energy is transferred into the excitation of
transversal modes, leading to a decay mechanism for the CM
oscillations due to energy conservation. Second, for larger
aspect ratios, particle correlations become more pronounced,
which reduces the decay of the CM oscillations due to the
spatial structure of the second dominant natural orbital and its
increasing population.

Furthermore, the above result for small η depend on whether
the aspect ratio is integer or noninteger and has been analyzed.
For integer aspect ratios, the decay of the CM and the loss of
coherence are more pronounced in comparison with noninteger
aspect ratios, which can be traced back to the constructive
or destructive interference of the transversal breathing mode
excitations induced by multiple scattering events.

Looking at the depletions, three different regimes have
been identified. For low aspect ratios, particle correlations
are suppressed and the mean-field approximation can be used,
whereas for high aspect ratios spatial correlations are reduced
and an adiabatic separation can be employed to reduce the
three-dimensional problem to a one-dimensional problem. In
between, both spatial and particle correlations are important
and a full ab initio three-dimensional simulation is needed.
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Finally, we note that the unraveled mechanisms may be
utilized for state preparation as needed, e.g., interferometric
applications. Tuning the initial displacement, the waiting time,
i.e., the number of collisions with the barrier, the aspect ratio to
integer or noninteger values allows for controlling the spatial
fragmentation into density fragments, their mutual coherence,
as well as the admixture of excited transversal states.
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APPENDIX A: METHODOLOGY AND
COMPUTATIONAL APPROACH

Before sketching the main concept idea of the ab initio
ML-MCTDHB method, we shortly summarize the numeri-
cal challenges occurring for higher-dimensional interacting
bosonic systems (see also Ref. [38] and references therein).
At the end of this section, we comment on the convergence
behavior of our numerical simulations.

In general, there are two main numerical challenges for
nonperturbative methods in three dimensions treating dilute
bosonic ensembles. The first one is the exponential scaling
of complexity with respect to the number of bosons and the
second one is the separation of different length scales (e.g., the
characteristic interaction and trap length), leading to extremely
large grids, and thus an enormous numerical effort, if a product
grid is applied.

To tackle these numerical challenges, we recently optimized
the ab initio ML-MCTDHB method [41,42] for efficiently
simulating bosons in three-dimensional traps by using huge
grids [38]. First, we expand the many-body wave function |�〉
into a set of time-dependent bosonic number states,

|�(t)〉 =
∑
�n|N

A�n(t)|�n〉t .

These number states are labeled by an integer vector �n =
(n1, . . . , ni, . . . , nM ), where ni is the occupation number
of the ith three-dimensional, time-dependent single-particle
function (3D-SPF), |χi(t)〉, which is variationally optimized at
each instant in time. The symbol �n|N denotes the summation
over all N -body number states. The three-dimensional 3D-
SPFs are then expanded with respect to a product of three
one-dimensional, time-dependent single-particle functions
(1D-SPFs), {|φ(s)

js
〉}ms

js=1 with the time-dependent expansion
coefficient Bij1j2j3 (t):

|χi(t)〉 =
m1∑

j1=1

m2∑
j2=1

m3∑
j3=1

Bij1j2j3 (t)
∣∣φ(1)

j1
(t)

〉∣∣φ(2)
j2

(t)
〉∣∣φ(3)

j3
(t)

〉
.

Finally, the 1D-SPFs are expanded with respect to some time-
independent, one-dimensional basis {|u(s)

r 〉}qs

r=1, for which we
choose a Fast-Fourier-transformation–based grid [59,60] in

this work,

|φ(s)
j (t)〉 =

qs∑
r=1

C
(s)
jr (t)|u(s)

r 〉,

where s = 1, 2, 3 labels the three different dimensions and
C

(s)
jr (t) is the expansion coefficient for the dimension s.

The system of equations of motion for the time-dependent
coefficients A�n(t), Bij1j2j3 (t), and C

(s)
jr (t) can be derived [38]

by using, e.g., the Dirac–Frenkel variational principle [61,62]
with the Hamiltonian given in Eq. (1).

In doing so, we achieve an additive scaling in the number
of grid points qs with respect to the dimensions s for the repre-
sentation of the wave function, but with the disadvantage of a
more involved scaling with respect to the number of 1D-SPFs
ms [38]. Fortunately, if the correlations between the spatial
directions are not too strong, e.g., for elongated traps, where
the trap geometry separates the longitudinal and transversal
energy scales naturally and where only few transversal modes
are populated, the 3D-SPFs can be represented well by taking
into account only a few ms � qs 1D-SPFs.

In the following, we discuss two limiting cases of ML-
MCTDHB: First, if we provide only one 3D-SPF (M = 1)
and ensure convergence with respect to the numbers of
1D-SPFs ms , the ML-MCTDHB equations of motion recover
the (mean-field) GPE. Second, if only one transversal 1D-SPF
(m1 = m2 = 1) is supplied and convergence with respect to
M = m3 is ensured, the many-particle wave function adia-
batically separates with respect to the dimensions, using the
same variationally optimized wave function in the transversal
direction for all particles. In doing so, particle correlations in
the longitudinal direction (s = 3) can still be resolved.

The convergence of a (ML-) MCTDHB calculation has
to be carefully checked (see, e.g., Refs. [43,63]), and we
regard a numerical simulation converged, when an observable
of interest does not change to a certain desired accuracy
if these numerical control parameters are varied. For the
one-dimensional BMF simulations, we employ five optimized
single-particle states. We observe that the lowest three natural
populations, which are not shown in Fig. 3, increase in time
and at the instant in time t = 50, the natural populations attain
the values {0.654, 0.224, 0.088, 0.023, 0.01}.

The numerical results of the simulation in three dimension
depend on seven numerical control parameters: the number of
3D-SPFs M , the three numbers of 1D-SPFs {m1,m2,m3}, and
the three numbers of grid points {q1, q2, q3}. In our numerical
calculations, we use always a sufficiently large number of
grid points and thus neglect their discussion in the following,
reducing the seven-dimensional parameter space to a four-
dimensional one. In the here-performed simulations, we have
used 800 (200) grid points for the longitudinal (transversal)
direction(s), with a grid spacing of 0.025. Due to the symmetry
of the elongated trap, we can set m1 = m2. We call the set of
parameters C = (M; m1,m3) a numerical configuration C.

For very strongly elongated traps, where the main dynamics
takes place in the longitudinal direction (s = 3), we can reduce
the three-dimensional parameter space further, by setting
m3 = M > m1, for which case the particle correlations, if
existent, are handed over to the population of longitudinal
1D-SPFs. Whereas, opposite to this case for nearly isotropic
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trap, the parameter space can be reduced by choosing
m1 = m2 = m3.

In the main text, we mainly focused on two observables:
first, the oscillation of the CM 〈Z〉 and, second, the occupation
of the first natural orbital a1. Their convergence is exemplary
shown now by regarding the integrated difference between two
numerical configurations: E1 = ∫ Tmax

0 |〈Z〉C1 − 〈Z〉C2 |dt/Tmax

and E2 = ∫ Tmax

0 |a1,C1 − a1,C2 |dt/Tmax, where the subindex
denotes the used numerical configuration C and Tmax is
the maximal simulation time. We compare the numerical
configuration C1 = (5; 3,5) and C2 = (6; 4,6) for the same
physical parameters as used in Sec. V both for η = 2 and
η = 8, which are the extreme cases for spatial and particle
correlation respectively. For η = 2, we obtainE1 = 5.8 × 10−3

and E2 = 6.1 × 10−4 as well as for η = 8 we get E1 =
3.1 × 10−3 and E2 = 2.2 × 10−3. In essence, the integrated
error is estimated to be of the order 10−3.

APPENDIX B: COMOVING TIME-DEPENDENT
BASIS STATES

In the first part of this appendix, we derive a complete
set of orthonormal functions φn(z,t), described by displaced
harmonic-oscillator functions, stiffly3 oscillating in a harmonic
trap, which are used in Sec. IV. In the second part of this
section, we show that even the displaced stationary ground
state of ϕGP (z) [see Eq. (3)] performs stiff oscillations in a
harmonic trap as well [64], as utilized in Sec. III B.

First, the orthonormal functions φn(z,t) are assumed to be
of the following functional form with the yet unknown real-
valued functions n(t), p̄(t), and z̄(t):

φn(z,t) = e−in(t)+ip̄(t)zϕ1D
n (z − z̄(t)), (B1)

3See footnote 1.

where ϕ1D
n is the nth harmonic oscillator function ϕ1D

n (x) =
1/

√
2nn!π−1/4 exp(−x2/2)Hn(x) with the Hermite polyno-

mials Hn. The ansatz (B1) is inserted into the time-
dependent, one-dimensional, single-particle Schrödinger
equation, i∂tφn = H

(1)
0,zφn, and we obtain three coupled dif-

ferential equations by comparing the real and imaginary part
as well as equating coefficients:

∂t z̄(t) = p̄(t), − ∂t p̄(t) = z̄(t),

∂tn(t) − z̄(t)∂t p̄(t) = En + 1
2 [z̄2(t) + p̄2(t)], (B2)

with En = n + 1/2. With the initial condition that the wave
functions is displaced by b, φn(z,0) = ϕ1D

n (z − b), the coupled
set of equations can be solved

z̄(t) = b cos(t), p̄(t) = −b sin(t),

n(t) = Ent + 1
2 z̄(t)p̄(t). (B3)

The functions φn(z,t) form a complete and orthonormal set
of basis functions at all instants in time. Orthonormality can
be checked easily and the proof of completeness follows the
same arguments as for the Hermite polynomials [65].

Second, the initially displaced mean-field ground-state
wave functions ϕGP performs also stiff oscillations in and only
in a harmonic trap [64]. The ground state mean-field orbital
obeys

EGP ϕGP (z) =
(

−1

2
∂2
z + 1

2
z2

)
ϕGP (z) + g(N − 1)

×
∫

dZ|ϕGP (Z)|2W (z,Z)ϕGP (z).

Inserting the same approach for the wave function φGP (z,t) =
e−i(t)+ip̄(t)zϕGP (z − z̄(t)) into the corresponding time-
dependent GPE, where W (z1,z2) = W (z2 − z1) is assumed,
leads again to the three coupled differential equations (B2)
with their solution (B3), but now with the energy En replaced
by EGP .
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