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The emphasis of this work is on the computation of physical properties as well as of the wave function of
interacting bosons in a trap potential. Many-body perturbation theory is employed to study the leading term of these
quantities for finite numbers of bosons, and exact solutions are aimed at in the infinite-particle limit. As discussed
before, a suitable starting point is the second-quantized Hamiltonian represented in the basis of destruction and
creation operators of its own mean-field potential. This choice leads to expressions for the perturbation terms of
all quantities which exhibit a very weak dependence on the particle number. Importantly, when applying ideas
similar to Bogoliubov’s, the Hamiltonian can be reduced in the infinite-particle limit to a much simplified form
which is a priori particle-number conserving. The resulting phonon Hamiltonian is diagonalizable by a linear
transformation for which an explicit eigenvalue equation is given. Physical properties can be expressed explicitly
by elements of this transformation, and of particular relevance is that the particle-number-conserving wave
functions of the original many-boson system can be reconstructed using recursion relations. The reconstruction
of the particle-conserving wave function from the phonon Hamiltonian can also be used to assess when the
infinite-particle limit is reached in practice for finite trapped condensates. Two applications are discussed in
detail. For one of them, an exact solution is known which is found, in the infinite-particle limit, to exactly
coincide with that of the phonon Hamiltonian. In both examples expressions for the properties are given in closed
form. The physics behind the phonon Hamiltonian and its physical properties is discussed.
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I. INTRODUCTION

Many-body theory has been widely and successfully used
for decades to investigate nuclei [1,2], solids [3,4], atoms,
molecules, and clusters [5–8]. In contrast, there have only
been a few attempts to study systems made of bosons using
such theory mainly because Wick’s theorem cannot be utilized
to expand the relevant physical quantities in Goldstone or
Feynman diagrams [3]. Nevertheless, some typical and suc-
cessful methods of electronic structure have been reformulated
for bosons, such as the configuration interaction and random
phase approximations [9], coupled-cluster theory [10,11], and
many-body perturbation theory [12], which are useful also for
bosons.

On the other hand, systems made of identical bosons
can condense and form Bose-Einstein condensates (BECs),
which, in contrast to fermions, are amenable to simplified
theoretical descriptions, in particular, in the infinite-particle
limit. Since the experimental discovery of BECs consisting
of dilute atomic gases in a trap potential [13–15], there has
been enormous interest in their properties [16–18]. Here,
the Gross-Pitaevskii (GP) equation [19,20] has played a
leading role. This equation is obtained by minimizing the
Gross-Pitaevskii energy functional [9,21] and is a mean-field
equation. Its simplicity and the facts that it can be solved rather
straightforwardly and exhibits many interesting and appealing
properties have added much to its popularity. Importantly, it
has been rigorously proven by Lieb and Seiringer (LS theorem)
[22] that under some conditions (see below) the GP equation
provides in the infinite-particle limit the exact energy and
density per particle as does the full many-particle Schrödinger
equation. One immediate and highly relevant consequence of

this proof is that BECs are 100% condensed in this limit.
In this limit, also called the GP or mean-field limit, the
interaction parameter � = λ0(N − 1) appearing in the GP
equation, where λ0 is the two-particle interaction strength,
is kept fixed as the number of particles N → ∞.

Recently, it has been demonstrated that in spite of the fact
that the GP equation provides in the infinite-particle limit the
exact energy and density per particle, the overlap of the GP
and of the exact many-boson wave functions is always smaller
than 1 and can be very small and even vanish [12]. There, it has
also been shown that the exact wave function is usually rather
complex and gives rise to substantial correlation between the
bosons not included in the GP equation. That such correlations
can be relevant has also been discussed in [23–26]. Moreover,
the proof of the LS theorem mentioned above is restricted to 3
and 2 dimensions and, in addition, assumes the existence of a
finite scattering length, but it could be shown that the result of
the theorem applies also for cases not covered by the available
proof, i.e., to 1 dimension and to cases where a finite scattering
length does not exist [12].

In free space, i.e., in the absence of a trap, it is known that
the GP ground-state wave function exhibits inconsistencies
[3,17]. These inconsistencies are removed by the theory of
Bogoliubov, where in the full Hamiltonian of the system only
the terms leading in N are retained [3,27]. The calculation is
performed for the thermodynamic limit of the homogeneous
system and it is assumed that the depletion of the condensate
is small. This theory is not number conserving and has been
extended to become a number-conserving Bogoliubov theory
by Girardeau [28] and by Gardiner [29]. Fetter [30] has
formulated a non-particle-conserving Bogoliubov theory for
spatially inhomogeneous gases, i.e., gases in a trap potential,
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and this theory has been extended by Gardiner [29] to be a
particle-conserving one. In inhomogeneous trapped systems
the thermodynamic limit is not the relevant limit and one
resorts to the infinite-particle limit discussed above where
N → ∞ while the interaction parameter � = λ0(N − 1) is
kept fixed [22]. For completeness we mention that there have
been successful attempts to formulate the theory of Bogoliubov
in a mathematically rigorous way; see [31–35] and references
therein.

In the present work we aim at solving the many-body
problem of bosons in a trap in the infinite-particle limit. Our
starting point is also based on the idea of Bogoliubov, namely
that for large N nearly all bosons are in the condensed part of
the system and one has only to discuss the fluctuations of the
system. As mentioned above, the mean-field theory has been
found to yield the exact density per particle in the infinite-
particle limit, implying that the depletion per particle indeed
vanishes. We thus base our theory on the full Hamiltonian
expressed in the basis of creation and annihilation operators
defined by the mean-field Hamiltonian. While this idea is not
new [9,10,12], we shall see that it can be taken further than
previously attempted. Here, we mention that we follow the
definition of mean-field given by Leggett [17] and many others,
where the many-body wave function is given by the Hartree
ansatz, i.e., a simple product of single-particle functions with
no two-particle or higher correlations, and is just a particular
case of the Hartree-Fock-Bogoliubov approximation; see [36].
The full Hamiltonian is written as a sum of the mean-field
Hamiltonian, which becomes the unperturbed Hamiltonian,
and a perturbation describing the fluctuations beyond the
mean-field. We shall show that the theory formulated in this
manner is a priori particle-number conserving. The former
works on Bogoliubov theory have been formulated for contact
interaction V (ri − rj ) = δ(ri − rj ) between the bosons. Here,
as also done in [9,10,12], we formulate our theory for a
general two-body interaction potential V (ri − rj ). Apart for
being more general, we would like to mention that a contact
potential has no meaning in many-body theory in three and two
dimensions (3D and 2D for brevity). It has been demonstrated
that as the bosons can avoid each other in 2D and 3D in the
presence of contact interaction, the exact solution in these
dimensions gives identical results to those if there is no
interaction at all [37–39].

Here, we shall discuss, apart from the general theory,
several quantities of interest, such as the boson correlation
energy, the overlap of the exact wave function and of the
mean-field wave function, the reduced density matrix, and the
depletion of the condensate. This is done in the framework
of perturbation theory for the general case of N bosons,
as well as exactly for the infinite-particle limit. It will also
be shown that in the infinite-particle limit not only the
fluctuations of the condensate, but, in principle, also the
complete wave function can be reconstructed from the theory.
This is particularly relevant, as the wave function determines
all physical quantities of the system. As already mentioned
above, the exact wave function can be extremely different from
the mean-field wave function [12]. Explicit examples will also
be shown.

As the number of trapped particles in a given trap potential
is increased keeping � fixed, the density increases and one

may wonder about the connection of the infinite-particle limit
to cold-atom experiments where the gases used are dilute. This
problem is resolved by noticing that the results obtained for
physical quantities (and even for the wave function) in the
infinite-particle limit also apply for finite numbers of bosons.
From our analytical and numerical findings we may conclude
that for a given trap potential there is a large range of interaction
strengths where the results obtained in the infinite-particle
limit also apply for finite numbers of bosons as used in typical
cold-atom experiments.

We would like to mention that it is not possible to apply the
results obtained for a system in a trap to the homogenous case
in the thermodynamic limit. This issue is discussed in some
detail by Lieb and Seiringer [22]. In brief, as is well known for
the homogeneous case in the thermodynamic limit, the BEC
has a depleted fraction even in the ground state. In contrast,
BEC in a trap is 100% condensed in the infinite-particle limit;
i.e., the depletion per particle vanishes for infinitely many
particles. The two limits, the thermodynamic and mean-field
limits, are not the same and cannot be interchanged.

The paper is organized as follows. In Sec. II the leading
term in the perturbation expansion of the properties of interest
and of the wave function is derived for arbitrary values of N .
Section III is devoted to the reduction of the Hamiltonian and
the derivation of its properties in the infinite-particle limit.
There, the reconstruction of the particle-number-conserving
wave function in the infinite-particle limit is also discussed.
Two applications are presented in Secs. IV and V, where the
properties and wave functions are computed in the infinite-
particle limit and compared with known exact results whenever
available and with the results of the perturbation theory.

II. THE GENERAL HAMILTONIAN AND ITS PROPERTIES

A. The mean field as the unperturbed Hamiltonian

In this short subsection we would like to express the
Hamiltonian for bosons using the creation and destruction
operators of the mean-field potential as usually done in
electronic structure theory. As already mentioned in the
introduction, this has already been proposed before [9,10,12].
The Hamiltonian of N identical bosons in a trap potential
interacting by a two-particle potential reads

H =
N∑

i=1

h(ri) +
∑
j>i

λ0V (ri − rj ). (1)

Here, h(r) is the one-body Hamiltonian comprising the kinetic
energy of a boson and its trap potential, and λ0 is the
strength of the interaction between the bosons. Minimizing
the expectation value of H taken with the mean-field ansatz
ϕ0(r1)ϕ0(r2) . . . ϕ0(rN), where all bosons reside in a one-
particle state ϕ0, also called orbital, one obtains the mean-field
equation for this orbital:

[h + v]ϕ0(r) = μ0ϕ0(r), (2)

v = �

∫ ∣∣ϕ0(r′)
∣∣2V (r − r′)dr′.

The quantity μ0 is the (mean-field) chemical potential, and v

is the mean-field potential. In the case of contact interaction,
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the latter becomes v = �|ϕ0(r)|2 and is usually called the GP
potential, and ϕ0 the GP one-particle state.

The above equation defines a Fock-like operator F̂ which
has a complete set of orthonormal solutions ϕi with eigenvalues
μi , with = 0,1,2, . . ., and is rewritten to give

F̂ ϕi(r) = μiϕi(r),

F̂ = h + v. (3)

We can now simply add in Eq. (1) the mean-field potential v

to the one-particle Hamiltonian h and subtract it again from
the two-body interaction potential and rewrite this equation to
take on the form

H = H0 + λ0W, (4)

where H0 = ∑N
j=1 F̂ (rj ) is now the unperturbed Hamiltonian

and λ0W = λ0V − v is the residual interaction. This interac-
tion describes the fluctuations beyond mean field.

For convenience, we now transfer the above equation,
Eq. (4), to second quantization by introducing as usual the bo-
son creation operators b

†
i corresponding to the solutions ϕi(r).

Then, the Hamiltonian takes on the following appearance:

H =
N∑

i=1

μib
†
i bi

+
⎡
⎣λ0

2

∑
i,j,k,l

Vijklb
†
i b

†
j blbk − �

∑
i,k

Vi0k0b
†
i bk

⎤
⎦. (5)

The first term of H is the second quantized representation of
H0 and the term in brackets that of the interaction potential
λ0W . The matrix elements Vijkl appearing in the Hamiltonian
read, as usual,

Vijkl =
∫

ϕ∗
i (r)ϕ∗

j (r′)V (r − r′)ϕk(r)ϕl(r′)drdr′.

It is seen that for interactions which depend on the distance
between two bosons, Vijkl = Vjilk = V ∗

klij = V ∗
lkj i , and for real

orbitals one has the additional symmetry Vijkl = Vkjil = Vilkj .
The orthonormal eigenstates of the unperturbed, i.e., mean-

field, Hamiltonian H0 can all be cast into the simple form

|q0,q1, . . . ,qm〉 = (b†0)q0 (b†1)q1 · · · (b†m)qm

√
q0!q1! · · · qm!

|vac〉. (6)

Here and thereafter |vac〉 is the boson vacuum, and the total
number of bosons q0 + q1 + . . . + qm = N is conserved. The
ground mean-field state of the N bosons is just |MF〉 = |N〉 =
[N !]−1/2(b†0)N |0〉. Note that zero occupations qi = 0 are not
indicated in the eigenstates. It is easily seen that

H0|q0, . . . ,qm〉 =
[∑

i

μiqi

]
|q0, . . . ,qm〉, (7)

and, in particular, H0|N〉 = Nμ0|N〉.
Finally, we mention that the general rules to evaluate matrix

elements of operators in the basis of the Fock states Eq. (6)
can be found in [40].

B. Many-body perturbation theory in terms of �

Having separated the Hamiltonian into the unperturbed
Hamiltonian and the residual interaction, we can perform a
many-body perturbation theory [12] for any boson number N ,
where the parameter of the perturbation is �. We shall use this
theory to give new explicit expressions for the leading terms in
the expansion of � of properties relevant to this work. These
expressions are of interest by themselves as they reflect the
physics of the properties, but they will also serve as a stringent
test for applications of our main theory to be developed in the
next section. We shall see below that using the mean field as the
unperturbed Hamiltonian gives rise to a particularly appealing
behavior of the properties.

In perturbation theory the eigenstate |�̃〉 in the intermediate
normalization 〈�̃(0)|�̃〉 = 1, where |�̃(0)〉 is the normalized
unperturbed state, is expanded in orders of the perturbation
parameter [8]. In our case, the expansion is in orders of �

and |�̃(0)〉 = |N〉. For that purpose one defines a projector
Q̂ = 1 − |N〉〈N | which removes the unperturbed state from
all the terms |�̃(n)〉, n > 0 of the expansion. The expansion
can be cast in a compact form:

|�̃〉 =
∑
n=0

|�̃(n)〉,

|�̃(n)〉 =
{

Q̂

Nμ0 − H0
(λ0W − �E)

}n

|N〉. (8)

Here, �E = Eexact − Nμ0 is the energy difference between
that of the exact and the unperturbed state. Employing the
expansion of the state in Eq. (8), one obtains the expansion of
this quantity as well:

�E =
∑
n=1

E(n),

E(n) = 〈N |λ0W |�̃(n−1)〉. (9)

As usual, the unperturbed energy is E(0) = 〈N |H0|N〉 and
the sum of the zeroth- and first-order energies E(0) + E(1) is
the mean-field energy EMF = 〈N |H |N〉, i.e., the expectation
value of the Hamiltonian taken with the unperturbed state. In
our case, the mean-field energy takes on the appearance

EMF = Nμ0 − N�

2
V0000,

where the matrix element V0000 is defined below Eq. (5).
As a last remark we mention that the exact normalized state

is, of course, given by |�exact〉 = |�̃〉/〈�̃|�̃〉1/2.

C. Relevant physical properties and their leading term in �

In this subsection several physical quantities relevant to
our work are introduced and briefly discussed, generally and
also in the light of the perturbation theory of the preceding
subsection as well as for large boson numbers N .

1. The wave function

The Fock states introduced in Eq. (6) are the eigenstates of
the mean-field operator and form a complete orthonormal set.
As usual, any exact eigenstate |�〉 of the Hamiltonian H can
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be expanded in this set:

|�〉 =
∑

C	q |	q〉.
In perturbation theory, the coefficients C	q are determined

by the expansion in Eq. (8). In zeroth order one has |N〉 and
in first order one has to evaluate the quantity λ0W |N〉. As
λ0W = λ0V − v, we first operate with λ0V and obtain

λ0V |N〉 = λ0

2

∑
i,j,k,l

Vijklb
†
i b

†
j blbk|N〉

= λ0

√
N (N − 1)

{∑
i

√
N − 1Vi000|N − 1,1i〉

+ 1√
2

∑
i

Vii00|N − 2,2i〉

+1

2

∑
i,j

Vij00|N − 2,1i ,1j 〉
⎫⎬
⎭.

Remembering that the interaction strength � = λ0(N − 1)
is held fixed, we see that the first term in the above equation
is proportional to

√
N while the other two do not depend on

the number of bosons for large N . This makes the expansion
problematic for large N . However, applying the mean-field
potential gives

−�v|N〉 = −�
∑
i,k

Vi0k0b
†
i bk|N〉

= −�
√

N
∑

i

Vi000|N − 1,1i〉,

which compensates the original term proportional to
√

N

exactly. The first-order correction to the wave function thus
reads

|�̃(1)〉 = �

√
N

(N − 1)

{
1√
2

∑
i

Vii00

2μ0 − 2μi

|N − 2,2i〉

+1

2

∑
i,j

Vij00

2μ0 − μi − μj

|N − 2,1i ,1j 〉
⎫⎬
⎭. (10)

All terms are now independent of N for large boson numbers,
underlining the relevance of choosing the mean-field as
the unperturbed Hamiltonian. The above expression for the
first-order wave function is needed to compute the leading
correction for small � of all the properties discussed below.

2. The overlap of the mean-field and exact wave functions

The overlap S(N ) = 〈N |�〉 between the exact and mean-
field wave functions is a straightforward and relevant measure
for the quality of the mean-field wave function. Knowing that
the mean-field energy and density per particle are exact in
the infinite-particle limit [12,22] makes the analysis of the
exact wave function particularly important because this wave
function determines all physical quantities beyond mean field.

This overlap is simply given by the normalization of the
exact wave function S(N ) = 〈�̃|�̃〉−1/2 and can be cast in the

convenient form

S(N ) = (1 + 〈��|��〉)−1/2,

|��〉 =
∑
n=1

|�̃(n)〉, (11)

where |��〉 = |�〉 − |N〉 is the correction to the mean-field
wave function.

Using the leading term of perturbation theory for the wave
function provides the leading term of the overlap:

S(N ) = (1 + �2α2)−1/2,

α2 = 〈�(1)|�(1)〉
�2

= N

2(N − 1)

∑
i,j

|Vij00|2
(2μ0 − μi − μj )2

.

(12)

Here and in the following, unless explicitly indicated, all
one-particle indexes refer to orbitals outside the condensed
manifold, e.g., i = 1,2, . . .. Note that there is a misprint in the
respective equation in [12]. Again, also the overlap S(N ) is
well behaved as a function of N and for large N coincides with
the result in [12]. Since all the integrals Vijkl and the orbital
energies μs depend on �, but not on N , the overlap tends fast
to its large-N value as is also the case for other many-body
quantities beyond the mean field. It has been demonstrated in
[12] that the overlap in Eq. (11) can be very small and even
vanish.

3. The depletion of the condensate

Usually, the depletion of a condensate is defined as the
fraction of the system which is not condensed. In [22] it
has been shown that under certain conditions the system is
100% condensed in the limit of infinite particles keeping
the interaction strength � fixed. As found in [12] and
demonstrated in the next section more generally, the depletion
is essentially a constant; i.e., one should rather define and
compute it in absolute terms and not as a fractional term.
Each of the particles outside the condensed manifold interacts
with all the particles of the condensate and this gives rise to
the sometimes enormous impact on the full wave function.
Although the depletion can be related to any exact state of
the system, we confine ourself for transparency to the ground
state.

Defining the depletion D(�) as the number of particles
outside the condensed manifold, the number of condensed
bosons is 〈�|b†0b0|�〉. Since the particle-number operator
can be written as N̂ = ∑

q=0 b
†
qbq , the depletion can be

expressed as

D(�) = N − 〈�|b†0b0|�〉
= 〈�|

∑
i=1

b
†
i bi |�〉. (13)

To evaluate the depletion to the leading order of perturbation
theory, we just have to notice that applying the depletion
operator D̂ = ∑

i=1 b
†
i bi to the mean-field state |N〉 vanishes.

One is thus left with D = 〈�̃(1)|D̂|�̃(1)〉 which is easily
evaluated explicitly to give

D(�) = 2〈�̃(1)|�̃(1)〉 = 2�2α2 � 0, (14)
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where α2 can be found in Eq. (12). It is seen that to the leading
order of perturbation theory, both the overlap between the
exact and mean-field wave functions and the depletion are
determined by the same quantity �2α2. Following [12], α2

generally reflects the space available for the bosons. The more
space is available the smaller the overlap S and the larger the
depletion D are. We also stress that the depletion does not
depend on the boson number once this number is large.

4. The boson correlation energy

The energy increment beyond the mean-field energy is the
boson correlation energy, or briefly, correlation energy:

Ec = EMF − Eexact.

The definition is such that the correlation energy is a positive
quantity. The explicit expression for the mean-field energy can
be found below Eq. (9).

To the leading order in the interaction strength, the
correlation energy can simply be obtained from Eq. (9) using
the first-order correction to the wave function �̃(1) which is
provided explicitly in Eq. (10). The result takes on the simple
appearance

−Ec = E(2) = �2

2

N

N − 1

∑
i,j

|Vij00|2
2μ0 − μi − μj

� 0. (15)

Again, we see that the dependence on the boson number is
only via the fraction N/(N − 1), i.e., the correlation energy
is, for a fixed interaction strength, essentially a constant.
This strongly contrasts the situation for fermions where the
correlation energy is an extensive quantity for large N , i.e.,
grows with the number of fermions for large N [41].

5. The reduced one-body density matrix

The reduced one-body density matrix, which we shall
briefly call the density matrix, can be written as [3,42]

ρ
(
r,r′) = 〈�|�̂†(r)�̂(r′)|�〉,

where �̂(r) = ∑
i=0 ϕi(r)bi is the field operator. Inserting into

the above equation, one readily finds that the density matrix is
composed of three terms of different behavior

ρ
(
r,r′) = ϕ0(r)∗ϕ0(r′)ρ00 +

[∑
i

ϕ0(r)∗ϕi(r′)ρ0i

+ c.c.(r′ ↔ r)

]
+
∑
i,j

ϕi(r)∗ϕj (r′)ρij , (16)

where

ρij = 〈�|b†i bj |�〉
are the matrix elements of the density matrix. Following
Bogoliubov [3,27], for large N the first term on the right-hand
side of the above equation should scale as N , the second as√

N , and the third term, which describes the particles outside
the condensed part of the system, as a constant. We shall
see below what happens if the mean field is used as the
unperturbed operator.

In the following we compute the leading term in perturba-
tion theory of all the matrix elements ρij . It is straightforward
to show that there is no contribution of first order in � because
of the mean-field used. A typical first-order term is an element
of the form 〈N |b†i bj |�̃(1)〉 which vanishes either because of the
intermediate normalization employed or because |�̃(1)〉 does
not contain singly excited configurations [see Eq. (10)].

Up to second order we already know the answer for ρ00 of
the condensed manifold (see Sec. II C 3):

ρ00 = N − D,

where D is the depletion. Similarly, one finds that
〈�̃(1)|b†i bj |�̃(1)〉 vanishes unless both i and j are � 1 and also
that all 〈�̃(2)|b†i bj |N〉 vanish except for j = 0. Consequently,
the leading terms of the remaining matrix elements are

ρij = 〈�̃(1)|b†i bj |�̃(1)〉,
for i and j � 1, and

ρi0 = ρ∗
0i = 〈�̃(2)|b†i b0|N〉,

for i � 1.
We begin with ρij . As |�̃(1)〉 is explicitly known, see

Eq. (10), the evaluation is straightforward. By applying the
destruction operator bj to the first-order correction of the state
one obtains

bj |�̃(1)〉 = �

√
N

(N − 1)

∑
k

Vjk00

2μ0 − μk − μj

|N − 2,1k〉,

and ρij is determined by taking the scalar product with the
same quantity, but where j is replaced by i. To the leading
order in � one thus finds for i and j � 1

ρij = �2 N

(N − 1)

∑
k

V ∗
ik00Vjk00

(2μ0 − μk − μi)(2μ0 − μk − μj )
.

(17)

For large N these matrix elements of the density matrix are
constants as expected from Bogoliubov theory.

We now turn to the last group of elements, ρ0i , which
are of particular importance as they connect the condensed
manifold to the uncondensed part of the system. There is
no need to compute the cumbersome second-order correction
|�̃(2)〉 explicitly in order to determine the leading term in the
perturbation expansion of ρ0i . Because 〈N |b†0bi = √

N〈N −
1,1i |, it suffices to operate with λ0W on this singly excited
configuration and then take the scalar product with |�̃(1)〉;
see Eq. (8). As can be seen in Eq. (10), the latter quantity
contains only doubly excited configurations and, therefore,
one needs to compute only such configurations when operating
with λ0W on 〈N − 1,1i |. The calculation is somewhat lengthy
but straightforward, and we refrain from showing all the steps
and just provide the final result for the leading order in �:

ρ0i = �2

μ0 − μi

N

(N − 1)
A,

A =
∑
k,l

V ∗
kli0Vkl00

2μ0 − μk − μl

−
∑

k

V ∗
k000Vki00

2μ0 − μk − μi

. (18)
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Following Bogoliubov theory, ρ0i is expected to scale as√
N for large N . However, due to the choice of the unperturbed

Hamiltonian, this quantity scales like a constant N0.
Let us briefly discuss some consequences. Diagonalizing

the density matrix is equivalent to diagonalizing the matrix
{ρij }, i,j � 0, defining new orbitals φ named natural orbitals
in which ρ(r,r′) takes on the appearance

ρ
(
r,r′) =

∑
i=0

niφi(r)∗φi(r′),

where the ni are the corresponding natural occupations
[42–44]. We remind the reader that the one-particle density
ρ(r) = ρ(r,r) has a particularly appealing appearance in
this representation as a sum of weighted orbital densities:
ρ(r) = ∑

i=0 ni |φi(r)|2. For very large N Bogoliubov scaling
would tell us that in the matrix {ρij }, the element ρ00 will
decouple from ρij , i,j � 1 because the former scales as N ,
the latter as constants, and the elements ρ0j , j � 1, coupling
these two sets, scale as

√
N . In the limit N → ∞ it becomes

clear that the natural orbital φ0 will become identical to the
mean-field orbital ϕ0 and its occupation will be n0 = N − D.
This connects the above definition of the depletion with the
traditional measure based on the natural occupations. As
we have seen above, the coupling elements also scale as a
constant, and, consequently, the mean-field orbital will become
essentially identical to the respective natural orbital already at
much smaller N . In the examples studied in [12] this is already
the case for ∼103–104 bosons.

III. MANY-BODY THEORY FOR TRAPPED BOSONS IN
THE INFINITE-PARTICLE LIMIT

A. The reduction of the Hamiltonian

In the infinite-particle limit one can simplify the full
Hamiltonian (5) in the spirit of Bogoliubov by expanding
it in N and retaining the leading orders. Being interested
in bosons in a trap potential, we study the limit N → ∞
keeping the interaction strength � fixed [17,29,30] and not
the thermodynamic limit investigated by Bogoliubov for
homogeneous systems [27]. The situation is discussed in some
detail in the introduction. It will be shown below that using the
mean field as the unperturbed Hamiltonian as derived in the
preceding section automatically leads to a particle-conserving
theory for large N and for any boson-boson interaction
potential.

As the full Hamiltonian commutes with the particle-number
operator N̂ , we can add to it, without loss of generality, the
quantity μ0(N − N̂ ), which vanishes when applied to a state
of N bosons. To proceed, we rewrite the Hamiltonian (5) as

H = μ0N +
∑

i

(μi − μ0)b†i bi +
6∑

n=1

λ0Wn, (19a)

where we collect in each of the terms λ0Wn all the parts of the
boson-boson interaction λ0W with a given number of operators
b
†
0 and b0 related to the condensed part of the system. For

brevity we call them 0-operators. Since � = λ0(N − 1), it is
also counted as if it would contain a product b

†
0b0. Introducing

the condensate-number operator n̂0 = b
†
0b0, one finds for the

term which contains four 0-operators

λ0W1 = n̂0

[
λ0

2
(n̂0 − 1) − �

]
V0000, (19b)

and for the term containing three 0-operators

λ0W2 = b0[λ0(n̂0 − 1) − �]
∑

i

Vi000b
†
i + H.c. (19c)

There are three contributions which contain two 0-
operators, but because we would like each of the λ0Wn terms
to be Hermitian, we combine two of them together and obtain

λ0W3 =
∑
i,j

[λ0n̂0(Vi0j0 + Vi00j ) − �Vi0j0]b†i bj , (19d)

λ0W4 = (b0)2

[
λ0

2

∑
i,j

Vij00b
†
i b

†
j

]
+ H.c. (19e)

Similarly, there are two contributions with a single 0-operator
which are Hermitian conjugate of each other and one contri-
bution without any 0-operator:

λ0W5 = b0

[
λ0

∑
i,j,k

Vijk0b
†
i b

†
j bk

]
+ H.c., (19f)

λ0W6 = λ0

2

∑
i,j,k,l

Vijklb
†
i b

†
j blbk. (19g)

We remind the reader that unless otherwise indicated all
indexes are � 1.

Now, we are in the position to consider a condensate with
very large N and replace in the Hamiltonian (19a) the operators
b0 and b

†
0 by

√
N , and, of course, n̂0 by N . The first term

becomes just a number λ0W1 = −�N
2 V0000. The second term

of the boson-boson interaction vanishes identically because
of the choice of mean field as the unperturbed Hamiltonian:
λ0W2 = 0. Because of the identity � = λ0(N − 1), the fifth
term λ0W5 gets a prefactor of �√

N
and the sixth term λ0W6 of

�
N

and both terms vanish too in the limit N → ∞. We are left
with the third and fourth terms as operators only. They now
take on the simple appearance

λ0W3 = �
∑
i,j

Vi00j b
†
i bj , (20a)

λ0W4 = �

2

∑
i,j

Vij00b
†
i b

†
j + �

2

∑
i,j

V00ij bibj . (20b)

The rather complex Hamiltonian (19a) has thus been reduced
in the infinite-particle limit to the much less complex Hamil-
tonian

H =
[
μ0N − �N

2
V0000

]
+
∑

i

(μi − μ0)b†i bi

+�
∑
i,j

Vi00j b
†
i bj + �

2

∑
i,j

Vij00b
†
i b

†
j

+�

2

∑
i,j

V00ij bibj . (21)

Above, the number in brackets is nothing but the mean-field
energy EMF discussed in Sec. II B. The next term is the
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unperturbed Hamiltonian operating in the boson space outside
the condensed manifold, and the remaining terms describe
the interaction of the particles outside of this manifold. We
mention that the reduction of the Hamiltonian has been
possible strictly because the depletion and correlation energy
scale as N0. Indeed, apart from the trivial number EMF,
the reduced Hamiltonian does not exhibit terms depending
on N . The only memory of the condensate manifold is
found in the direct interaction matrix elements Vij00 and
in the exchange matrix elements Vi00j which describe the
interaction of the “depleted bosons” with the “infinite sea” of
the condensate manifold. This interaction with the condensate
manifold mediates the interaction between the depleted bosons
themselves. We stress again that in spite of the vanishing
depleted fraction D

N
as N → ∞, this interaction leads to a

generally very complex wave function of the condensate.

1. Conservation of the number of particles

As already discussed in the introduction, the theory of
Bogoliubov [3,27] is for the thermodynamic limit of homoge-
neous systems and Fetter [30] has extended the theory to apply
for spatially inhomogeneous condensates. These theories are
not number conserving and have been extended to become a
number-conserving Bogoliubov theory by Girardeau [28] and
by Gardiner [29] who has also extended the theory of Fetter for
spatially inhomogeneous condensates to a particle-conserving
one.

Following Gardiner, it is not the bare operator b0 which
gives

√
N when acting on a state with a total number of bosons

N , but rather an operator A. For large N the relationship
between these two operators can be cast as

b0 = A

[
1 −

∑
i=1 b

†
i bi

2N

]
. (22)

Correspondingly, the action of n̂0 has to be replaced by that
of N̂ −∑

i=1 b
†
i bi or, equivalently, by N − D̂, where D̂ is

the depletion operator discussed in Secs. II C 3 and II C 5. By
applying these relationships to the Hamiltonian, Gardiner has
obtained the corrections which make the Bogoliubov theory
particle-number conserving.

We now apply these relationships to the full Hamilto-
nian (19a) to find out whether corrections to the reduced
Hamiltonian (21) are necessary. It is only necessary to
investigate the term λ0W1 which contains the most possible
number of 0-operators and is thus, according to Gardiner,
prone to corrections. λ0W1 is the difference of the two
terms λ0

2 {[(n̂0)2 − n̂0]}V0000 and �n̂0V0000, where the second
stems from the mean-field interaction. Inserting the expression
above of Gardiner into the first term gives λ0

2 [N (N − 1) −
2ND̂]V0000 and thus �

2 [N − 2D̂]V0000. The second term gives
immediately �[N − D̂]V0000. Clearly, the difference of the
two terms is just −N�

2 V0000 as found above. In other words,
the reduction of λ0W1 is invariant to applying Gardiner’s
correction and clearly this is due to the choice of the
unperturbed Hamiltonian.

Therefore, the reduction of the full Hamiltonian as per-
formed in the previous subsection is invariant to applying
Gardiner’s correction. The reason for the invariance of the
remaining terms is due to the fact that a factor N is needed

to make λ0, appearing in all the expressions, become �.
Therefore, a correction as in Eq. (22) does not suffice to
introduce an additional term into the Hamiltonian which does
not vanish for N → ∞.

2. Mapping the reduced Hamiltonian on a system
of coupled phonons

As it stands, the reduced Hamiltonian (21) describes a
system of coupled oscillators. We would like to recast this
Hamiltonian by mapping it on a Hamiltonian describing
phonons or molecular vibrations. In this case, the interaction
potential is expanded in the vibrational coordinates and
momentum coupling due to the kinetic energy is also possible;
see for instance [45]. As usual, the vibrational coordinate
of the j th vibrational mode describing the distortion from
equilibrium is xj = 1√

2
(bj + b

†
j ) and the momentum of this

mode is pj = i√
2
(bj − b

†
j ). Expressing the expansion of the

reduced Hamiltonian in these combinations of the destruction
and creation operators for bosons sheds additional light on
its physics, and also serves to solve the underlying problem,
i.e., diagonalize the Hamiltonian, using methods applied for
molecular vibrations.

The general Hamiltonian describing molecular vibrations
and expanded up to second order in the coordinates and
momenta takes on the following appearance [45]:

H = CE +
∑

i

ωi(b
†
i bi + 1/2) +

∑
i,j

γij (bi + b
†
i )(bj + b

†
j )

+
∑
i,j

τij (bi − b
†
i )(bj − b

†
j ), (23)

where CE is a constant and symmetry-breaking linear terms
have been excluded.

Multiplying the operators appearing in this equation and
making use of the usual commutation relations of boson
operators [bi,b

†
j ] = δij and [bi,bj ] = 0 leads to a form as in

Eq. (21). By equating the two expressions, one finds

γij = �

4

[
Vij00 + Vi00j

]
, τij = �

4

[
Vij00 − Vi00j

]
,

ωi = (μi − μ0),

CE = EMF −
∑

i

(μi − μ0)

2
−
∑

i

�

2
Vi00j , (24)

where EMF is as before the mean-field energy. To derive the
above relations, we have assumed that Vij00 is real which is
only a minor restriction; the orbitals do not have to be real to
fulfill this condition. The coupling of the modes through the
interaction potential is described by the coupling constants γij

while the coupling through the kinetic energy operator is by τij .
Interestingly, if the orbitals used are real, Vij00 = Vi00j and the
latter couplings vanish. As the orbitals are the eigenfunctions
of the Fock operator (3), the problem at hand tells us whether
the orbitals are real or complex. For instance, for interacting
bosons on a ring the orbitals are also eigenfunctions of the
angular momentum operator and hence complex.
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B. Diagonalization of the reduced Hamiltonian

To proceed we rewrite the Hamiltonian in matrix notation.
For that purpose we follow [45] and collect the destruction and
creation operators in a single column vector B, and introduce
the 2 × 2 supermatrices �, T, and � which have as elements
the matrices of the coupling constants γ = {γij }, τ = {τij }
and the diagonal matrix ω of the frequencies ωi , respectively.
More precisely,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1

b2

.

.

.

b
†
1

b
†
2

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, � =
(

γ γ

γ γ

)
,

T =
(−τ τ

τ −τ

)
, � =

(
ω 0

0 ω

)
. (25)

With this notation the phonon Hamiltonian in Eq. (23) can
be cast into the following compact form:

H = CE + 1
2 B†�B + B†(� + T)B, (26)

which is amenable to diagonalization.

The diagonalization procedure

By defining new boson operators ci which fulfill the usual
commutation relations for bosons, one can bring the phonon
Hamiltonian (26) into diagonal form:

H = CE + 1
2 C†�̄C, (27)

where the vector C is defined in analogy to B and �̄ is the
same as � in Eq. (25), but with the new frequencies ω̄i on the
diagonal. The diagonalization procedure is described in [45]
and we only give here the equations needed.

Because of the structure of the vectors B and C, we have

C = �B, � =
(

�1 �2

�2 �1

)
. (28)

Due to commutation relations of the ci , one finds that the
inverse of the transformation matrix � takes on the following
appearance:

�−1 =
(

�
†
1 −�

†
2

−�
†
2 �

†
1

)
. (29)

The transformation matrix �, of course, also determines the
transformation matrix J which transforms the old vibrational

coordinates xi= 1√
2
(bi + b

†
i ) into the new ones x̄i= 1√

2
(ci + c

†
i ).

It reads

J = �1 + �2, J−1† = �1 − �2. (30)

Imposing the frequency matrix �̄ to be diagonal leads to an
explicit expression for the transformation matrix J:

J = ω̄
1
2 Z(ω − 4τ )−

1
2 , (31)

where Z is an unitary matrix determined as the eigenvector
matrix of the following eigenvalue problem

(ω − 4τ )
1
2 (ω + 4γ )(ω − 4τ )

1
2 Z† = Z†ω̄2. (32)

It is seen that the new frequencies, i.e., the frequencies of
the diagonalized Hamiltonian, are the eigenvalues in the
above eigenvalue equation. Since the supermatrix � which
transforms the boson operators bi to the ci diagonalizing
the phonon Hamiltonian is determined by J, see Eq. (30),
solving the above eigenvalue equation completes the task of
diagonalizing this Hamiltonian.

C. Properties

In Sec. II C we discussed a number of properties of physical
relevance and derived for each of them the leading term in the
perturbative expansion in the interaction strength �. In the
present subsection we derive explicit expressions for the same
properties, but now in the infinite-particle limit.

For compactness the discussion below is for the ground
state of the system, but we mention that the approach can also
be used for excited states. Because the reconstruction of the
wave function is different from that for the other properties,
we first discuss these properties and then the wave function in
the proceeding section.

1. The overlap of the mean-field and exact wave functions

In contrast to the general situation discussed in section II
where the mean-field ground state is |N〉, let us name the mean-
field ground state in the infinite-particle limit by |0〉. Indeed,
this is the ground state of the unperturbed reduced Hamiltonian∑

i(μi − μ0)b†i bi in Eq. (21). Similarly, we denote by |0̄〉
the ground-state solution of the reduced Hamiltonian (21) or
equivalently, of the phonon Hamiltonian (27).

The overlap S of the mean-field and exact wave function in
the limit N → ∞ is thus given by 〈0|0̄〉 and can be explicitly
expressed by �1 alone [45]:

S = [det(�1)]−
1
2 , (33)

where det(�1) is the determinant of the matrix �1.

2. The depletion of the condensate

The depletion D in the ground state is the expectation
value of the depletion operator 〈0̄|∑i=1 b

†
i bi |0̄〉. We can first

use the matrix notation in Eq. (25) to express the depletion
operator (up to a constant which will cancel out later) simply
as 1

2 B†B, and subsequently rewrite this quantity employing
the transformation in Eq. (28) to obtain 1

2 C†�−1†�−1C. The
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appearing inverse matrices can be expressed via Eq. (29).
Now, when applied to the exact ground state of the phonon
Hamiltonian we can make use of the fact that in this state there
are no phonons occupied and thus ci |0̄〉 = 0, and consequently
we have to collect only the contributions with 〈0̄|ci . . . c

†
i |0̄〉.

This leads to

D = 1
2 Tr[�1�

†
1 + �2�

†
2 − 1],

where Tr[X] is the trace of the matrix X.
This expression can be further simplified. Because of the

identity �−1� = 1 and the relation (29), one readily finds the
final result for the depletion:

D = Tr[�2�
†
2]. (34)

The physical meaning of this equation becomes more evident
when realizing that �2 shows the contribution of the creation
operators b

†
i of mean-field phonons to the annihilation opera-

tors ci of the exact phonons; see Eqs. (25) and (28).

3. The boson correlation energy

The ground-state energy of the phonon Hamiltonian is, of
course, given by the sum of the zero-point energies of the
oscillators. For 1

2 C†�̄C this energy is simply 1
2

∑
i ω̄i . With the

explicit expression for CE in Eq. (24), the correlation energy
takes on the following appearance:

Ec =
∑

i

�

2
Vi00j + 1

2

∑
i

(ωi − ω̄i). (35)

To better understand the first term in the correlation energy,
we expand the eigenvalue equation (32) for the vibrational
frequencies ω̄i for small values of the interaction strength �.
The leading term in � is linear and is obtained by considering
only the diagonal part. For 1 � �, a diagonal element of the
matrix to be diagonalized in Eq. (32) becomes

ω̄2
i = (ωi − 4τii)

1
2 (ωi + 4γii)(ωi − 4τii)

1
2

= ωi
2[1 + 4(γii − τii)/ωi] + · · · .

Taking the square root of ω̄i above gives

ω̄i = ωi + 2(γii − τii) + · · · ,

which, when inserted into the second term on the right-hand
side of Eq. (35), exactly compensates the first term. What
remains in the expansion of the correlation energy are terms
of the order �2 and higher.

4. The reduced one-body density matrix

The general aspects of the elements ρij of the density
matrix ρ have been discussed in Sec. II C 5. To compute them
in the infinite-particle limit, we start from ρij = 〈0̄|b†i bj |0̄〉
and notice that 〈0̄|BB†|0̄〉 defines a 2 × 2 supermatrix and
the density matrix is just the lower-right element of this
supermatrix. Using Eqs. (28) and (29) one can express the
lower-right element of BB† as a linear combination of matrices
with elements c

†
i cj ,cicj ,c

†
i c

†
j , and cic

†
j . When taking the

expectation values of these matrices with the ground state
|0̄〉 all terms except the expectation value of the latter vanish.

The result simply reads

ρ = �
†
2�2. (36a)

While 〈0̄|cicj |0̄〉 vanishes identically, it is interesting to
note that 〈0̄|bibj |0̄〉 does not. The latter is a measure for the
influence of the non-particle-conserving term λ0W4 (20b) in
the Hamiltonian (19a) and hence for the complexity of the
exact state. The matrix ρ̃ with elements ρ̃ij = 〈0̄|bibj |0̄〉 is the
upper-right element of the supermatrix 〈0̄|BB†|0̄〉. Similarly to
the above, one can compute this matrix and obtain

ρ̃ = −�
†
1�2. (36b)

D. Reconstruction of the wave function in the
infinite-particle limit

We show here that, in principle, one can also reconstruct
the full particle-conserving wave function for large N , i.e., of
the full Hamiltonian and not just of the phonon Hamiltonian
derived in Secs. III A and III B. The wave function of
the phonon Hamiltonian is, of course, not particle-number
conserving as it describes the dynamics of the bosons outside
the condensed manifold. As far as we know, the determination
of the full wave function out of the wave function in the phonon
approximation has not been discussed before.

First, let us write the exact eigenstates of the reduced
Hamiltonian (21) or, equivalently, of the phonon Hamiltonian
(26) explicitly as

|n̄1,n̄2,n̄3 . . .〉 = (c†1)n̄1 (c†2)n̄2 (c†3)n̄3 · · ·√
n̄1!n̄2!n̄3! · · ·

∣∣0̄〉. (37a)

This equation requires some discussion. In Sec. II the
full Hamiltonian describing interacting particles has been
discussed whose eigenstates are particle-number conserving
and hence the eigenstates of the unperturbed Hamiltonian
there were the particle-number-conserving Fock states given in
Eq. (6). In contrast, the eigenstates of the phonon Hamiltonian
are not particle conserving as common for phonon systems.
In other words, the sum of the occupation numbers

∑
i n̄i can

take on any integer, 0,1,2, . . ., value. In contrast to Eq. (6),
where the creation operators act on the vacuum state |vac〉 of
no particles, the c

†
i operators which diagonalize the phonon

Hamiltonian, see Eq. (27), act in the above eigenstate on
|0̄〉 which is the exact ground state (zero c-phonons) of this
Hamiltonian.

With this important difference in mind, we may now write
down the phonon states of the unperturbed phonon operator
1
2 B†�B in Eq. (26) using the original creation operators b

†
i ,

i � 1, for particles outside the condensed manifold which now
play the role of phonons as well:

|n1,n2,n3 . . .〉 = (b†1)n1 (b†2)n2 (b†3)n3 · · ·√
n1!n2!n3! · · · |0〉. (37b)

Again, as above in Eq. (37a), the sum of the occupations
numbers

∑
i ni can be an arbitrary integer. The state |0〉 on

which the b
†
i operate is the ground state (zero b-phonons) of

1
2 B†�B. The two states |0〉 and |0̄〉 differ from each other.
Their overlap has been given in Eq. (33).
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Any eigenstate |n̄1,n̄2,n̄3, . . .〉 of the phonon Hamiltonian
can be expanded in the eigenstates |n1,n2,n3, . . .〉. For brevity,
we discuss only that of the ground state |0̄〉 as the expansion
of other states is similar. The expansion reads

|0̄〉 =
∑

n1=0,n2=0,...

|n1,n2,n3, . . .〉Cn1,n2,... ,

Cn1,n2,... = 〈n1,n2,n3, . . . |0̄〉.
To proceed, we note that the eigenstate of the phonon

Hamiltonian is now expressed in the first line of the above
equation via operators b

†
i . These operators are the operators

which appear in the full Hamiltonian (5). These operators thus
relate also to particles and we may augment each Fock state
|n1,n2,n3, . . .〉 uniquely to include also the particles in the
condensate manifold, such that the total number of particles
is equal to N . Let the total number of phonons in an arbitrary
Fock state |n1,n2,n3, . . .〉 bePn1,n2,... = ∑

i ni ; then the unique
assignment

|n1,n2,n3, . . .〉 =⇒ |N − Pn1,n2,...,n1,n2,n3, . . .〉 (38a)

holds, where N − Pn1,n2,... is the number of particles in the
condensed manifold. One thus arrives at

|�〉 =
∑

n1=0,n2=0,...

|N − Pn1,n2,...,n1,n2,n3 . . .〉Cn1,n2,... ,

(38b)

which is particle-number conserving and contact has been
made with the exact eigenstate of the full Hamiltonian; see
Sec. II C 1.

One should be aware that we are discussing here the wave
function for very large N or, actually, even for N → ∞.
Whatever the total number of phonons in an unperturbed state
is, N should be much larger. We have arguments to believe
that the above is also very useful for finite values of N . The
numerical results for the many-body quantities beyond mean
field as well as the energy and density per particle seem to
converge numerically already for finite and rather moderate
values of N [12]. But for finite values of N one may argue
that the total number of phonons in an unperturbed state could
be larger than N . However, the contribution of unperturbed
states |N − Pn1,n2,...,n1,n2, . . .〉 to an exact eigenstate falls
off dramatically as the number of particles removed from
the condensate manifold grows, i.e., as the total number of
phonons in an unperturbed state grows. This is due to the fact
that the full Hamiltonian contains only one- and two-particle
operators and many operators are needed to describe the
coupling of a low-lying exact eigenstate with a highly excited
unperturbed state.

We are left with the calculation of the expansion coefficients
Cn1,n2,... in Eq. (38b). These can be obtained from recursion
relations. Starting from 〈n1,n2, . . . |ci |0̄〉 = 0 one finds [45]

Cn1,...,ni+1,... = −
∑
j=1

√
nj

ni + 1
fijCn1,...,nj −1,..., (39)

where fij is given as the determinant of the matrix
�1�

†
1 with the ith column replaced by the column vector

(�†
2�1)1j

,(�†
2�1)2j

, . . . divided by det(�1�
†
1).

If one wishes to compute equations analogous to Eq. (38b),
but for excited states and not for the ground state, more
involved recursion relations have to be used which can be
found in the Appendix of [45].

Explicit examples for reconstructing the wave function are
presented in the following sections.

IV. APPLICATION: THE HARMONIC
INTERACTION MODEL

A. The model

To the knowledge of the authors, the only analytically
solvable model of N interacting bosons in a trap is the
harmonic interaction model (HIM). In this model the boson-
boson interaction potential is harmonic and the bosons move
in a harmonic trap. The model has been solved explicitly in the
literature [46] and has served in several works either as a test
for computational methods or for investigating new physics
[12,47–52]. The model can be solved in any dimension, but
for brevity we will investigate it here in 1D. As the model
is analytically solvable, we will study it in the context of the
infinite-particle limit to compare its results with those of the
phonon Hamiltonian of Sec. III.

In a harmonic trap of frequency ω the HIM Hamiltonian
reads

H =
N∑

i=1

(
p̂2

i

2
+ ω2

2
x2

i

)
+ λ0

N∑
i<j

(xi − xj )2. (40a)

By introducing normal coordinates, this Hamiltonian becomes
separable and hence solvable analytically. The exact ground-
state wave function is a product of N − 1 oscillators of
frequency δ2

N = ω2 + 2λ0N in their ground state and one
oscillator with frequency ω describing the center-of-mass
motion of the system [46].

To rewrite the above Hamiltonian in second quantization
with the mean field as the unperturbed Hamiltonian, we first
need the Fock operator, see Eqs. (2) and (3), which takes on
the appearance

F̂ =
(

p̂2

2
+ ω2

2
x2

)
+ �

∫
|ϕ0(x ′)|2(x − x ′)2dx ′. (40b)

Solving the self-consistent eigenvalue equation F̂ |ϕ0〉 =
μ0|ϕ0〉 gives

ϕ0(x) =
(

δ

π

)1/4

e(− δ
2 x2), δ2 = ω2 + 2�. (40c)

Note that the frequency δ is identical to δN−1 introduced above.
With the above one easily obtains the Fock operator and its

eigenvalues μn explicitly:

F̂ =
(

p̂2

2
+ δ2

2
x2

)
+ �

2δ
, μn =

(
n + 1

2

)
δ + �

2δ
, (40d)

and it is also straightforward to compute the relevant matrix
elements of the boson-boson interaction:

V0000 = 1

δ
, Vnn′00 = V0nn′0 = −δn1δn′1

δ
. (40e)

All the quantities defining the phonon Hamiltonian (23) or
equivalently (26) are now explicitly available and are given by
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(n,n′ � 1)

EMF = N

2
δ, CE = EMF −

∑
n=1

1

2
ωn + �

2δ
,

ωn = nδ, γnn′ = −δn1δn′1

2δ
, τnn′ = 0. (40f)

It is seen that the phonon Hamiltonian is rather simple as only
the first excited orbital ϕ1 couples to the condensed manifold.
This greatly simplifies finding the solution of this Hamiltonian.

B. The properties of the phonon Hamiltonian

With the quantities entering the phonon Hamiltonian found
above, the eigenvalue equation (32) becomes particularly
simple as the matrix to be diagonalized is already diagonal.
This implies that Z = 1 and all eigenvalues except of ω̄1 are
not affected, i.e., ω̄n = δ. The new frequency ω̄1 is determined
from δ

1
2 (δ + 4γ11)δ

1
2 = ω̄2

1 which readily gives

ω̄1 = ω, (41)

which is nothing but the frequency of the bare trap potential.
Clearly, this n = 1 mode describes the center-of-mass motion
of the system.

Now, one can calculate the transformation between the
mean-field operators bn and the cn which make the Hamil-
tonian diagonal. From Eq. (31), one finds J11 = (ω/δ)

1
2 and

all other elements are Jnn′ = δnn′ . The transformation matrix
readily follows from Eq. (30):

(�1)11 = ω + δ

2
√

ωδ
, (�1)nn′ = δnn′ , (42)

(�2)11 = ω − δ

2
√

ωδ
, (�2)nn′ = 0.

In other words, the phonon destruction operators are given by
c1 = ( ω+δ

2
√

ωδ
)b1 + ( ω−δ

2
√

ωδ
)b†1 and all other cn = bn.

We are now in the position to compute all the quantities
introduced. Let us start with the energy. The mean-field energy
EMF = N

2 δ is, of course, the same as in the analytic solution
of the model [46]. The general expression for the correlation
energy Ec in the phonon Hamiltonian can be found in Eq. (35).
In the present example it takes on the following appearance:

Ec = − �

2δ
− 1

2
(ω − δ). (43a)

The analytically exact result for any N is known to be
Ec = N

2 δN−1 − N−1
2 δN − ω

2 , see [46], and we would like to
compare the two expressions for large N . For that purpose
we expand the quantity (N − 1)δN for N particles to give
the corresponding quantity for N − 1 particles: (N − 1)δN =
(N − 1)δN−1 + �/δN−1 + O(1/N ). Inserting into the analytic
expression immediately provides the identical result found in
Eq. (43a) for the phonon Hamiltonian.

For completeness, we also study the correlation energy for
small coupling strength �. Expanding δ in a Taylor series in
� gives δ = ω + �

ω
− �2

4ω3 + · · · . Inserted into Eq. (43a) leads

to Ec = �2

4ω3 . Of course, this result is identical to that obtained
with the perturbation expression (15) in the limit of infinite N .

We now turn to the overlap of the mean-field and exact
ground-state wave functions. Using the general Eq. (33)
for this overlap, one readily obtains with the aid of the
elements in Eq. (42)

S = [det(�1)]−
1
2 = 2

1
2

(δω)
1
4

(δ + ω)
1
2

. (43b)

The analytical solution for the overlap of the wave functions
is provided for large N in [12] for all dimensions. In 1D
one obtains directly from Eq. (7a) in the latter reference

S = 2
1
2

(1+2�/ω2)
1
8

[1+
√

(1+2�/ω2)]
1
2

. Straightforward manipulations of this

expression give a result identical to that in Eq. (43b).
Next, we investigate the depletion D(�) of the ground state.

The corresponding general expression derived for the phonon
Hamiltonian has been derived in Sec. III C 2. Using Eq. (34)
and the quantities for the HIM in (42), one immediately obtains
the simple expression

D = Tr[�2�
†
2] = 1

4

(δ − ω)2

δω
. (43c)

The exact depletion and natural orbitals for HIM can be
obtained analytically from the eigenvalues and eigenvectors
of the one-body reduced density matrix [53,54]. For large N

the most occupied natural orbital becomes identical with the
mean-field orbital (see Sec. II C 5) and hence the weight of
this orbital provides ρ00 = N − D. The expression obtained
is lengthy and its Taylor expansion in powers of 1/N gives
exactly the same result as in Eq. (43c).

C. The reconstruction of the wave function

By comparing with the analytically derived solutions of
the HIM, it has been seen that the phonon Hamiltonian has
provided exact results for the energy, overlap with the mean-
field wave function, and depletion of the ground state in the
limit N → ∞. The ultimate goal is to demonstrate that the
full particle-conserving wave function of the problem can be
reconstructed from the non-particle-conserving solution of the
phonon Hamiltonian.

The general idea and procedure of the reconstruction are
discussed in Sec. III D. Since in the HIM we have shown that
there is only a single active phonon mode available, we can
formulate the problem more compactly using only this mode
and the condensed manifold.

For large but finite N , we thus write the self-explanatory
equation

|�〉 =
∑
n1=0

|N − n1,n1〉Cn1 ,

Cn1 = 〈n1|0̄〉. (44a)

To proceed we remind the reader that C0 is nothing but the
overlap explicitly given in Eq. (43b), and that C1 as well as
all Cn1 with an odd number of phonons in this mode vanish
because of symmetry. One has to determine the C2,C4, . . . for
the even occupation numbers and this is accomplished with
the recursion relation

Cn1+1 = −
√

n1

n1 + 1
f11Cn1−1. (44b)
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Since C0 is known, the only quantity to be determined in order
to evaluate the wave function is f11.

One can determine the quantity f11 by the procedure
explained in Sec. III. We would like, however, to proceed
differently. The sum over all the squared coefficients is, of
course, unity:

∑
n1=0 |Cn1 |2 = 1. From the recursion relation

one readily sees for m = 1,2, . . . that

C2m = (−1)m
√

1 × 3 × . . . (2m − 1)

2 × 4 × . . . (2m)
f m

11C0 (44c)

and we identify the sum of squares to be the Taylor expansion
of

1 = (
1 − f 2

11

)− 1
2 |C0|2.

Using the explicit HIM expression in Eq. (43b) for C0, one
arrives at the following simple expression for the missing
quantity:

f11 = ω − δ

ω + δ
. (44d)

This completes the reconstruction of the wave function.
In Fig. 1 the expansion coefficients C2m of the many-body

wave function are shown for � = 100 computed with the
above equations. Note that the overlap S discussed in Sec. IV B
is provided by the first coefficient C0. It is clearly seen that the
wave function is rather complex although we have learned that
the energy and density per particle are exactly determined by
the respective mean-field quantities. In the representation of
Fig. 1, the mean-field wave function would consist of a single
bar C0 of unity height. As all observables of a system are
determined by the wave function, there are many properties
which will deviate strongly from the respective mean-field
ones. Examples have been given in [12,23,24,44].

It is rather cumbersome to compute the exact analytically
known wave function in the basis of the mean-field orbitals

FIG. 1. The ground-state wave function of the HIM. The red
squares show the value of the reconstructed wave function using the
results of the phonon Hamiltonian. Shown are the coefficient Cn1 of
the wave function computed employing the analytic formula (44c).
Note that the coefficient C0 is the overlap of the mean-field and exact
wave function. The blue dots show the same coefficients computed
numerically for the full Hamiltonian (40a) using the MCTDHB
method for N = 107 bosons. The values of the coefficients do not
change if N is lowered to N = 106. In all calculations the value of
� = 100 has been used.

as done here. To have a comparison with the reconstructed
wave function, we have performed numerical calculations em-
ploying the variational multiconfigurational time-dependent
Hartree for bosons (MCTDHB) method [55,56] in which the
ground state is found by imaginary-time propagation. The
MCTDHB is a well-established method in the literature [57].
In principle, it is a numerically exact method [52], but for
large boson numbers it can only be solved approximately as
the number of boson Fock states explodes. The method has
been tested for HIM [12,52]. The expansion coefficients C2m

computed numerically for N = 107 bosons are shown in Fig. 1
for the same coupling strength as used for the reconstructed
wave function. It is clearly seen that the reconstructed wave
function excellently reproduces the numerically determined
particle-conserving wave function.

Two remarks are in order. Because the coupling strength
� = λ0(N − 1) is held constant as N → ∞, it is obvious
that the parameter λ0 measuring the interaction between two
bosons is infinitesimally small. In this respect, even very
large values of � are easily achievable. We have already
mentioned that for a given value of �, relevant properties like
the correlation energy, depletion, and elements of the density
matrix do not change with varying N provided that N is large
enough. This applies also to the wave function itself. The
larger the interaction strength �, the larger is usually the value
of N needed. This explains why one can reconstruct the wave
function for a finite but large N with the aid of the calculation
starting from the phonon Hamiltonian which has been derived
for N → ∞.

V. APPLICATION: INTERACTING BOSONS ON
A FINITE RING

A. The model

There has been considerable interest in studying interacting
bosons on a ring. Originally, most of the works concentrated on
the thermodynamic limit in which the length of the ring goes
to infinity. Here, the inconsistencies found in GP theory [3,17]
were removed by the theory of Bogoliubov [3,27]. Using the
Bethe ansatz [58], Lieb and Liniger [59] derived a system
of N − 1 coupled transcendental equations for the exact
N-particle ground state of a finite ring and contact interaction.
They solved this system explicitly for two particles, but
then passed to the thermodynamic limit and showed that
the whole system of coupled transcendental equations can
be approximated by a single Fredholm integral equation
of the second kind. They solved this integral equation and
demonstrated that for weak interactions Bogoliubov’s theory
agrees well with this solution, and for strong interactions the
solution approaches that of the Tonks-Girardeau gas in the
thermodynamic limit [60]. For contact interaction the Lieb
and Liniger solution can be considered as the essentially exact
solution of the thermodynamic limit.

In this section we are interested in solving the problem
of bosons on a ring of finite length in the infinite-particle
limit employing the contact boson-boson interaction potential.
Here, as N → ∞, the coupling strength � is kept constant.
As mentioned above, Lieb and Liniger derived the system
of coupled equations for finite N and length of the ring,
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and solved them for two bosons on the ring. Their coupled
transcendental equations are difficult to solve. It took more
than 30 years until Muga and Snider solved the spectrum of
the three-particle problem [61]. A few years later, Sakmann
et al. [62] succeeded in computing the exact ground state for
up to 50 bosons. It was found that there is still a substantial
dependence on the length of the ring and on the number of
bosons.

By writing x = φL/2π , where L is the length of the ring,
one can transfer the many-boson Hamiltonian (1) with contact
interaction to angular coordinates. After multiplication with
L2 one obtains

H = −
N∑

i=1

∂2

∂φ2
i

+ λ0L
∑
j>i

δ(φi − φj ). (45)

To obtain the correct energies, one has to divide the eigenvalues
of this Hamiltonian by L2.

Choosing the mean-field potential to be symmetry preserv-
ing, the orbitals are eigenfunctions of the angular momentum
operator perpendicular to the ring. The Fock operator and its
solutions, see Eq. (3), take on the expressions

F̂ = − ∂2

∂φ2
+ �L

2π
, ϕs = eisφ

√
2π

, μs = s2 + �L

2π
. (46)

The orbitals ϕs with the quantum numbers s = 0, ± 1, ± 2, . . .

are normalized in the interval [−π
2 , π

2 ]. The orbital ϕ0 is, as
usual, the orbital of the condensate manifold.

To continue, one needs the four-index integrals computed
in the above basis of mean-field orbitals:

Vijkl = L

2π
δi+j=k+l , (47)

where the δ symbol stands for the conservation of the angular
momentum perpendicular to the ring.

This completes the calculation of the Hamiltonian (5) in
second quantization and we are in the position to move on
to the phonon Hamiltonian in Eq. (23) or, equivalently, (26).
All the quantities entering the phonon Hamiltonian are listed
below for s,s ′ �= 0:

EMF = NL�

4π
, CE = EMF −

∑
s

1

2
ωs −

∑
s

�L

4π
,

ωs = s2, γs,s ′ = �L

8π
(δs,−s ′ + δs,s ′ ),

τs,s ′ = �L

8π
(δs,−s ′ − δs,s ′ ). (48)

As in the former application to HIM, the quantity CE contains
divergent sums which are, however, exactly made finite by
contributions from the ground-state energy of the Hamiltonian.
See also below. The divergence comes from the fact that one
has an infinite number of phonon modes whose zero-point
energy is infinite. In numerical applications, one can first
consider a large but finite number of modes and later increase
this number until convergence is achieved.

B. The diagonalization of the phonon Hamiltonian

In the previous application (HIM) the matrix to be diago-
nalized was found to be diagonal and hence the solution was

straightforward. In the present application the matrix (ω −
4τ )

1
2 (ω + 4γ )(ω − 4τ )

1
2 to be diagonalized is not a priori seen

to be diagonal and the problem is more involved. Fortunately,
this matrix, which we denote M, has a block-diagonal structure
of 2 × 2 matrices Ms , s = 1,2, . . ., along the diagonal. Each
2 × 2 block consists of elements ms,s,ms,−s ,m−s,s ,m−s,−s and
can, of course, be easily diagonalized.

To construct a 2 × 2 block Ms we first compute the
individual components

(ω − 4τ )s =
(

s2 + �L
2π

−�L
2π

−�L
2π

s2 + �L
2π

)
,

(ω + 4γ )s =
(

s2 + �L
2π

�L
2π

�L
2π

s2 + �L
2π

)
,

which are nondiagonal. To compute the square root of a general
Hermitian matrix A, one has to first diagonalize it, i.e., solve
for AS = Sε, where S is the unitary eigenvector and ε the
diagonal eigenvalue matrices. The square root then is A

1
2 =

Sε
1
2 S†. Interestingly, although all involved 2 × 2 components

of Ms are not diagonal, their product is, and we find

Ms =
(

s2(s2 + �L
π

) 0

0 s2(s2 + �L
π

)

)
.

One sees again that, as in HIM, the matrix Z = 1. The
eigenvalues of M are simply given by

ω̄2
s = ω̄2

−s = s2

(
s2 + �L

π

)
(49)

and seen to come in doubly degenerate pairs.
The matrix J in Eq. (31) which we need to compute

the transformation from the bare operators bs to the new
(“dressed”) phonon operators cs is, however, nondiagonal.
Nevertheless, the resulting transformation, computed using
Eqs. (30) and (28), does have a rather compact structure:

(�1)s = 1

2

(
α+

s 0

0 α+
s

)
, (�2)s = 1

2

(
0 α−

s

α−
s 0

)
,

α±
s = |s|− 1

2

(
s2 + �L

π

) 1
4

± |s| 1
2

(
s2 + �L

π

)− 1
4

. (50)

We are now in the position to calculate the properties of
interest. This is done in the next subsection.

C. The properties of the phonon Hamiltonian

1. The correlation energy

The general expression for the correlation energy computed
with the phonon Hamiltonian is provided in Eq. (35). To
compute this quantity one needs only the dressed frequencies
ω̄s and not the transformation matrix � itself and this is the
reason why we first study the correlation energy here. This
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energy is simply given by

Ec = −
∑
s=1

{
s

[(
s2 + �L

π

) 1
2

− s

]
− �L

2π

}
, (51a)

where we have made use of the symmetry s ↔ −s, see, e.g.,
Eq. (49), and reduced the sum over all values of s �= 0 to
positive values s � 1 only.

To better understand how the above infinite sum converges,
one can rewrite the expression inside the braces as s2[(1 +
�L
πs2 )

1
2 − (1 + �L

2πs2 )]. Independently of how large �L is, from
large enough values of s2 on, this term will behave as s−2

assuring convergence (see also below).
Let us now discuss the behavior of the correlation energy

for small �L. For that purpose one can just expand (1 + �L
πs2 )

1
2

in a Taylor series in the small quantity �L
πs2 and obtain 1 +

1
2

�L
πs2 − 1

8 ( �L
πs2 )

2 + · · · . The first two terms in this expansion
directly compensate the last two terms inside the braces, and
we are left with

Ec = 1

8

(
�L

π

)2 ∞∑
s=1

1

s2
= �2L2

48
, (51b)

as the leading term.
In the absence of an exact solution of the problem of

bosons on a ring, we compare this result with that obtained
employing the perturbation theory developed in Sec. II B for
the full many-body Hamiltonian (5). With the eigenvalues of
the Fock operator given in Eq. (46) and the four-index integrals
in Eq. (47), one can evaluate the correlation energy in second
order which is provided in Eq. (15):

Ec = �2

2

N

N − 1

∑
s,s ′

δs,−s ′
(

L
2π

)2

s2 + s ′2 = N

N − 1

�2L2

48
. (51c)

Obviously, for large N the phonon Hamiltonian leads to
exactly the same result as does the full Hamiltonian.

The correlation energy as a function of L� has been
computed numerically with Eq. (51a). The results are shown
in the upper panel of Fig. 2 as a function of �L. This energy is
seen to grow monotonically with the interaction strength and
the length of the ring and any finite value can be achieved.

2. The depletion of the condensate

According to Sec. III C 2 the depletion of the condensate
computed with the phonon Hamiltonian is given by D =
Tr[�2�

†
2]. The elements of the transformation matrix are

collected in Eq. (50) and it is seen that the product �2�
†
2 is

a diagonal matrix with elements (α−
s )2/4 along the diagonal.

Correspondingly, after some simple manipulations as done
above for the correlation energy, the depletion takes on the
appearance

D = 1

2

∞∑
s=1

[(
1 + �L

πs2

) 1
2

+
(

1 + �L

πs2

)− 1
2

− 2

]
. (52a)

Clearly, the above sum is well behaved and converges rather
rapidly.

FIG. 2. Results of numerical calculations for bosons on a ring in
the infinite-particle limit. The results are shown as a function of �L,
where L is the length of the ring and � is the interaction strength.
Upper panel: Correlation energy computed using the analytic formula
(51a). Middle panel: Depletion of the condensate computed using the
analytic formula (52a). Lower panel: Overlap of the mean-field and
exact wave function computed using the analytic formula (53a). All
quantities are dimensionless.

For small values of �L one can expand the terms in
Eq. (52a) in powers of �L

πs2 and readily obtain

D = �2L2

8π2

∞∑
s=1

1

s4
= π2�2L2

8 × 90
. (52b)

To compare with the perturbation expansion of the depletion
derived for the full many-body Hamiltonian, one can resort to
Eqs. (14) and (12). In the present context the leading term in
the expansion reads

D = �2N

N − 1

∑
s,s ′

δs,−s ′
(

L
2π

)2

(s2 + s ′2)2
= N

N − 1

π2�2L2

8 × 90
, (52c)

verifying again the result obtained for the phonon Hamiltonian.
It is interesting to investigate the depletion as a function

of L�. The results of the computation using the analytic
expression (52a) are depicted in Fig. 2. The depletion, i.e.,
the number of bosons outside the condensed manifold, grows
monotonically with L�. It should be remembered that each of
the bosons outside the condensate manifold interacts with all
the infinitely many bosons in the condensed manifold and this
makes the wave function highly complex and very different
from the mean-field one.

3. The overlap of the mean-field and exact wave functions

In the framework of the phonon Hamiltonian the overlap
between the exact and mean-field wave functions has been
shown to be given by S = [det(�1)]−

1
2 , and since the matrix

�1 is diagonal for the problem at hand, the calculation of
its determinant is simple. Employing Eq. (50) and noticing
that the elements of this matrix are the same for positive and
negative values of the quantum number s, one readily obtains

S =
∞∏

s=1

2[(
1 + �L

πs2

) 1
4 + (

1 + �L
πs2

)− 1
4

] . (53a)
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This product form is convergent. For any finite value of �L
π

,
one can write this product as a quotient of products up to some
finite value of s, where s � �L

π
, times a convergent product;

see below.
For small values of the interaction strength, we can Taylor

expand the above terms in the denominator and retain the
leading term. This results in the following expression for
�L → 0:

S =
∞∏

s=1

[
1 − 1

32

(
�L

πs2

)2
]

(53b)

= 1 − �2L2

32π2

∞∑
s=1

1

s4
= 1 − π2�2L2

32 × 90
.

To compare with the perturbation theoretical result of the
full many-body Hamiltonian (1) or, equivalently (5), we return
to Eqs. (12) and (14) and similarly to what was found above
for the depletion D we find

S = 1 − N

N − 1

π2�2L2

32 × 90
, (53c)

in agreement with the result determined in Eq. (53b) within
the framework of the phonon Hamiltonian.

The overlap S computed with the aid of Eq. (53a) is
plotted in Fig. 2 as a function of �L. The overlap falls off
monotonically as either the length of the ring or the interaction
strength grows. It can be made to essentially vanish.

4. The reduced one-body density matrix

The reduced one-body density matrix takes on the appear-
ance ρ = �

†
2�2; see Sec. III C 4. For interacting bosons on

a ring the matrix �2 is provided explicitly in Eq. (50) and is
nondiagonal, but the product �

†
2�2 is diagonal. The result is

ρss ′ = δss ′

[(
1 + �L

πs2

) 1
4

−
(

1 + �L

πs2

)− 1
4

]
. (54a)

From this expression the leading term in � is easily
determined to give

ρss ′ = δss ′

(
�L

4πs2

)2

. (54b)

According to the perturbation theory of the full Hamiltonian,
the elements of the reduced matrix read [see Eq. (17)]

ρss ′ = �2 N

(N − 1)

∑
k

δ−k,sδ−k,s ′
(

L
2π

)2

(s2 + k2)(s ′2 + k2)

= δss ′
N

N − 1

(
�L

4πs2

)2

. (54c)

D. Reconstruction of the wave function in the
infinite-particle limit

In contrast to the HIM problem solved in Sec. IV where
a single phonon mode has been found to be active, in the
case of bosons on a ring the ground state contains infinitely
many active phonon modes specified by s = ±1, ± 2, . . .. The

method introduced in Sec. III D to reconstruct the number-
conserving eigenstate of the full many-body Hamiltonian is
also valid here, but we have to decide which components of the
wave function are to be explicitly computed. From the general
perturbation theory starting with the mean-field Hamiltonian it
is clear now that the most important contributions are expected
from the doubly excited boson configurations. Because of that
and also as a demonstration of the reconstruction procedure,
we will first determine the respective contributions to the wave
function.

The exact and mean-field ground states, |0̄〉 and |0〉, have
a total angular momentum of 0. Consequently, we can only
expect contributions from excited configurations which do not
alter the angular momentum. Singly excited configurations
obviously change the angular momentum and hence do not
contribute. The lowest type of excitations which do not alter
the angular momentum are the doubly excited configurations
|1s ,1−s〉 = b

†
sb

†
−s |0〉. Their contribution to the ground state is,

in the nomenclature of Sec. III D,

C1s ,1−s
= 〈0|b−sbs |0̄〉. (55)

To evaluate the above quantity, we start with the identity

〈0|b−scs |0̄〉 = 0, (56)

where the cs are the operators for the dressed phonons
diagonalizing the phonon Hamiltonian; see Sec. III B.

To proceed, one has to make use of the relationship (28)
between the mean-field and dressed operators. For bosons on a
ring the transformation matrix is given in Eq. (50). The explicit
relationship

cs = 1
2α+

s bs + 1
2α−

s b
†
−s (57)

is of interest by itself as it reflects the angular momentum
character of the operators. In this equation s can be positive or
negative.

Inserting the latter into the identity (56) and keeping in
mind that bs and b

†
−s commute and the creation operators

when operating to the left annihilate the mean-field ground
state, one finds

C1s ,1−s
= −α−

s

α+
s

C0 = −
(
1 + �L

πs2

) 1
4 − (

1 + �L
πs2

)− 1
4(

1 + �L
πs2

) 1
4 + (

1 + �L
πs2

)− 1
4

C0.

(58a)

The quantity C0 is just the overlap S = 〈0|0̄〉 which can be
found in Eq. (53a). From the above it is evident that the larger
the angular momentum of the mode, the less important this
mode is for the ground-state wave function.

To make contact with perturbation theory of the full
Hamiltonian, one may expand the expression above for small
values of � and obtain C1s ,1−s

= − �L
4πs2 . Using the correction

to the state in first order in Eq. (10), and taking care that the
Fock states appear there twice, one finds

|�̃(1)〉 = −�L

4π

√
N

(N − 1)

∑
s=1

1

s2
|N − 2,1s ,1−s〉, (58b)

which for large N reproduces the result reconstructed from the
phonon Hamiltonian.
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We now move to the next higher classes of excitations. From
the identity 〈0|bs ′′bs ′cs |0̄〉 = 0 and Eq. (57) one readily notices
that all triple excitations do not contribute to the ground wave
function. The contribution of the next class of excitations can
be determined starting from the identity 〈0|bs ′′′bs ′′bs ′cs |0̄〉 = 0.
Keeping in mind that the total angular momentum s + s ′ +
s ′′ + s ′′′ equals zero, we find for the nonvanishing contributions

C1s ,1−s ,1s′ ,1−s′ = −
(

α−
s ′

α+
s ′

)
C1s ,1−s

,

C2s ,2−s
= −

√
2

(
α−

s ′

α+
s ′

)
C1s ,1−s

. (58c)

Following the reconstruction scheme detailed in Sec. III D,
we are now in the position to express the particle-number-
conserving wave function as

|�〉/C0 = |N〉 −
∑
s=1

(
α−

s

α+
s

)
|N − 2,1s ,1−s〉

+
∑

s,s ′ �=s

(
α−

s

α+
s

)(
α−

s ′

α+
s ′

)
|N − 4,1s ,1−s ,1s ′ ,1−s ′ 〉

+
√

2
∑
s=1

(
α−

s

α+
s

)2

|N − 4,2s ,2−s〉 + · · · . (59)

We mention again that this expression is formally correct for
N → ∞, but in practice also for finite and large values of N . If
�L is small, the values of N can be rather small for the above
wave function to be accurate as long as N

N−1 is sufficiently
close to 1. The larger the interaction strength becomes, the
larger N must be for the wave function in (59) to be accurate.

VI. CONCLUSIONS

The mean-field potential of a general Hamiltonian of bosons
in a trap interacting by a two-body potential is derived as usual
by minimizing the energy expectation value in the mean-field
ansatz. This allows one to formulate the second-quantized
Hamiltonian in the basis of the mean-field Fock operator as
done before [9,10,12]. For several classes of problems it is
known that the mean-field reproduces the exact energy and
density per particle correctly for N → ∞. Indeed, with the
formulation of the Hamiltonian in the mean-field basis one
generally finds that this statement is correct, making this
Hamiltonian particularly suitable to describe trapped boson
systems. In this formulation, the perturbation theory starts
with the mean-field Hamiltonian as the unperturbed Hamil-
tonian and the effective boson-boson interaction becomes the
residual interaction left beyond mean field. For several relevant
properties of the Hamiltonian as well as for its eigenstates the
leading term in the perturbation expansion in the interaction
strength � is given here. The only explicit dependence of these
terms on the particle number N is found to be via the factor

N
N−1 . Clearly, all extensive parts of the quantities are thus
collected in the mean-field part of these quantities, and one
just investigates by the theory the fluctuations beyond mean
field.

In the infinite-particle limit N → ∞ keeping the interaction
strength � fixed, one can simplify the derived full Hamiltonian

in the spirit of Bogoliubov by collecting all destruction and
creation operators which describe the condensate manifold
and replacing each of them with

√
N . Bogoliubov has studied

the thermodynamic limit of homogeneous systems which is,
of course, a very different problem than ours. Ours is more
related to the extension of Bogoliubov’s theory by Fetter
[30], which is, however, a non-particle-number-conserving
theory. Our resulting simplified Hamiltonian is found to be
particle-number conserving and is invariant to Gardiner’s
corrections [29] introduced to make Bogoliubov’s theory
particle-number conserving. The reason behind this invariance
is the representation of the full Hamiltonian in the basis of the
mean field.

This simplified Hamiltonian has been mapped on the
structure of a Hamiltonian describing a typical system of
coupled phonons which includes the interaction of the phonons
through potential as well as through kinetic energy coupling.
This Hamiltonian is called the phonon Hamiltonian. The
mean-field destruction and creation operators are for bosons
outside the condensed manifold and at the same time also
for the coupled phonons. The phonon Hamiltonian can be
brought to diagonal form by a linear transformation � mixing
the destruction and creation operators and giving rise to an
eigenvalue equation. Physical properties computed with the
phonon Hamiltonian are discussed and explicitly expressed by
elements of this transformation matrix. By transforming back
the solutions of the phonon Hamiltonian to their representation
by the Fock states of the mean field and employing recursion
relations, one can reconstruct the particle-conserving wave
function of the full Hamiltonian, which we consider an
important result. It is clear that this wave function is usually
very different from the mean-field one. The depletion of the
condensate is a constant for a large enough N , and this number
of bosons outside the condensed manifold interacts with all
the many or even infinite number of bosons in the condensed
manifold. This makes the full wave function of the system very
complex, sometimes of vanishing similarity to the mean-field
one. Since the wave function determines all the observables
of the system, it is clear that the true many-body character
of the system is not to be looked for in the total energy or
total density which are mean-field properties of the system.
Other quantities, such as variances of various observables
and correlation functions, reflect much better the many-body
character of bosonic systems with many particles [12,23,24].

Two applications are discussed in some detail. In the first
application the trap as well as the boson-boson interaction are
harmonic (HIM). This model has been solved analytically in
the literature [46] and thus the results found here using the
phonon Hamiltonian can be tested. We find that the results of
the phonon Hamiltonian are indeed exact in the infinite-particle
limit. In this limit, we find that only a single phonon mode is
active and this mode describes the center-of-mass motion of the
system. The wave function of the HIM has been reconstructed
from the phonon results and found to be rather involved. It
coincides with accurate numerical calculations done on the
full Hamiltonian.

In the second application we studied interacting bosons on
a ring of a finite length L. Although this problem is much more
complicated than the HIM, the phonon Hamiltonian could be
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solved in closed form. All the properties investigated as well as
the reconstructed wave function exhibit an interesting behavior
as a function of �L. The wave function, in particular, is very
complex and has typically little in common with the mean-field
one. There is no exact solution expressed in closed form known
in the literature for this problem and many particles. In order to
have a comparison with exact results of the full Hamiltonian,
we compare with the leading terms in �L obtained with the
derived perturbation theory of the full Hamiltonian. In the
limit of infinite particles, the two sets of results are identical
as expected.

There are new physical results and also technical advances
reported in this work. It is demonstrated that it is advantageous
to express the full many-body Hamiltonian in the basis of the
mean-field creation and annihilation operators. Perturbation
theory formulated in this way, i.e., by using the mean-field as
the unperturbed Hamiltonian, shows only a weak dependence
of the wave function and other physical properties of interest
on the number of bosons. The phonon Hamiltonian obtained
following the Bogoliubov approach is shown to be a priori
particle-number conserving when formulated in the mean-field
basis and there is no need for corrections. Most importantly, the
particle-number-conserving wave function of the system could
be reconstructed, which is a completely new result. Having the
wave function allows one to compute all desired properties
of the system. Several properties of interest are discussed
explicitly. It is seen that for generic trap and boson-boson
interaction potentials the energy and density per particle are
exactly reproduced by the mean field in the infinite-particle
limit, independently of the dimension of the problem. In spite
of this, the full wave function is rather complex and found to
usually be very different from the mean-field wave function
in this limit; sometimes there is even vanishing similarity
between the two. This important result is explained by the
correlation between the few particles in the depleted manifold
with the very many particles in the condensed manifold. New
physical insight is also obtained for two explicit examples
in the infinite-particle limit, one with long- and one with
short-range interactions. In particular, the phonon Hamiltonian
could be solved in closed form in both cases and the wave
functions are discussed. For the first example the wave function
is provided in closed form and the impact of the center of mass
on the wave function is explicitly demonstrated.

Enlarging the trap leads to an increase of the depletion. This
trend is already reflected in second order of the perturbation
theory (see also the exact results for the applications presented

in Secs. IV and V in the infinite-particle limit). It is interesting
to contrast here the homogeneous and inhomogeneous cases as
N → ∞. In the homogeneous case the depletion is a fraction,
say f . Even if this fraction is small, it scales with N and
the number of bosons in the depleted fraction is f N , i.e.,
infinite in the thermodynamic limit. In the trap the depletion
of the inhomogeneous system is a constant for a given trap and
interaction strength; i.e., the number of bosons in the depleted
manifold is finite and hence vanishes when divided by N.
One cannot transfer the results obtained for inhomogeneous
systems to the thermodynamic limit. The present theory is
applicable as long as the trap size is finite.

Finally, we would like to touch upon two issues. First,
the phonon Hamiltonian has been derived for infinitely many
bosons. We stress, however, that the results obtained with the
phonon Hamiltonian also apply for finite numbers of bosons.
For weak interaction strength this has been explicitly shown
by the perturbation expansion, where the leading term for all
quantities (also for the wave function) studied depends on the
particle number only via the factor N

N−1 . If the interaction
strength becomes stronger, the dependence on N is still weak
once N is sufficiently large. What exactly “sufficiently large”
means depends for a given value of � on the trap and
interaction potentials employed. The numerical results in [12]
show that already with N = 105 one can achieve converged
calculations for the overlap, which are numerically the same
as for N = 107.

Second, although the present work is on stationary states
of the interacting boson system, the results can also be used in
many cases to describe dynamics. The dynamics of a system
can often be expressed by a superposition of ground and
excited states. As the present theory also allows one to compute
excited states and their energy, at least in the infinite-particle
limit, one can have access to dynamics. Alternatively, one can
use the phonon Hamiltonian directly to describe the dynamics.
All of this is, however, only possible as long as the dynamics
is not so fierce as to destroy the basis for the derivation of the
phonon Hamiltonian, namely that the system stays essentially
condensed.
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