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Thermodynamic behavior of a one-dimensional Bose gas at low temperature
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We show that the chemical potential of a one-dimensional (1D) interacting Bose gas exhibits a nonmonotonic
temperature dependence which is peculiar of superfluids. The effect is a direct consequence of the phononic
nature of the excitation spectrum at large wavelengths exhibited by 1D Bose gases. For low temperatures
T , we demonstrate that the coefficient in T 2 expansion of the chemical potential is entirely defined by the
zero-temperature density dependence of the sound velocity. We calculate that coefficient along the crossover
between the Bogoliubov weakly interacting gas and the Tonks-Girardeau gas of impenetrable bosons. Analytic
expansions are provided in the asymptotic regimes. The theoretical predictions along the crossover are confirmed
by comparison with the exactly solvable Yang-Yang model in which the finite-temperature equation of state
is obtained numerically by solving Bethe-ansatz equations. A 1D ring geometry is equivalent to imposing
periodic boundary conditions and arising finite-size effects are studied in detail. At T = 0 we calculated various
thermodynamic functions, including the inelastic structure factor, as a function of the number of atoms, pointing
out the occurrence of important deviations from the thermodynamic limit.
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I. INTRODUCTION

It is well known that the thermodynamic behavior of a
superfluid is dominated, at low temperature, by the thermal
excitation of phonons [1]. This explains, in particular, the
peculiar behavior exhibited by the specific heat as well as by
other fundamental thermodynamic functions. A nontrivial (and
less investigated in the literature) consequence of superfluidity
shows up in the nonmonotonic behavior of the chemical
potential [2]. At low temperature T the chemical potential
increases with T as a consequence of the thermal excitation
of phonons. At high temperature, in the ideal gas classical
regime, the chemical potential is instead a decreasing function
of T . This nonmonotonic behavior has been recently measured
in a strongly interacting atomic Fermi gas [3], where it was
shown that the chemical potential exhibits a maximum in the
vicinity of the superfluid critical temperature.

It is consequently interesting to explore the low-
temperature thermodynamic behavior of other systems, like
one-dimensional (1D) interacting Bose gases, which are
known to exhibit a phononic excitation spectrum, despite the
fact that they cannot be considered superfluids according to
standard definition. By investigating the drag flow caused by
a moving external perturbation, Astrakharchik and Pitaevskii
[4] have in fact shown that 1D Bose gases interacting with
contact potential exhibit a traditional superfluid behavior,
characterized by the absence of friction force, only in the weak-
interaction regime, where Bogoliubov (BG) theory applies and
the gas can be locally considered Bose-Einstein condensed,
despite the absence of true long-range order.

In this paper, we investigate the low-temperature expansion
of the chemical potential μ of a 1D Bose gas with contact
repulsive interaction for the whole crossover, ranging from the
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weak- to the strong-interaction limits. A major motivation is
given by the possibility of comparing the low-T expansion
of the chemical potential with the numerical results now
available within the Yang-Yang theory [5,6], along the whole
interaction strength crossover. Previous comparisons were in
fact available only in the case of the Tonks-Girardeau (TG)
limit [7], corresponding to the ideal Fermi gas (IFG), where the
low-T expansion corresponds to the Sommerfeld expansion.
We find that for all intermediate interaction regimes, described
at T = 0 by Lieb-Liniger (LL) theory, the increase of the
chemical potential at low temperature follows the μ ∝ T 2 law
and is actually caused by the phononic nature of the long-
wavelength elementary excitations, as in usual superfluids
[2]. The relevant coefficient fixing the T 2 law depends on
the density derivative of the T = 0 sound velocity which is
calculated using Lieb-Liniger theory. This feature strengthens
the analogy with superfluids even in 1D. Importantly, our
results can be also generalized to every Luttinger liquid at
low temperature the macroscopic elementary excitations of
which can be described in terms of phonons.

Recently, a ring geometry has been experimentally realized
for a microscopic system of N = 8–20 atoms [8]. Motivated by
the experimental progress, we study in detail also the behavior
of a gas containing a finite number of atoms in a ring, focusing
on the deviations of its thermodynamic behavior from the one
in the large N limit.

Our system is a uniform gas of bosons interacting with a
repulsive contact interaction

H = − h̄2

2m

N∑
i=1

∂2

∂x2
i

+ 2c

N∑
i>j

δ(xi − xj ) (1)

where the interaction parameter c is related to the 1D coupling
constant g1D = −2h̄2/(ma1D) through c = mg1D/h̄2, where
a1D is the 1D scattering length. The system (1) has been
realized experimentally for the whole interaction crossover
by suitably tuning the interaction strength [9–11], described
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by the dimensionless parameter

γ = c

n
= − 2

na1D
(2)

from weak (γ → 0) to strong (γ � 1) interactions [10,12–15].
The Bogoliubov perturbative theory can be used in the limit
of weak interactions. In the Tonks-Girardeau limit of strong
repulsions the bosons are impenetrable and their wave function
can be mapped onto that of an ideal Fermi gas [16].

The paper is organized as follows.
In Sec. II we derive the low-temperature expansion of the

chemical potential, starting from the free energy of an ideal
phononic gas. This assumption is fully justified by the low-
momenta behavior of the Lieb-Liniger excitation spectrum.
The low-temperature expansion exhibits a T 2 dependence
on temperature, with the coefficient related to the density
derivative of the LL sound velocity at zero temperature. The
Bethe-ansatz (BA) results for the chemical potential are shown
to agree very well with the low-temperature expansion, for the
whole BG-TG crossover.

In Sec. III we investigate the BG weakly interacting gas.
By considering the quantum fluctuation contribution in the
ground-state energy at T = 0, we explore the behavior of
the chemical potential and of the sound velocity. While
this correction is important at T = 0, it does not affect the
low-temperature expansion of the chemical potential.

Similarly to Sec. III, we calculate in Sec. IV the first
corrections in the interaction parameter γ to the TG strongly
interacting gas. The starting point is the expansion, for large
values of γ , of the ground-state energy of a hard-sphere (HS)
gas.

In Sec. V we derive the low-temperature expansions of both
the adiabatic and the isothermal inverse compressibilities. The
coefficients of the T 2 laws are studied as a function of the
interaction parameter γ and analytically calculated in the BG
and TG limits.

In Sec. VI we consider a ring configuration with a finite
number of particles at zero temperature and calculate the finite-
size corrections with respect to the thermodynamic limit for the
energy, the chemical potential, and the sound velocity. Results
for the static inelastic structure factor for a finite number of
particles are also reported.

In Sec. VII, we draw our final conclusions.

II. LOW-TEMPERATURE EXPANSION OF THE
CHEMICAL POTENTIAL

It is well known that at T = 0 the elementary excitations
of an interacting 1D Bose gas have a phononic character at
small momenta [17,18], characterized by the linear dispersion
relation

ε(p)p→0 = vsp . (3)

At T = 0 the sound velocity is related to the density depen-
dence of the chemical potential according to the relation

vs(γ ) =
√

n

m

∂μ(T = 0,γ )

∂n
, (4)

where μ is the chemical potential and n = N/L denotes
the linear density. The density dependence of the chemical
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FIG. 1. Sound velocity vs in units of Fermi velocity vF (solid
line) as a function of the interaction parameter γ , calculated by
solving the Lieb-Liniger equations. The Bogoliubov [dotted line,
vBG

s (γ )/vF = √
γ /π ] and Tonks-Girardeau (dashed line, vTG

s =
vF ) limits, including their first-order corrections [thin solid line,
vs(γ � 1)/vF = vBG

s (γ )/vF

√
1 − √

γ /(2π ), and thin dot-dashed
line, vs(γ � 1)/vF = √

1 − 8/γ , respectively], are present too; see
Secs. III and IV.

potential at zero temperature can be calculated within the
Lieb-Liniger model. The ratio between the sound velocity and
the Fermi velocity vF = πh̄n/m is known as the Luttinger
parameter, KL = vF /vs , and it plays an important role in
defining the long-range properties of one-dimensional sys-
tems. Figure 1 shows the dependence of the sound velocity
on the interaction parameter γ for the Lieb-Liniger model,
described by Hamiltonian (1). There is a smooth crossover
between the mean-field BG value defined as mv2

s = g1Dn for
weak interactions to the Tonks-Girardeau (ideal Fermi gas)
value vs = vF in the limit of strong repulsion.

For larger momenta the 1D excitation spectrum is charac-
terized by a continuous structure, bounded by two branches
of elementary excitations [5,17,18], which have been the
object of recent measurements [19,20]. For small values of γ ,
the Lieb-I particlelike branch corresponds to the Bogoliubov
excitation spectrum [17,18,21]. The Lieb-II holelike branch
is instead associated in the weakly interacting regime with
the dark soliton dispersion predicted by Gross-Pitaevskii
theory [18,21,22]. The two branches merge into the phononic
spectrum for p � mvs , Fig. 2.

At low temperature (kBT � mv2
s ) we expect that the

thermodynamic behavior of the system can be calculated in
terms of a gas of noninteracting phonons. The free energy
A = E − T S of this gas is then given by

A(T ,L) = E0 + kBT L

2πh̄

∫ +∞

−∞
log[1 − e−βε(p)]dp (5)

where ε(p) is dispersion (3) and we have added the energy
E0 calculated at T = 0 with the Lieb-Liniger theory. Notice
that the thermal contribution to A is affected by two-body
interactions through the dependence of ε(p) on the interaction
parameter γ . The integral of Eq. (5) yields the following low-
temperature expansion for the free energy:

A(T ,L) = E0 − π

6

(kBT )2L

h̄vs

, (6)
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FIG. 2. Lieb-Liniger excitation spectrum in the BG regime with
γ = 4.52 (left) and in the deep TG regime with γ = ∞ (right). The
units are the Fermi energy EF and the Fermi momentum pF . The
shaded region represents the continuum of the excitations and is
delimited by the upper (Lieb I) and the lower (Lieb II) branch of the
spectrum. On the left, the Lieb I and II branches are not reported.
On the left, the dashed line gives the Bogoliubov dispersion and the
dotted line gives the mean-field soliton spectrum. In the limit γ → 0,
the Lieb I branch tends to be equal to the Bogoliubov dispersion, while
the Lieb II one coincides with the soliton spectrum. The solid line
is the Lieb-Liniger phononic spectrum calculated with γ = 4.52. On
the right, Lieb I and Lieb II branches are reported and they coincide
with the particle and hole ideal Fermi gas excitations, respectively.
The solid line is the phononic spectrum calculated with the Fermi
velocity.

which differs from the usual T 4 behavior exhibited by three-
dimensional (3D) superfluids [18] because of the 1D structure
of the integral (5). Starting from result (6) for the free
energy, one can calculate the low-temperature expansion of
the chemical potential:

μ(T ,γ ) =
(

∂A

∂N

)
T ,L

= EF

[
α(γ ) + β(γ )

(
T

TF

)2
]

(7)

where we have introduced the energy scale EF = kBTF =
h̄2n2π2/(2m) given by the Fermi energy of a 1D Fermi
gas, because it exhibits the same density dependence of the
quantum degeneracy temperature of the system. We have also
defined the relevant dimensionless parameters of the expansion

α(γ ) = μ(T = 0,γ )

EF

(8)

and

β(γ ) = πEF

6h̄v2
s

∂vs

∂n
, (9)

which are functions of the interaction parameter γ and
can be calculated at zero temperature using Lieb-Liniger
theory. It is worth noticing that the parameter β(γ ), which
is the most relevant because it fixes the leading coefficient
of the low-T expansion, depends on the density derivative
of the sound velocity. The two numerical functions α(γ ),
Eq. (8), and β(γ ), Eq. (9), have been calculated within LL
theory and their values are reported in Figs. 3 and 4 with their
BG and TG limits. In particular, the TG limits for α(γ ) and
β(γ ) reproduce the low-temperature Sommerfeld expansion
of the chemical potential for the 1D ideal Fermi gas, Eq. (21).
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FIG. 3. α(γ ) (solid line) with the leading dependence [dashed
line, αTG = 1, and dotted line, αBG(γ ) = 2γ /π 2] and first-order
corrections [thin dot-dashed line, α(γ � 1) = 1 − 16/(3γ ), and thin
solid line, α(γ � 1) = αBG(γ )(1 − √

γ /π )] for Tonks-Girardeau
and Bogoliubov limits, respectively.

In Figs. 5 and 6 we report the temperature dependence of the
chemical potential of the system described by Hamiltonian (1)
as obtained numerically from the Bethe-ansatz approach first
developed by Yang-Yang [5–7,23] for several characteristic
values of γ . The Yang-Yang description has been probed
experimentally [24,25] and allows us to investigate not only
the thermodynamics but also the Luttinger liquid physics and
the quantum criticality of the system [26–28]. The numerical
results for the thermodynamics have been derived recently in
an analytic fashion by using the polylog functions at finite
temperature by Guan and Batchelor [26] and Guan [28].

The crossover from mean-field to Tonks-Girardeau regimes
(see Fig. 1) introduces two distinct energy scales. Corre-
spondingly, we rescale the chemical potential in units of the
Fermi energy EF in Fig. 5 and in units of the mean-field
zero-temperature chemical potential μBG(T = 0) = g1Dn in
Fig. 6. The first choice provides natural units in the TG regime
in which strongly repulsive bosons behave similarly to an ideal
Fermi gas in the limit of γ → ∞. In this regime, the chemical
potential as a function of T is calculated by inverting the
Fermi-Dirac distribution (upper dashed line in Fig. 5):

nIFG(p) = 1

e
1

kB T
( p2

2m
−μ) + 1

; (10)
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FIG. 4. β(γ ) (solid line) with the Tonks-Girardeau (dashed line,
βTG = π 2/12) and Bogoliubov [dotted line, βBG(γ ) = π 3/(24

√
γ )]

limits.
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FIG. 5. Chemical potential as a function of temperature T in
Fermi units for several values of γ and at a fixed density n|a1D| =
2/γ . The solid lines represent the Bethe-ansatz (BA) solutions for
different values of γ . The dot-dashed lines are the low-temperature
expansions of the chemical potential taking into account only the
phononic contribution, Eq. (7). The phononic expansions for γ �
1000 are equal to the analytical Sommerfeld expansion of Eq. (21).
Both the chemical potentials as a function of T for the ideal Fermi
(upper dashed line) and ideal Bose (lower dashed line) gas are also
reported in Eqs. (10) and (11), respectively.

despite the absence of superfluidity, it still exhibits the
quadratic low-temperature dependence μ ∝ T 2, which follows
from the low-temperature Sommerfeld expansion, Eq. (21).

By reducing the interaction parameter γ , the system
becomes softer and the limit of vanishing interactions, γ → 0,
corresponds to an ideal Bose gas (IBG) with the chemical
potential μ(T ) fixed by the relationship (lower dashed line in
Fig. 5):

nIBG(p) = 1

e
1

kB T
( p2

2m
−μ) − 1

. (11)
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FIG. 6. Chemical potential as a function of temperature in BG
units for several values of γ . The solid lines represent the Bethe-ansatz
(BA) solutions for different values of γ . The dashed lines are the
low-temperature expansions of the chemical potential taking into
account only the phononic contribution, Eq. (13). We notice also that
the phononic expansion (13) does not hold for very small γ , like
γ = 0.001, for which value the low-temperature expansion is not
reported.

Notice that, because of the absence of Bose-Einstein con-
densation [29,30], the chemical potential of the 1D ideal
Bose gas is always negative and approaches the value μ = 0
as T → 0. Remarkably, for all finite interaction strengths
the temperature dependence is not monotonic. Moreover,
the initial increase is perfectly described by the quadratic
low-temperature expansion (7), thereby proving that the model
based on a gas of independent phonons well accounts for
the thermodynamic behavior of the 1D interacting Bose gas.
This is a nontrivial result due to the complex structure of
the elementary excitations at larger wave vectors exhibiting
a double branch converging into the phonon law (3) only at
small momenta. We notice also that the chemical potential for
high temperatures, which is a decreasing function of T , can
be considered as a shift of the ideal Bose chemical potential,
Eq. (11), for every value of γ .

The behavior of the chemical potential in the weakly
interacting regime (γ � 1) is best seen in Fig. 6. For low
temperatures T � μ the gas behaves like a quasicondensate,
exhibiting typical features of superfluids. For μ � T � TF ,
the gas is a thermal degenerate gas, while for T � TF the gas
behaves classically with μ < 0. A similar classification of the
quantum degeneracy states in 1D trapped configurations was
first proposed in Ref. [31].

Although there is no phase transition in 1D systems at finite
T , in the canonical ensemble, there exists a critical point,
corresponding to the value μ = 0 of the chemical potential,
which separates the vacuum from the filled “Fermi sea” of
repulsive bosons at T = 0. In particular, a universality class
is present in the temperature regime T � |μ| and near the
critical point μ = 0 [26–28].

Figure 6 is similar to Fig. 5, but with the chemical potential
expressed in units of the BG chemical potential at zero tem-
perature: μBG(T = 0) = g1Dn and the temperature in units of

TBG(γ ) = mv2
F

√
γ

πkB

(12)

which has been introduced as an appropriate temperature scale
for visualizing the behavior of the chemical potential at low
temperature. With the new units, the phononic expansion (7)
takes the form

μ(T ,γ ) = g1Dn

[
α(γ )

π2

2γ
+ 2β(γ )

(
T

TBG

)2
]
. (13)

Figures 5 and 6 point out in a clear way the nonmonotonic
behavior of the chemical potential μ as a function of T for a
fixed value of the density. This is a general feature exhibited
by superfluids [2] and it is shown here that it characterizes also
interacting 1D Bose gas for all finite values of the interaction
parameter γ .

Both figures show also that the phononic expansion de-
scribes very well the low-T thermodynamics for all values of
γ , although the region of the applicability of the phononic
description depends on γ . As pointed out in Ref. [32], for
small values of the interaction parameter γ , higher-order
corrections beyond the linear phononic contribution in the
excitation spectrum (3) might be important.
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III. BOGOLIUBOV REGIME γ → 0

In the mean-field theory, the chemical potential is linear in
density, μBG(T = 0) = g1Dn and the velocity of sound takes
the value vBG

s (γ ) = h̄n
√

γ /m = vF
√

γ /π ; see Fig. 1.
The first correction to the mean-field expression for

the equation of state comes from the quantum fluctuations
[18,33,34]. With respect to the 3D case, in 1D this calculation
is simpler because it does not require the renormalization of the
scattering length due to the absence of ultraviolet divergencies
in the calculation of the ground-state energy. Therefore in 1D
one can consider all ranges of momenta and one finds [17]

E0

N
= 1

2
g1Dn + 2

2N

+∞∑
p>0

[
ε(p) − g1Dn − p2

2m

]
(14)

where

ε(p) =
√

g1Dn

m
p2 +

(
p2

2m

)2

(15)

is the Bogoliubov excitation spectrum. By considering the
thermodynamic limit of Eq. (14) and by solving the integral in
momentum space, one finally finds the first-order correction
in the interaction parameter for the ground-state energy [17]:

E0

N
(γ � 1) = h̄2n2

2m
γ

(
1 − 4

3π

√
γ

)
. (16)

The same result can be also found by performing a power
series expansion of the Lieb-Liniger equations [35,36]. The
correction is negative as it comes from second-order pertur-
bation theory and, contrary to the higher dimensions, in 1D
there is no renormalization of the coupling constant and thus
no additional terms have to be added.

Equation (16) allows one to calculate the higher-order
corrections for the other thermodynamic quantities at T = 0.
For the chemical potential, one finds the result

μ(γ � 1) ≈ h̄2n2γ

m

(
1 −

√
γ

π

)
(17)

which implies the result

α(γ � 1) ≈ αBG(γ )

[
1 −

√
γ

π

]
(18)

for the expansion of the coefficient α(γ ), where αBG(γ ) =
2γ /π2 is the mean-field value. The corresponding result has
been plotted in Fig. 3 and well reproduces the exact value of
α(γ ) up to values γ ∼ 1.

From Eqs. (4) and (17), one can calculate also the correction
to the sound velocity [17]

vs(γ � 1) ≈ vBG
s (γ )

√
1 −

√
γ

2π
(19)

which is also reported in Fig. 1, yielding the expression

β(γ � 1) ≈ βBG(γ ), (20)

for the coefficient β(γ ), Eq. (9), with βBG(γ ) = π3/(24
√

γ )
the Bogoliubov value. Notice that, differently from the case
of α(γ ) [see Eq. (18)], the first correction βBG(γ ) vanishes
because of an exact cancellation between the corrections

provided by the terms ∂vs/∂n and v2
s of Eq. (9). This explains

why the Bogoliubov approximation describes correctly the
value of β(γ ) for a large interval of values of γ , up to γ ∼ 1
(see Fig. 4).

IV. TONKS-GIRARDEAU REGIME γ → ∞
In the TG limit of strong repulsion, γ → ∞, the energetic

properties are the same as in an ideal Fermi gas. The
thermodynamic quantities do not depend on the coupling
constant g1D, but only on the density n, encoded in the
Fermi energy EF . This regime can be interpreted as that
of a unitary Bose gas with the Bertsch parameter equal to
1 as the chemical potential is equal to the Fermi energy
[μTG(T = 0) = EF ]. Similarly, the sound velocity is equal
to the Fermi velocity vTG

s = vF = √
2EF /m; see Fig. 1. The

low-temperature expansion of the chemical potential in this
limit is equal to the first terms of the Sommerfeld expansion
(dot-dashed line for γ = 1000 in Fig. 5) of the 1D ideal Fermi
gas, as already pointed out in Ref. [7]:

μSomm(T ) = EF

[
1 + π2

12

(
T

TF

)2
]

(21)

which contains the TG limits of α(γ ) and β(γ ) parameters,
Figs. 3 and 4.

Leading corrections to the ground-state energy in the TG
regime arise from the “excluded volume” and can be obtained
from the equation of state of hard spheres (i.e., impenetrable)
bosons with diameter a1D > 0 [16]:

E0

N
= π2h̄2

6m

n2

(1 − na1D)2
. (22)

In the limit of pointlike bosons a1D = 0, Eq. (22) reproduces
the ground-state energy of the ideal Fermi gas, ETG =
π2h̄2n2/(6m). Expanding the denominator in Eq. (22) gen-
erates a power series with integer coefficients, E/ETG = 1 +
2na1D + 3(na1D)2 + 4(na1D)3 + . . .. It is interesting to notice
that for a δ-interacting potential the momentum-dependent
s-wave scattering length, a1D(k) = arctan(ka1D)/k = a1D −
(1/3)k2a2

1D, does not affect first and second corrections
in na1D but induces a negative correction in front of the
third correction. Indeed, the universality of the first and the
second corrections becomes evident by comparing low-density
expansion of the equation of state for hard spheres, Eq. (22),
and contact δ potential obtained by solving Bethe equations
recursively [37]:

E0

N
= π2h̄2n2

6m

[
1 + 2na1D + 3(na1D)2 +

(
4 − 4π2

15

)
(na1D)3

]
.

(23)

The nonuniversal correction depends on the shape of the
potential and for the LL model it has a noninteger coefficient,
which qualitatively can be understood by noting that the
typical value of the scattering momentum in the TG regime
is proportional to kF = πh̄n/m, which is consistent with π2

terms appearing in expansion (23). The universal terms are the
same both in the super Tonks-Girardeau [38] (a1D > 0) and
the strongly repulsive [36] (a1D < 0) regimes. From Eq. (23),
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by introducing the parameter (2) and by considering only the
leading term, one finds

E0

N
(|γ | � 1) ≈ π2h̄2n2

6m

(
1 − 4

γ

)
. (24)

From Eq. (24), one easily calculates the correction of the
chemical potential at T = 0, Eq. (8):

μ(|γ | � 1) ≈ EF

(
1 − 16

3γ

)
(25)

which implies the result [36]

α(|γ | � 1) ≈ 1 − 16

3γ
(26)

for α(γ ), including the first correction to the TG result αTG =
1. Prediction (26) is reported in Fig. 3 for positive values of γ ,
its accuracy being good for values of γ larger than ∼10.

From Eqs. (4) and (25), one can calculate also the first
correction, at large γ , to the sound velocity [36,39]:

vs(|γ | � 1) ≈ vF

√
1 − 8

γ
(27)

which is reported in Fig. 1. For the coefficient β(γ ), which
provides the T 2 correction in the expansion of the chemical
potential, we find again an exact cancellation between the 1/γ

correction (provided by the term ∂vs/∂n) and v2
s entering the

expression (9) for β(γ ), similarly to what happens in the small
γ expansion discussed in Sec. III in the case of the Bogoliubov
gas. We then find that the Tonks-Girardeau expression βTG =
π2/12 provides an accurate estimate of β(γ ) for values of γ

larger than ∼10 (see Fig. 4).
More accurate analytical expressions for the above thermo-

dynamical quantities, which allow us to probe the whole range
of interaction strength with excellent accuracy, are reported in
Refs. [32,40–42].

V. LOW-TEMPERATURE EXPANSION OF THE
INVERSE COMPRESSIBILITY

Here we derive the dependence of the adiabatic and isother-
mal inverse compressibilities on the interaction parameter γ

in the limit of low temperature.

A. Adiabatic inverse compressibility and sound velocity

From the Gibbs-Duhem relation dP = ndμ + sdT , one
finds (

∂P

∂n

)
s̄

= n

(
∂μ

∂n

)
s̄

+ ns̄

(
∂T

∂n

)
s̄

(28)

where s is the entropy density and s̄ = s/n is the entropy per
particle.

At low temperature the entropy per particle of a noninter-
acting gas of phonons takes the form [18]

s̄(T ) = πk2
BT

3h̄vsn
, (29)

which depends on the T = 0 value (4) of the sound velocity.
Use of relation (29) permits us to express the dependence of the

10−3 10−2 10−1 100 101 102 103

γ

100

101

102

103

δ(
γ
)

δ(γ)

δBG(γ)

δTG

FIG. 7. Value of the dimensionless coefficient δ(γ ) of the low-
temperature expansion of the adiabatic inverse compressibility (solid
line). The BG and TG analytical limits are also shown: δBG(γ ) =
5π 3/(16

√
γ ) (dotted line) and δTG = π 2/2 (dashed line).

second contribution to the adiabatic inverse compressibility on
the right-hand side of Eq. (28) on the interaction parameter γ(

∂T

∂n

)
s̄

= 3h̄vs s̄

πk2
B

(
1 + 6h̄nvsβ(γ )

πEF

)
, (30)

in terms of the coefficient β(γ ), Eq. (9), related to the density
derivative of the sound velocity at constant entropy. The first
contribution on the right-hand side of Eq. (28) can be obtained
by using Eqs. (7) and (29):(

∂μ

∂n

)
s̄

= m

n
v2

s + (kBT )2

nEF

(
12nh̄vs

πEF

β2(γ ) − γ
∂β(γ )

∂γ

)
.

(31)

From the above equations one finally finds the low-temperature
expansion(

∂P (T ,γ )

∂n

)
s̄

=
(

∂P (γ )

∂n

)
T =0

+ EF δ(γ )

(
T

TF

)2

(32)

of the adiabatic inverse compressibility, where(
∂P (γ )

∂n

)
T =0

= mv2
s (γ ) (33)

is its T = 0 value and we have defined the positive quantity

δ(γ ) = 24

π2
β2(γ )

vs(γ )

vF

− γ
∂β(γ )

∂γ
+ π2

6

vF

vs(γ )
+ 2β(γ ),

(34)

which is reported in Fig. 7 together with its asymptotic limits
in the Bogoliubov and Tonks-Girardeau regimes.

B. Isothermal inverse compressibility

By fixing the temperature T in Eq. (28) and by considering
the low-temperature expansion of the chemical potential (7),
one can also calculate the low-temperature expression for the
isothermal inverse compressibility(

∂P (T ,γ )

∂n

)
T

=
(

∂P (γ )

∂n

)
T =0

+ EF η(γ )

(
T

TF

)2

(35)
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FIG. 8. Absolute value of the dimensionless coefficient η(γ ) of
the low-temperature expansion of the isothermal inverse compress-
ibility (solid line). The BG and TG analytical limits are also shown:
ηBG(γ ) = −π 3/(16

√
γ ) (dotted line) and ηTG = −π 2/6 (dashed

line).

where we have defined the negative dimensionless coefficient:

η(γ ) = −2β(γ ) − γ
∂β(γ )

∂γ
. (36)

Notice that the thermal corrections to the isothermal and
adiabatic inverse compressibilities have opposite sign, the
coefficient η(γ ) being always negative. The absolute value of
η(γ ) is reported in Fig. 8 together with the asymptotic limits
in the Bogoliubov and Tonks-Girardeau regimes. The negative
value of η(γ ) is the consequence of the peculiar temperature
dependence of the free energy (6).

VI. GAS ON A RING

The physics in one dimension is unusual in many aspects.
The mean-field regime is reached at large densities contrarily
to what happens in three dimensions where the weakly
interacting limit corresponds to small densities, according to
the limit na3 → 0. For a fixed number of particles N the
mean-field limit in one dimension, n|a1D| → ∞, can be
obtained either increasing the linear density n = N/L, de-
creasing the system size L, or increasing the s-wave scattering
length a1D, i.e., decreasing the coupling constant g1D =
−2h̄2/(ma1D). Asymptotically, at a certain point, the size of
the system L will become comparable to the healing length

ξ =
√

h̄2

2mg1Dn
(37)

and finite-size effects will become important. This should be
contrasted to the three-dimensional case where the mean-field
regime is instead achieved by increasing the system size L

which consequently becomes larger than the healing length.
Finite-size effects depend on the system geometry. Inter-

estingly, periodic boundary conditions (PBCs), commonly
used as a mathematical tool in the three-dimensional world,
in one dimension can be explicitly realized in a ring and
have consequently a direct physical interest. This is another
peculiarity of the one-dimensional world. In the following
we calculate the finite-size dependence of thermodynamic
quantities for a gas confined in a ring the properties of which

are then equivalent to the ones of a linear 1D system satisfying
periodic boundary conditions. If one considers a plane wave
∝eikz and one imposes PBCs, one finds that the momentum is
quantized according to

pi = h̄ki = 2πh̄ni

L
(38)

where ni = 0,± are integers. Moreover, in 1D, all the integrals
in momentum space, defined in the thermodynamic limit
(N,L → +∞, n = finite), are replaced by a sum over the
discretized momenta (38) as∫ +∞

−∞
dp → 2πh̄

L

+∞∑
p=−∞

. (39)

In the following, we calculate the finite-size corrections in
both BG and TG regimes at zero temperature, as well as the
static inelastic structure factor for a finite number of particles.

A. Bogoliubov regime at T = 0

Let us consider the T = 0 ground-state energy per particle
given by

E0

N
= 1

2
g1Dn + 1

2N

+∞∑
p=−∞

[
ε(p) − g1Dn − p2

2m

]
(40)

corresponding to the Bogoliubov regime of small γ , where
ε(p) is provided by the Bogoliubov spectrum (15). Equation
(40) differs from Eq. (14) because it contains the p = 0 term
in the sum. This term has been included in order to avoid self-
interaction effects in the leading mean-field term of Eq. (14)
which should be replaced by g1D(N − 1)/(2L).

By introducing the discretized values of p [Eq. (38)], the
energy can be rewritten in the form

E0

N
= 1

2
g1Dn[1 + √

γG(y)] (41)

where we have introduced the dimensionless variable

y = γN2, (42)

depending on the interaction parameter γ and the function

G(y) = 2

y
√

y

+∞∑
ni=0

[2πni

√
y + (πni)2 − 2(πni)

2 − y] + 1√
y

,

(43)

where the adding of the quantity 1/
√

y ensures that the term
ni = 0 in the sum is counted just once.

By using the Euler-Maclaurin expansion (see the Ap-
pendix), one can calculate the expression for the series (43)
for large values of y:

G(y � 1) ≈ − 4

3π
− π

3y
. (44)

In Fig. 9 we report the comparison of the series (43) with
its expansion (44). We notice that the two curves agree in an
excellent way for y > 10. The thermodynamic limit −4/(3π )
is also reported.
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FIG. 9. Comparison of the numerical series G(y) (43) (solid line)
and its analytical expansion (44) (dashed line) holding for y � 1. The
dot-dashed line represents the thermodynamic value.

For large number of particles, the ground-state energy per
particle (41) then takes the form

E0

N
(γN2 � 1,γ � 1) ≈ 1

2
g1Dn

[
1 − 4

3π

√
γ − π

3N2√γ

]
(45)

and, in the thermodynamic limit, reproduces Eq. (16). The
condition y = γN2 � 1 is equivalent to requiring that the
healing length (37) be smaller than the size L of the system.

The ground-state energy contains three contributions: the
leading term corresponds to the usual mean-field energy, the
second contribution arises from the quantum fluctuations and
is a one-dimensional analog of the Lee-Huang-Yang correction
in 3D, while the last term accounts for finite-size effects and
depends explicitly on the interaction parameter γ .

Finite-size corrections can be sizable, as clearly shown by
Fig. 10 where we report the energy per particle as a function
of y for the thermodynamic limit (16) (dot-dashed line), the
Bethe-ansatz calculation (circle), the Bogoliubov expression

100 101 102 103 104

y = N 2γ

0.5

0.6

0.7

0.8

0.9

1

(E
0
/N

)/
(g

1D
n
/2

)

γ = 0.01

γ = 0.1

γ = 1 γ = 0.01

γ = 0.1

γ = 1

y 1

1 − 4
√

γ/(3π)

BA

FIG. 10. Comparison of the ground-state energy per particle, in
BG units, as a function of y = γN2 in the thermodynamic limit
of Bogoliubov theory (16) (dot-dashed line), the Bethe-ansatz (BA)
calculation (circle), the Bogoliubov expression (41) (solid line), and
the y � 1 expansion (45) (dashed line), for several values of the
interaction parameter γ .

100 101 102 103

y = γN 2

−0.6

−0.5

−0.4

−0.3

F
(y

)

F (y)

F (y 1)

−1/π

FIG. 11. Comparison of the numerical series F (y) (47) (solid
line) and its analytical expansion (48) (dashed line) holding for y � 1.
The dot-dashed line represents the thermodynamic value.

(41) (solid line), and the expansion (45) (dashed line). The
figure reveals a general good agreement between the BA and
the Bogoliubov predictions (41), except for γ = 1, where
Eq. (41), being based on the Bogoliubov approach, is no longer
adequate.

The chemical potential can be obtained by deriving Eq. (40)
with respect to N , at fixed L. One finds

μ =
(

∂E0

∂N

)
L

= g1Dn

[
1 + 1

2N

+∞∑
p=−∞

(
p2

2m

1

ε(p)
− 1

)]

(46)

which can be rewritten as μ = g1Dn[1 + √
γF (y)], where y

is provided by Eq. (42) and we have introduced the series

F (y) = 1√
y

+∞∑
ni=0

(
πni√

y + (niπ )2
− 1

)
+ 1

2
√

y
(47)

depending on the quantized momenta (38) and such that
the zero-momentum term is accounted for once. The Euler-
Maclaurin expression, applied to the sum (47), yields

F (y � 1) ≈ − 1

π
− π

12y
(48)

holding in the y � 1 limit. In Fig. 11 we report the comparison
of the series (47) with its expansion (48) holding for y � 1.
The two curves agree very well for y > 10.

Using Eq. (48), one can finally write the following expan-
sion for the chemical potential:

μ(γN2 � 1,γ � 1) ≈ g1Dn

[
1 −

√
γ

π
− π

12N2√γ

]
. (49)

In Fig. 12 we report the results for the chemical potential
as a function of y (42) for the thermodynamic limit (17)
(dot-dashed line), the Bethe-ansatz calculation (symbols),
and the Bogoliubov expression (46) (solid line). The y � 1
expansion (49) practically coincides with the full series (46).
The square symbol corresponds to the “forward” definition
μ+ = E0(N + 1) − E0(N ) of the chemical potential, the star
symbol corresponds to the “backward” expression μ− =
E0(N ) − E0(N − 1), while the circles correspond to the
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FIG. 12. Comparison of the chemical potential in BG units
as a function of y = γN2 in the thermodynamic limit (17) (dot-
dashed line), the Bethe-ansatz (BA) calculation (symbols), and the
Bogoliubov expression (46) (solid line), for several values of the
interaction parameter γ . For the BA, μ+ = E0(N + 1) − E0(N )
(square), μ− = E0(N ) − E0(N − 1) (star), and μ̄ = (μ+ + μ−)/2
(circle).

“symmetric” value μ̄ = (μ+ + μ−)/2. While the three defini-
tions of the chemical potential coincide in the thermodynamic
limit N → ∞, they are different in a finite system [44].
In particular, the symmetric definition μ̄ well agrees with
the calculation (46), based on the differential definition μ =
(∂E0/∂N )L, except for the γ = 1 case.

From Eq. (46), one can also calculate the sound velocity
(4), corresponding to the density derivative of the chemical
potential for a fixed value of L. The resulting expression is

vs(γ ) = vBG
s (γ )

√√√√1 − g1Dn

2N

+∞∑
p=−∞

(
p2

2m

)2 1

ε3(p)
(50)

with vBG
s (γ ) the sound velocity defined in the Bogoliubov

regime, used in Fig. 1. The above expression can be rewritten
as vs(γ ) = vBG

s (γ )
√

1 − √
γH (y) where we have defined the

series

H (y) =
√

y

2

+∞∑
ni=0

πni

[y + (πni)2]3/2
, (51)

after introducing the variable y (42) and the quantized
momenta (38). As before, we apply the Euler-Maclaurin
formula and we find the expansion

H (y � 1) ≈ 1

2π
− π

24y
(52)

holding in the y � 1 limit, yielding the asymptotic expansion

vs(γN2 � 1,γ � 1) ≈ vBG
s (γ )

√
1 −

√
γ

2π
+ π

24N2√γ

(53)
for the sound velocity.

B. Tonks-Girardeau regime at T = 0

According to Girardeau [16], the ground-state energy of the
gas in the strongly interacting limit is the same as that of an
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HS, γ = 100
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BA, γ = 100

BA, γ = 10

FIG. 13. Energy per particle in units of the TG gas energy ETG =
π 2h̄2n2/(6m) as a function of N . Bethe-ansatz (BA) results (symbols)
with different values of the interaction parameter γ are compared
with the TG gas (54) (solid line) and the hard-sphere (HS) model (55)
(dashed and dotted lines).

ideal Fermi gas. The energy for a finite number of particles
N in a box with periodic boundary conditions is obtained by
summing the energy of the single-particle levels in the box:

E0

N
(N ) = h̄2

mN

1
2 (N−1)∑
ni=1

(
2πni

L

)2

= 1

6

(
1 − 1

N2

)
π2h̄2n2

m
.

(54)

In the thermodynamic limit, N = ∞, Eq. (54) results in ETG =
π2h̄2n2/(6m). The “excluded volume” correction should be
present for a finite interaction strength; see the hard-sphere-like
expression, Eq. (22), and the discussion below it. In order
to incorporate the leading finite-size correction close to the
Tonks-Girardeau regime we replace L with L − Na1D in
Eq. (54), resulting in the following expression for the energy
per particle:

E0

N
(N,γ ) = 1

6

π2h̄2n2

m

(
1 − 1

N2

)(
1 + 2

γ

)−2

. (55)

For large values of the interaction parameter γ one can replace
the factor (1 + 2/γ )−2 with (1 − 4/γ ). In Fig. 13 we report
the energy per particle as a function of N for the TG regime
(54) (solid line), the HS-like model (55) (dashed and dotted
lines), and the Bethe-ansatz solution (symbols) for several
values of γ . We observe a very good agreement between the
BA solution and the analytical hard-sphere (55) expression.
For γ = 1000 the BA results are indistinguishable from the
TG limit (54) and they are not reported in the figure. The
comparison between Eqs. (55) and (45) reveals that finite-size
effects are less important in the TG regime since in the weakly
interacting Bogoliubov regime the correction 1/(N2√γ ) is
amplified by the smallness of γ .

For strong repulsion we obtain the finite-size correction to
the chemical potential

μ(N,|γ | � 1) =
(

∂E0

∂N

)
L

≈ EF

[
1 − 16

3γ
− 1

3N2

(
1 − 8

γ

)]
(56)
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FIG. 14. Chemical potential at T = 0 in Fermi units as a function
of the number of particles N in the TG regime [Eq. (A5)] for fixed
values of γ (solid line). The dashed lines correspond to the thermo-
dynamic limit [1 + 2/(3γ )]/(1 + 2/γ )3 of the TG model [Eq. (A6)].
The symbols correspond to the Bethe-ansatz (BA) calculation: μ+ =
E0(N + 1) − E0(N ) (square), μ− = E0(N ) − E0(N − 1) (star), and
μ̄ = (μ+ + μ−)/2 (circle).

and to the sound velocity (4):

vs(N,|γ | � 1) ≈ vF

√
1 − 8

γ
+ 4

3γN2
. (57)

It is interesting to note that while the finite-size correction
to the energy (55) and the chemical potential (56) scales as
1/N2 with the number of particles, such a correction is instead
asymptotically vanishing in the sound velocity (57).

In Fig. 14, we plot the chemical potential μ = (∂E0/∂N )|L
with E0 given by Eq. (55) (solid line) as a function of N

for different values of γ [46]. In the same figure we plot also
the values of μ+ and μ− which differ from the symmetric value
μ̄ = (μ+ + μ−)/2 for small values of N [44], similarly to the
case of the weakly interacting Bose gas. Differently from the
weakly interacting BG gas, the symmetric value μ̄, however,
exhibits significant deviations with respect to the differential
estimate (∂E0/∂N )|L, for small values of N .

C. Static inelastic structure factor

The ring geometry has a profound effect on the correlation
functions. Here we analyze the inelastic static structure factor
at zero temperature:

S(k) = 1

N
[〈ρkρ−k〉 − |〈ρk〉|2] (58)

where ρk = ∑N
j=1 e−ikxj is the density operator in momentum

representation. The static structure factor gives information
about two-body correlations and can be measured in experi-
ments by means of Bragg spectroscopy.

In the thermodynamic limit, the static structure factor has
a linear behavior at small momenta, S(k) = h̄|k|/(2mvs),
with the slope determined by the sound velocity vs . The
ring geometry introduces both discretization in the allowed
momentum and a change in the slope due to the finite-size
correction to the sound velocity. The latter effect is rather weak,
especially in the Tonks-Girardeau regime, but is important
in the context of the finite-size dependence of the Luttinger
parameter KL(N ).
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0.6
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Phonons

FIG. 15. Static structure factor at T = 0 in the Tonks-Girardeau
limit for different number of particles (solid lines). Values of momenta
(38) ki = 2πni/L corresponding to standing waves on a ring are
shown with circles. The dashed line represents the phononic law
S(k) = h̄|k|/(2mvF ), which coincides with the static structure factor
in the thermodynamic limit for |k| < 2πn in the TG regime.

The strongest effect comes from the discretization of the
allowed momenta on a ring. For the standing-wave values
(38), the last term in Eq. (58), corresponding to the square of
the so-called elastic form factor, does not contribute. Indeed,
one finds |〈ρk〉|2/N = N |〈eikx〉|2 = N [sin(kL/2)/(kL/2)]2,
which exactly vanishes for k = ni .

Figure 15 reports the static structure factor in the Tonks-
Girardeau regime. When the probing momentum k is equal to
a standing-wave value (38) in the ring, the value of the static
structure factor is exactly the same as in the thermodynamic
limit. In this way, discrete S(ki) points form a linear phononic
dependence. As the number of particles is increased, the
phononic behavior is better resolved. The absence of the
change of the slope means that the finite-size corrections
to the sound velocity are negligible in the Tonks-Girardeau
regime, confirming the predictions of Eq. (57).

When the probing momentum k is different from the
allowed values in the ring, the value of S(k) depends strongly
on the number of particles. Importantly, the small-momentum
behavior is no longer linear but rather shows a quadratic
dependence on k. This qualitative change reflects the change
in the structure of the excitation spectrum which becomes
discrete. A quadratic dependence on the momentum, S(k) =
h̄2k2/(2m�), is typical to gapped systems with � being the
value of the gap. In the discrete case it is not possible to
create an excitation with energy smaller than � ∝ h̄2/(mL2),
resulting in a quadratic low-momentum dependence. In the
thermodynamic limit � → 0 and the phononic linear behavior
is restored.

In Fig. 16 we show the static structure factor for γ = 1,
calculated using the diffusion Monte Carlo method. Similarly,
the finite-size quadratic behavior at small momenta is replaced
by the linear phononic dependence in the thermodynamic limit.
Contrarily to the TG case, here the values at S(ki) depend
on the number of particles, although the effect is weak (see,
for example, the value at k = πn). In terms of the Luttinger
parameter, which in the linear regime corresponds to KL =
2πnS(k)/k, this results in its finite-size dependence.
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FIG. 16. Static structure factor at T = 0 and γ = 1 for different
number of particles (solid lines). Values of momenta (38) ki =
2πni/L corresponding to standing waves on a ring are shown with
circles.

While for the TG regime the linear dependence extends
up to k = 2πn, for weaker interactions the linear regime
shrinks (compare Figs. 15 and 16). Eventually for γ → 0 the
linear regime becomes very small and phononic theory cannot
provide a good description of the system properties. A similar
effect was observed in Figs. 5 and 6 in the applicability of the
phononic theory in the limit of weak interactions.

VII. CONCLUSION

In this paper we have investigated the low-temperature
properties of 1D Bose gases along the whole BG-TG crossover.
We have shown that, at low temperature, the chemical
potential exhibits a typical T 2 behavior, which follows from
the leading contribution to thermodynamics arising from the
thermal excitation of phonons, similarly to what happens in
superfluids. The chemical potential is always a decreasing
function of T at high temperature, thus the T 2 increase
exhibited by the chemical potential at low temperature is
responsible for a typical nonmonotonic behavior as a function
of T . The coefficient of the T 2 law has been calculated
using the Lieb-Liniger results for the sound velocity and
the resulting behavior has been successfully compared with
thermodynamic functions obtained from the Yang-Yang theory
of 1D interacting Bose gases. We have also presented results
for the temperature dependence of the isothermal and adiabatic
inverse compressibilities. In particular we have shown that the
T 2 correction has opposite sign in the two cases.

In the second part of the paper we have focused on the
corrections to the thermodynamic functions caused by the
finite size of the system. To this purpose, we have considered
the useful ring geometry and the mapping with the 1D
problem where calculations are carried out using periodic
boundary conditions. Explicit results have been obtained in
the weakly and strongly interacting regimes where, at zero
temperature, the first corrections to the thermodynamic limit,
due to finite-size effects, can be calculated in analytic form,
in excellent agreement with the numerical results provided by
the Bethe ansatz. We have found that finite-size corrections are
particularly important in the weakly interacting regime where

the healing length can easily become comparable to the size
of the system.

Concerning future developments of the analysis carried out
in this paper, it is worth mentioning the physical understanding
of higher-order corrections (beyond the T 2 law caused by the
real excitations of the phononic branch) to the low-temperature
thermodynamic behavior. In particular, it is important to under-
stand the temperature corrections arising due to nonsymmetric
spreading of the phononic branch (different beyond-linear
behavior of the lower and upper branches) as well as effects
originating from the nonlinear behavior of the Bogoliubov
spectrum at large momenta. A further perspective of research
concerns the finite temperature thermodynamic behavior of 1D
Bose gases containing a small number of atoms and confined
in a ring of finite size.
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APPENDIX: EULER-MACLAURIN EXPANSION FOR G( y)

In this Appendix, we show the detailed derivation of the
expansion holding for y � 1 (44) for the series (43).

We use the Euler-Maclaurin expansion, which allows us to
approximate a series as follows [43]:

+∞∑
k=0

f (k) ≈
∫ +∞

0
f (x)dx +

m∑
k=1

Bk

k!
f (k−1)(x)

∣∣+∞
0 (A1)

where f (x) is a continuous function of real numbers x in
the interval [0, + ∞]. For m = 2, one considers only the first
terms in the sum, the Bernoulli numbers of which are

B1 = − 1
2

B2 = 1
6 (A2)

and f (k)(x) are the k derivatives of the function f (x).

013613-11



DE ROSI, ASTRAKHARCHIK, AND STRINGARI PHYSICAL REVIEW A 96, 013613 (2017)

By defining the function

f (x) = 2πx
√

y + (πx)2 − 2(πx)2 − y (A3)

entering the series (43), one estimates the integral∫ +∞

0
dxf (x) = −2y

√
y

3π
, (A4)

which allows us to calculate the thermodynamic limit of the
ground-state energy per particle on a ring configuration (41),
provided by Eq. (16).

By calculating the first derivative of the function (A3), and
by using Eqs. (A1) and (A2), one finally gets the expansion
(44) holding for large values of the y parameter.
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