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Experimental realizations of topological quantum systems and detections of topological invariants in ultracold
atomic systems have been a greatly attractive topic. In this work, we propose a scheme to realize topologically
different phases in a bichromatic optical lattice subjected to a periodically driven tilt harmonic oscillation, which
can be effectively described by a superlattice model with tunable long-range hopping processes. By tuning the
ratio of nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping amplitudes, the system undergoes a
topological phase transition accompanied by the change of topological numbers of the lowest band from −1 to 2.
Using a slowly time-periodic modulation, the system emerges distinct quantized topological pumped charges
(TPCs) of atoms in the filled band for different topological phases. Our scheme is realizable in current cold
atomic technique.
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I. INTRODUCTION

Exploration of topological phases of matters has attracted
longstanding interest in condensed matter physics in past
decades [1–18]. Besides traditional solid materials, ultracold
atomic systems have provided a powerful platform for the
investigation and simulation of topological physics [19–29].
By manipulating the geometry of optical lattices and atomic
hopping configurations, a series of celebrated models of
topological quantum systems, such as the Hofstadter model
[19–21], the Haldane model [22,23], and the Su-Schrieffer-
Heeger model [24–28], have been experimentally realized in
cold atomic systems. Besides the tunability of geometrical
structures, the time-periodic modulation of parameters of
systems can significantly change the band structures of the ef-
fective Floquet Hamiltonian [19–23,30–40] and thus provides
an additional freedom to adjust nontrivially topological bands.
So far, the Floquet band engineering has become an effective
experimental tool for exploration of topological phases in
periodically driven optical lattices.

On the other hand, the time-periodic driving has been
widely applied to realize coherent manipulation of the ul-
tracold atomic gases in the optical lattice. Some important
experimental progresses include the coherent control of the
single-particle tunneling amplitude in periodically shaken
lattices [41], the realization of dynamical localization [41–43],
the implementation of kinematic frustration [44], and the
dynamical control of the quantum phase transition from a
bosonic superfluid to a Mott-insulating state [45]. These
experimental schemes are based on the observation of an
effective modification of tunneling matrix elements induced
by the time-periodic driving. In most previous studies, only
the NN hopping processes are considered, due to the tunneling
amplitudes between NNN sites decay very quickly and are
generally negligible in comparison with the NN hopping terms.
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However, as we shall demonstrate in this paper, it is possible
to get much stronger NNN tunneling terms for a periodically
driven system. The presence of long-range hopping terms can
significantly change the band structure of the system, and may
induce the phase transition between topologically different
phases.

In this work, we study the topological phase transition in
one-dimensional (1D) periodically driven optical superlattices,
which can be realized by trapping fermions in a 1D bichromatic
optical lattice with a tilt harmonic oscillation. The effective
time-independent Hamiltonian in the high-frequency oscilla-
tion regimes can be described by a superlattice model with
both the NN and NNN hopping terms, and particularly the
ratio of NN and NNN hopping amplitudes can be adjusted
freely. In comparison with the 1D superlattice model described
by the Harper model [29,46], the system provides different
topological behaviors when the NNN hopping amplitude J2 is
larger than the NN one J1. To characterize the topological
features, we study the topological Chern numbers of the
system in different parameter regimes. The existence of the
topological phase transition is based on the change of Chern
numbers for the system with the lowest band being fully
filled by fermions when the parameter crosses the transition
point, the change of energy gaps, and nontrivial edge states.
Particularly, recent progress in in situ detection with the
single-site resolution offers the possibility of the detection of
topological Thouless pumping [25,26] in different topological
regimes. Our calculation verifies the topological quantization
of the center of mass (CM) of the cloud in realistic ultracold
atom experimental situations.

II. MODEL AND EFFECTIVE HAMILTONIAN

Consider the noninteracting ultracold fermions trapped in
a bichromatic optical lattice with a tilt harmonic oscillation.
The fermionic motion along the x axis is described by
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H = Hs + W (t), where

Hs = −
∑

j,m

J ′
m(ĉ†j ĉj+m + H.c.) + λ

∑

j

cos (2παj + δ)n̂j

(1)

is a bichromatic optical lattice and

W (t) = 2χ cos (�t)
∑

j

j n̂j (2)

represents a tilt of the lattice with harmonic oscillation, where
χ is the strength of the shaking term and � is the driving
frequency. Here, ĉj is the annihilation operator, n̂j = ĉ

†
j ĉj

is the density operator on site j, λ is the strength of the
modulation, α determines the modulation period chosen α =
1/3 in this paper, and δ is an arbitrary phase. In the absence
of the W (t) term, the static bichromatic optical lattice model
includes the hopping terms and the quasiperiodic modulation
term where the strength of the modulation λ depends on the
amplitude of the secondary lattice and the amplitude of the
hopping terms J ′

m can be described by an asymptotic law
J ′

m ∼ (xm)−3/2e−hxm [47,48]. Here, xm is the interval between
two lattice sites and h is the distance between the branch point
and the real axis in the complex momentum k space. For the
deep well, h/kL ∼ √

V0/(4Er ) − 1/4, whereas in the weak
binding case, h/kL ∼ V0/(8Er ) where V0 is the depth of the
primary lattice, and Er = h̄2k2

L/(2μ) is the recoil energy with
the wave vector of the primary laser light waves kL and μ

being the mass of the fermions. With the decrease of V0/Er ,
the effect of the long-range hopping emerges. For the shallow
potential case (take V0/Er = 3 as an example), the ratio of the
strengths between the NNN and the NN hopping J ′

2/J
′
1 ∼ 0.1

[49,50]. In our work, we only consider the NN and NNN
hopping terms for the shallow potential case.

In the presence of periodic shaking, the scenario has
been investigated theoretically [51–60] and experimentally
[19–23,35,41–45,61]. For sufficiently high driving frequen-
cies, the periodic shaking system can be equivalent to an
effective Hamiltonian Heff which behaves similarly as the
undriven system, but with the hopping matrix elements
J ′

1 and J ′
2 replaced by the renormalized matrix elements

J ′
1J0[2χ/(h̄�)] and J ′

2J0[4χ/(h̄�)], respectively, where J0 is
the Bessel function of order zero. Figure 1(a) shows the Bessel
function of order zero J0(x) and J0(2x). We can see the ratio
of J0(2x)/J0(x) can be freely controlled by x. In realistic
experiment, we can adjust the driven strength χ and the driving
frequency �, to freely control the ratio between the strength of
NNN and NN hopping terms. Hence the effective Hamiltonian
can be described as the following:

Heff = −
∑

j,m={1,2}
Jm(ĉ†j ĉj+m + H.c.) +

∑

j

Wj n̂j , (3)

with

Wj = λ cos (2παj + δ). (4)

For α = 1/3, there are three different sites in each unit cell
shown in Fig. 1(b). In order to simplify the extra variables,
we define J1 = J cos θ denotes the NN hopping strength and
J2 = J sin θ is the NNN hopping strength [Fig. 1(c)] where
J = √{J ′

1J0[2χ/(h̄�)]}2 + {J ′
2J0[4χ/(h̄�)]}2 and cos θ =

（b）

（c）

（d）
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FIG. 1. (a) Bessel function of order zero J0(x) and J0(2x).
(b) For α = 1/3, there are three different sites in every unit cell. (c)
For arbitrary θ , the strength of NN hopping is J1 and NNN hopping is
J2. (d) In the θ = 0 limit, J2 is obviated and (e) in the limit θ = π/2,
the original chain is separated into two new chains and only the NNN
hopping term conserved connects odd or even sites.

J ′
1J0[2χ/(h̄�)]/J . Without loss of generality, θ is chosen from

0 to π/2 to change the ratio J2/J1. In the following, J is set
as the energy unit.

For the case of θ = 0, the effective Hamiltonian Eq. (3)
only includes the NN hopping and the three period chem-
ical potential terms which returns to the model studied by
Lang et al. [29] and Kraus et al. [46] [Fig. 1(d)]. The system is
topologically nontrivial and when the lowest band is fully
filled by fermions, we can calculate the Chern number in
two-dimensional phase-momentum (δ,k) space and obtain
the topological number −1 [29]. Under the open boundary
conditions (OBCs), the topologically nontrivial edge modes
emerge in the energy gaps [Fig. 2(a2)]. Whereas for the case
of θ = π/2 shown in Fig. 1(e), only the NNN hopping is
preserved and the J1 term is omitted. The 1D chain separates
into two decoupled chains, one comprises all of the odd sites
and the other the even sites. These two new chains include the
same hopping elements J2 and the chemical potential which
are still three period but with different forms from the original
one, i.e., λ cos ( 2π

3 j − δ)n̂2j and λ cos [ 2π
3 (j + 1) − δ]n̂2j+1.

Another difference from the original one is that the lattice
constant becomes double. Hence, (i) the energy of the two new
chains are degenerate; (ii) the period of the energy spectrum
in momentum space shrinks half as shown in Fig. 2(e1);
(iii) when the lowest band is fully filled, each chain provides
the Chern number +1 and the summation is +2. At the two
different limits (θ = 0 and π/2), the system presents different
topological behaviors. It means that with the increase of θ from
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FIG. 2. (a1)–(e1) Energy bands for the system under PBCs
with λ = 1.5, δ = 0, θ = 0,π/8,π/4,π/3, and π/2, respectively.
(a2)–(e2) Energies varying with the phase δ under OBCs. Here,
L = 60,λ = 1.5,θ = 0,π/8,π/4,π/3, and π/2, respectively. (f) The
variation of the CM 	xCM vs the phase δ under OBCs with L = 60
and filling N = 20 fermions for the cases of θ = π/8 and π/3.

0 to π/2, the system undergoes a topological phase transition
with the Chern number changing from −1 to +2. In this paper,
we shall study the topological phase transition with the change
of θ and the charge pumping method is applied to detect the
transition. We choose θ = π/8, π/4 and π/3 as the specific
examples of θ �= 0 and π/2.

III. TOPOLOGICAL PHASE TRANSITION

A change of topological numbers is generally attributed to
a topological phase transition. As discussed above, at θ = 0
and π/2, the Chern number of the system are, respectively,
equal to −1 and 2. It is confirmed that with the rolling
of θ from 0 to π/2, the system undergoes a topological
phase transition. To characterize the topological properties
of the bulk states, we can calculate the Chern number of
the lowest band in the two-dimensional parameter space of
(δ,k). The Chern number is the topological invariant which
is related to the integral of the Berry curvature over the
filled bands via C = 1

2π

∫ 2π

0 dδ
∫ 2π

0 dk(∂δAk − ∂kAδ), where
AX = i〈ψ(X)|∂X|ψ(X)〉 is the Berry connection and ψ(X) is
the occupied Bloch state with the parameter X [62]. The Chern
number for fermions fully filled in the lowest band is −1 when
θ is less than π/4, while it jumps to 2 when θ crosses π/4.
Hence the topological phase transition of the system occurs at
θ = π/4.

If a topological phase transition exists in one system, the
transition is accompanied by the energy gap closing and
reopening. Next we study the change of the energy gap

for different θ under the PBCs. Figures 2(a1)–2(e1) show
the energy spectrum of Hamiltonian (3) in momentum k

space with λ = 1.5, δ = 0, and θ = 0,π/8,π/4,π/3, and π/2,
respectively. In the absence of J2 as shown in Fig. 2(a1), there
are three energy bands due to three different sites in each unit
cell. An obvious gap emerges between the lowest two bands
which is shrinking with the increase of θ . As θ is reaching π/4
shown in Fig. 2(c1), the first and second bands are touched
together at k = π . When θ is larger than π/4, the energy gap
reopens [Fig. 2(d1)]. In Fig. 2(e1), θ = π/2, the 1D chain
separates into two decoupled period-three new chains with
the double lattice constant. The energies of two decoupled
chains are degenerate and the period of the energy spectrum is
shortened by half. It is shown that θ = π/4 is the topological
phase transition point, on both sides of which one has different
Chern numbers.

Under the OBCs, as the phase δ varies from 0 to 2π , the en-
ergy spectrums with L = 60, λ = 1.5, θ = 0,π/8,π/4,π/3,
and π/2 are shown in Figs. 2(a2)–2(e2). For the case of
θ �= π/4, the edge states connecting two different bulk regimes
emerge in the gap and the position of the edge states varies
continuously with the rolling of δ. Whereas when θ = π/4,
the gaps vanish and there are no edge modes detected. Taking
θ = π/8 and π/3 as examples, we study the variation of
the CM 	xCM(δ) = xCM(δ) − xCM(δ + δ′) vs the phase δ for
filling N = 20 fermions. Here, the position of CM is defined as
xCM = ∑

j jρj , ρj = 〈ψG|n̂j |ψG〉 with ψG the ground-state
wave function; the density distribution at site j and δ′ is a
tiny deviation of the phase. In Fig. 2(f), for the case of
θ = π/8,	xCM ≈ −54.4 at δ = 0.66π . It means that there
are fermions shifting from left edge to right with the increase
of δ near 0.66π . For the case of θ = π/3, the fermions from
the right edge shift to the left when δ crosses 0 and 1.33π .
The appearance of edge states and particles shifting from one
edge to another are generally attributed to the nontrivially
topological feature of bulk systems. Also the number of jump
discontinuity of xCM is equal to the absolute value of the
Chern number as show in Fig. 2(f) [63], i.e., for θ = π/8
and the lowest band fully filled, the number of the jump point
is equal to the absolute value of the first band Chern number
C1, and for the case of θ = π/3, the number of the jump
points is 2 corresponding to |C1| = 2. We can detect the jump
discontinuity by an in situ measurement of the density of the
cloud, when we adiabatically pump the phase δ. Thus one can
directly extract Chern numbers in different regimes.

IV. TOPOLOGICAL PUMPED CHARGES

In realistic ultracold atom experimental situations, we
consider the CM of a cloud trapped in a harmonic potential,
i.e., Wj in Eq. (4) is replaced by

Wj = λ cos [2παj + δ(t)] + 1
2μω2

T (j − j0)2, (5)

where δ(t) = δ0 + 2πt/T with initial phase δ0 and increasing
linearly with time. The 1D lattice changes in time with a
period T . ωT is the frequency of the harmonic trap, j0 is the
position of the lattice center, and we set the mass of fermions
μ as being unity. We study the density distribution of the
trapped system ρj and in order to reduce the oscillations
of the density distributions, we alternatively calculate the
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FIG. 3. (a1)–(e1) The initial local density distributions of
fermions ρj labeled by blue solid lines and the initial local
average densities ρ̄j marked by red dash lines. (a2)–(e2) TPCs 	n

changing with time t . Here, we average 10 realizations of initial
phase δ0, L = 210,N = 40,λ = 8.5, and from (a)–(e) (θ,ωT ) =
(0,0.033), (π/8,0.03), (π/4,0.029), (π/3,0.027), and (π/2,0.033),
respectively.

local average density ρ̄j = ∑p

i=1 ρj+i/p with p = 3 for
the case of α = 1/3. In Figs. 3(a1)–3(e1), the initial local
density distributions of fermions labeled by blue solid
lines and the initial local average densities marked by red
dashed lines are shown. Here, we average 10 realizations
of the initial phase δ0, L = 210, N = 40, λ = 8.5 and
(θ,ωT ) = (0,0.033),(π/8,0.03),(π/4,0.029),(π/3,0.027),
and (π/2,0.033), respectively. The initial local average
density with a plateau at ρ̄j = 1/3 in the center of the trap
indicates it is a band insulator in this regime except the case
of θ = π/4. We can see the band insulators with metallic
wings and the metallic edges should impact the detection of
the topological numbers.

We use charge pumping method to calculate topological
invariants in different parameter regimes [64–66]. We propose
to slowly vary the phase in Eq. (5) linearly with time δ(t) =
δ0 + 2πt/T , where the 1D lattices change in time with a
period T . To reveal the topological number, we observe the
TPC 	n = xCM(t)/p. Experimentally, the position of the CM
can be measured by using the in situ method. The effect
of the nontrivial topological pumping can be identified as a
quantization of 	n at multiple pumping cycles. Figures 3(a2)–
3(e2) with the same parameters as Figs. 3(a1)–3(e1) show the
TPCs 	n evolve with time t , the interval of the time is set as
	t = T/105, and average 10 realizations of the initial phase
δ0. In the regime θ < π/4,	n(T ) approaches to −1, whereas
when θ larger than π/4,	n(T ) ≈ 2. At the phase transition
point θ = π/4 shown in Fig. 3(c2), 	n(T ) = 0.0244 which
indicates that this point is topologically trivial.

TABLE I. List of the TPCs 	n(T ), the relative errors of the TPCs
δn(T ) and the total particle numbers of the metallic regime nmetal for
different θ and ωT corresponding to Fig. 3.

(θ, ωT ) 	n(T ) δn(T )(%) nmetal

(0,0.033) −0.9987 0.13 0.0274
(π/8,0.03) −0.9921 0.79 4.0621
(π/3,0.027) 1.9699 1.505 6.1032
(π/2,0.033) 1.9957 0.21 1.0258

All of the TPCs approach to integers for topologically
nontrivial cases, but are not exactly equal to. We artificially
define ρ̄j < 0.32 as the metallic regimes. The total particle
number of the metallic regime nmetal and the relative error of
the TPC δn(T ) are listed in Table I. From Table I, we can see
that the smaller the metallic regime, the less deviation between
the measurements and the realistic topological invariants. The
metallic wings will, in principle, give a nonquantized value of
the pumped charge, although we could not give the definite
relations between δn(T ) and nmetal (see Appendix). Hence, we
shall exclude the metallic regime effect as much as possible,
when we measure the topological numbers.

V. SUMMARY

In summary, we demonstrate that a 1D periodically driven
bichromatic optical lattice system can be described by a
superlattice model with adjustable NN and NNN hopping
terms, which exhibits the topologically nontrivial phase
transition with the topological invariants from −1 to 2. Take
θ = 0, π/8, π/4, π/3, and π/2 as specific examples to study
the topological properties of the system and determine the
position of the topological phase transition point. We find that
when θ = 0 and π/8 (θ < π/4), the topological number of
the filled lowest band is −1, whereas for the case of θ = π/3
and π/2 (θ > π/4), the Chern number of the lowest band
jumps to 2. And the topological number of θ = π/4 is a trivial
number which is the topological phase transition point. We
also determine the transition by calculating the change of the
gaps and nontrivial edge states. The charge pumping method
is applied to detect the topological invariants on both sides
of the transition point. The numerical results are affected by
the proportion of the initial metallic wings. In the realistic
ultracold atom experimental situation, we need to reduce the
regime of the metallic wings as much as possible.
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FIG. 4. (a1)–(e1) The initial local density distributions of
fermions ρj labeled by blue solid lines and the initial local average
densities ρ̄j marked by red dashed lines. (a2)–(e2) TPCs 	n changing
with time t . Here, we average over 10 realizations of the initial
phase δ0, L = 210,N = 40,λ = 8.5, θ = 0 and from (a)–(e) ωT =
0.05,0.065,0.068,0.08, and 0.1, respectively.

APPENDIX

1. Effect of harmonic potential

In this supplemental material, we study the effect of the
frequency of the harmonic potential for the detection of
topological pumped charges (TPCs). For realistic ultracold
atom experimental situations, we introduce a harmonic trap
into the original Hamiltonian (3) in the main text given by

Vj = 1
2ω2

T (j − j0)2, (A1)

where ωT is the frequency of the harmonic trap and j0 is the
position of the center of the lattice. As explained by Thouless

TABLE II. List of the TPCs 	n(T ), the relative errors of the
TPCs δn(T ), and nmetal/N for different ωT corresponding to Fig. 4.

ωT 	n(T ) δn(T )(%) nmetal/N

0.05 −0.448 55.2 0.5877
0.065 −0.7231 27.69 0.3304
0.068 −0.8862 11.38 0.2035
0.08 −0.9713 2.87 0.1512
0.1 −0.9918 0.82 0.1024

[1], when the lattice is subjected to a slow and periodical
time modulation, a quantization of particle transport in a one-
dimensional (1D) band insulator can be detected, which is
related to the topological invariant. To study the topological
number, we propose to slowly change the phase linearly in time
with a period T , δ(t) = δ0 + 2πt/T , where δ0 is the initial
phase.

In Fig. 4 we show the initial density distribution ρj and
the local average density ρ̄j defined in the main text changing
with the increasing of the frequency of the harmonic potential
ωT for the case of L = 210,N = 40,λ = 8.5, and θ = 0,
averaged over 10 realizations of initial phase δ0. Clearly, the
local average densities present band insulators in the center
of traps with metallic wings. We artificially set ρ̄j < 0.32 as
the metallic regime and the proportion of the total particle
numbers in the metallic regime nmetal/N are listed in Table II.
The regime of the metallic edges shrinks rapidly with the
increase of ωT . To calculate TCPs, we slowly and periodically
roll the phase linearly in time and the interval of the time is
set as 	t = T/105 and average over 10 realizations of initial
phase δ0. Figures 4(a2)–4(e2) show the time evolution of TPCs
	n. For small ωT , such as ωT = 0.05, nmetal is over half of
total particles, and the TPC 	n(T ) at time T greatly deviates
the realistic topological number and the relative error of the
TPC δn(T ) reaches to 55.2% (shown in Table II). With the
increase of ωT , the metallic proportion decreases and the TPC
at time T approaches to −1 rapidly. When ωT reaches to 0.1,
the metallic regime is much smaller, TPC 	n(T ) = −0.9918,
and the relative errors of the TPC δn(T ) = 0.82%. We believe
to detect the topological invariants proposed by Thouless [1],
one need to suitably increase the tapping frequency in realistic
ultracold atomic experiments to decrease the metallic regime
as much as possible.
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