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Quenches in isolated quantum systems are currently a subject of intense study. Here, we consider quantum
few-mode systems that are integrable in their classical mean-field limit and become dynamically unstable after
a quench of a system parameter. Specifically, we study a Bose-Einstein condensate (BEC) in a double-well
potential and an antiferromagnetic spinor BEC constrained to a single spatial mode. We study the time dynamics
after the quench within the truncated Wigner approximation (TWA), focus on the role of motion near separatrices,
and find that system relaxes to a steady state due to phase-space mixing. Using the action-angle formalism and a
pendulum as an illustration, we derive general analytical expressions for the time evolution of expectation values
of observables and their long-time limits. We find that the deviation of the long-time expectation value from
its classical value scales as O(1/ ln N ), where N is the number of atoms in the condensate. Furthermore, the
relaxation of an observable to its steady-state value is a damped oscillation. The damping is Gaussian in time with
a time scale of O[(ln N )2]. We also give the quantitative dependence of the steady-state value and the damping
time on the system parameters. Our results are confirmed with numerical TWA simulations.
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I. INTRODUCTION

The advent of precise experimental control in ultracold
atomic systems has motivated theoretical study in nonequi-
librium dynamics in isolated quantum systems [1]. For
generic Hamiltonian systems the expectation value of a local
observable at long times after a quench, a sudden change in
a control parameter, is described by a Gibbs ensemble [2,3].
However, for integrable systems, a special class of Hamil-
tonian systems, the long-time behavior is instead believed
to be described by a generalized Gibbs ensemble [3]. This
important role of integrability on the time dynamics has been
demonstrated experimentally [4,5]. Integrable systems are of
much theoretical interest as they are amenable to exact analytic
treatment. A classical integrable system can be solved using
action-angle variables [6], while a quantum integrable system
is solvable by the Bethe ansatz [7].

A mean-field approximation can be applied to a bosonic
system with a macroscopically occupied mode. The time
dynamics of the system is then governed by a classical
Hamiltonian and described by classical trajectories in its
phase space. For a weakly interacting Bose-Einstein con-
densate (BEC), this classical trajectory is a solution of
the time-dependent Gross-Pitaevskii equation for the order
parameter with continuous spatial degrees of freedom [8].
In certain cases, it is sufficient to describe a bosonic system
with just a few degrees of freedom. Some examples are a
BEC in a double-well potential [9], a spin-1 spinor BEC
within the single-mode approximation (SMA) [10,11], and
a few-site Bose-Hubbard model with a large occupation
per site [12–14].

A bosonic system becomes dynamically unstable when it
is prepared by a quench at a saddle point in its phase space.
Dynamical instabilities have been predicted for vortices in

trapped BECs [15–17], superfluid flow of BECs in optical lat-
tices [18,19], and BECs in cavities [20]. These predictions have
been experimentally observed [21–25]. The instability is also
used as an experimental route for the generation of squeezed
states [26–29]. A mean-field description is then insufficient and
quantum fluctuations need to be included. Quantum correc-
tions can be (partially) included by using the truncated Wigner
approximation (TWA) [30–32], which models the dynamics of
the Wigner distribution in the phase space. The TWA has been
used to numerically study the effects of thermal fluctuations on
a BEC [30], quenches in spinor condensates [33,34], thermal-
ization in chaotic systems [35,36], and superfluid flow [37].

In this paper, we analytically study the time dynamics of two
integrable few-mode quantum systems within the truncated
Wigner approximation after a quench of a parameter that
makes the systems dynamically unstable. Our paper is set up as
follows. We introduce dynamical instability in bosonic systems
in Sec. II and TWA in Sec. III. We define the integrability
of classical Hamiltonians, which govern the mean-field limit
of these systems, and introduce action-angle coordinates in
Sec. IV. Section V introduces the concept of mixing in phase
space due to time evolution and describes how this mixing
leads to relaxation of an observable to a steady-state value.
Using the pendulum as an illustrative example, we stress
the role of separatrices in Sec. VI, derive general results for
long-time expectation value of an observable in Sec. VII, and
the time dynamics of relaxation of this expectation value in
Sec. VIII. We apply these results to the case of a condensate in
a double-well potential (the double-well system) in Sec. IX and
a spin-1 BEC described by a single spatial mode in Sec. X. We
find that the deviation of the long-time expectation value from
the classical value and the time scale of relaxation depends
logarithmically on atom number rather than algebraically.
Finally, we conclude in Sec. XI.
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II. DYNAMICAL INSTABILITY

The mean-field equations of motion of an isolated quantum
bosonic system are equivalent to Hamilton’s equations of
motion of a classical system. The mean-field ground state
is a stable equilibrium phase-space point, where the classical
Hamiltonian has a minimum. On the other hand, a dynamically
unstable state corresponds to a saddle point of this Hamilto-
nian. Such an unstable state can be prepared by starting from
a minimum of the initial Hamiltonian and then quenching a
system parameter to change this point to a saddle point of
the final Hamiltonian. As an example, consider the quantum
oscillator H0 = (p̂2 + x̂2)/2, where x̂ and p̂ are the canonical
position and momentum operators, respectively. Here, we have
set h̄ and the natural frequency of the oscillator to one. Its
mean-field ground state is the phase-space point (xc,pc) =
(0,0), where xc = 〈x̂〉, pc = 〈p̂〉, and 〈. . . 〉 is the average
over a quantum state. We make the state dynamically unstable
by suddenly changing to the Hamiltonian H1 = (p̂2 − x̂2)/2.
Under the mean-field equations of motion, a dynamically
unstable point is stationary. Thus, xc(t) = 0 and pc(t) = 0
hold for all times. In contrast, quantum evolution under H1

leads to exponential growth in the unstable mode [8]. In fact,
following the language of quantum optics, H1 ∝ ââ + â†â†

leads to single-mode squeezing, where â (â†) = (x̂ ± ip̂)/
√

2
is the annihilation (creation) operator of the mode.

III. TRUNCATED WIGNER APPROXIMATION

The time evolution of a dynamically unstable system can
be studied using the truncated Wigner approximation (TWA)
[30]. It incorporates the leading-order quantum corrections
to the mean-field equations of motion [38]. In the TWA,
a Wigner distribution function F (x,p,t) time evolves under
classical Hamilton’s equations, in contrast to the mean-field
approximation where the evolution of a single phase-space
point (x(t),p(t)) is studied. Here, x = (x1, . . . ,xn) and p =
(p1, . . . ,pn) are canonical position and momentum coordi-
nates for a classical mean-field Hamiltonian system with n

degrees of freedom. The initial distribution F0(x,p) is the
Wigner transform [39] of the prequench quantum ground state
or any approximation thereof.

For an observable O(x,p), we define its evolution O(t) ≡
O(x(t),p(t)) along a trajectory (x(t),p(t)) with initial con-
ditions (x0,p0). The expectation value of O(t) over all
trajectories is

〈O(t)〉 =
∫

�

dx dpO(x,p)F (x,p,t)

=
∫

�

dx0dp0 O(t)F0(x0,p0), (1)

with measures dx = dx1 . . . dxn, dp = dp1 . . . dpn, and the
integral is over all phase space �. The distribution satisfies∫
�

dx dp F (x,p,t) = 1 for all t in accordance with Liouville’s
theorem [6].

IV. CLASSICAL INTEGRABLE SYSTEMS

In classical mechanics, a Hamiltonian system with n

degrees of freedom is integrable if there exist n mutually

commuting (with respect to the Poisson bracket) conserved
quantities [6]. Then, a trajectory in the 2n-dimensional phase
space lies on an n-dimensional torus. For an integrable
system, the coordinates (x,p) can be transformed to canonical
coordinates called actions I = (I1, . . . ,In) and angles ϕ =
(ϕ1, . . . ,ϕn), such that Hamiltonian H is independent of ϕ.
Crucially, (I,ϕ) and (I,ϕ + 2πm) correspond to the same
phase-space point, where m = (m1, . . . ,mn) is a vector of
integers. In these coordinates, the Hamilton’s equations are

İi = −∂H (I)

∂ϕi

= 0, ϕ̇i = ∂H (I)

∂Ii

≡ ωi(I), (2)

for all i ∈ {1, . . . ,n}. The frequencies ωi(I) only depend on
I. Hence, the actions are conserved quantities and the time
evolution of the angles has the simple form

ϕ(t) = ω(I)t + ϕ0, (3)

where ω(I) = [ω1(I), . . . ,ωn(I)] and ϕ(0) = ϕ0.
For our Hamiltonian systems, action-angle coordinates are

not globally defined. Instead, they are defined on disjoint re-
gions of � by maps from each such region R to IR ⊗ J , where
IR ⊂ Rn and J = [0,2π ]⊗n are the spaces spanned by the
actions and angles, respectively. We then construct distribution
functions fR(I,ϕ,t) = (2π )nF (x(I,ϕ),p(I,ϕ),t) for (x,p) ∈
R with normalization

∑
R

∫
IR

dI
∫
J dϕ/(2π )n fR(I,ϕ,t) = 1.

The latter follows from the fact that canonical transformations
have a unit Jacobian. The distribution fR(I,ϕ,t) is peri-
odic in ϕ and evolves as fR(I,ϕ,t) = f0,R(I,ϕ − ωt), where
f0,R(I,ϕ) = fR(I,ϕ,0) is the initial distribution. Moreover,
Eq. (1) becomes

〈O(t)〉 =
∑
R

∫
IR

dI
∫
J

dϕ

(2π )n
fR(I,ϕ,t)OR(I,ϕ) (4)

=
∑
R

∫
IR

dI
∫
J

dϕ0

(2π )n
f0,R(I,ϕ0)OR(I,ϕ(t)), (5)

where OR(I,ϕ) is the functional form of the observable in
region R.

V. PHASE-SPACE MIXING

A distribution function that is initially localized around a
phase-space point typically stretches, tangles, and disperses
over the accessible phase space. This mixing in phase space
has been studied in plasma physics [40] and astrophysics [41].
We illustrate this concept using an anharmonic oscillator. Its
Hamiltonian H = r2/2 + εr4 is integrable, where r2 = p2 +
x2 and we have set the mass and the natural frequency of the
oscillator to unity. In this case, the action-angle coordinates are
globally defined. The action I is a function of r and the angle
ϕ is the polar angle in the (x,p) plane. Points with different
r rotate around the origin at different frequencies ω(I ) and
the distribution function stretches as shown Fig. 1. Eventually,
the distribution spreads uniformly and mixes in the compact
coordinate ϕ, while remaining localized in r and I .

For a general integrable system, the frequencies ω(I) de-
pend nontrivially on I. Hence, the distribution will eventually
mix in ϕ. It is important to realize that as the distribution
function mixes in phase space, fine-scale structures must
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FIG. 1. Phase-space mixing for an anharmonic oscillator with
ε = 1. Panels show the Wigner distribution F (x,p,t) in phase space
(x,p) at times t = 0, 2, 10, and 100. Initially, F (x,p,t = 0) is a 2D
Gaussian with standard deviation σ = 0.1 localized around (x,p) =
(1,0). Approximately 99.7% of the points lie within the two dashed
circles.

develop in order to conserve the phase-space volume as
required by Liouville’s theorem. For the anharmonic oscillator,
evolution leads to tightly wound spirals as shown in the third
panel of Fig. 1.

Phase-space mixing simplifies the evaluation of the long-
time expectation value of an observable. Experimentally
accessible observables are typically smooth functions of the
phase-space coordinates. Then, the distribution function with
its fine-scale structures can be coarsened, i.e., in Eq. (4) we
can replace fR(I,ϕ,t) by the time-independent distribution [42,
Sec. 1]

f̄R(I) ≡
∫
J

dϕ

(2π )n
fR(I,ϕ,t) =

∫
J

dϕ

(2π )n
f0,R(I,ϕ). (6)

Consequently, the expectation value at long times becomes

lim
t→∞〈O(t)〉 =

∑
R

∫
I
dI f̄R(I)

∫
J

dϕ

(2π )n
OR(I,ϕ). (7)

Thus, the long-time expectation value of an observable is
given by the average over the accessible phase space weighted
by f̄R(I).

VI. DYNAMICS NEAR A SEPARATRIX

The description of the time evolution of the initially
localized Wigner distribution following dynamical instability
for our double-well and spin-1 boson systems with a four-
and six-dimensional phase space, respectively, must include a
study of separatrices. As we will show in Secs. IX and X, their
dynamics is controlled by a two-dimensional subspace �2D

spanned by canonical coordinates x1 and p1. This subspace
contains a single saddle point that is connected to itself by
one or more trajectories, known as separatrices. In fact, there
are two separatrices and one separatrix for the double-well
and spin-1 Bose system, respectively. The frequency ω1(I)
associated with a trajectory in �2D goes to zero as its starting
point approaches the saddle point. In fact, near the saddle
point ω1 varies sharply with I, which leads to phase-space
mixing in �2D. The other frequencies ωi for i �= 1 are slowly
varying near the saddle point and the distribution along the
corresponding angles remains localized over the time scale
for phase-space mixing in �2D. In this and the next section
we discuss general features of trajectories and observables

FIG. 2. (a) Equal-energy contours in the phase space (θ,p) of
a simple pendulum. The phase space is a cylinder as the lines
θ = −π and π are equivalent. The saddle point is at (θ,p) = (π,0).
Separatrices are thick solid blue (S+) and thick dashed blue (S−)
lines, which divide the phase space into libration (A and C) and
rotating (B) regions. For each region, the thick dashed-dotted
black line defines action-angle coordinate ϕ1 = 0. The color map
is nonlinear in order to better visualize the equal-energy contours. (b)
Trajectories starting near the saddle point as a function of time t for
a single period T . Both a rotational (θA(t),pA(t)) and a librational
(θB (t),pB (t)) trajectory are shown. The rotational trajectory lies in
region A and starts from phase-space point denoted by a star in panel
(a). The librational trajectory lies in region B and starts from the
square in panel (a).

in the phase-space region near a separatrix. We develop this
discussion using a simple pendulum, an integrable system with
a two-dimensional phase space containing a single saddle point
and two separatrices [43, Sec. 22.19].

The Hamiltonian of a simple pendulum is

Hpend = p2

2
+ 1 − cos θ, (8)

where p is the momentum and θ ∈ [−π,π ] is the angular
position, where θ = ±π are identical (we have set the
pendulum’s length and acceleration due to gravity to one).
The point (θ,p) = (0,0) corresponds to the stable equilibrium,
while (θ,p) = (π,0) is its sole saddle point and corresponds
to a stationary upright pendulum. Around the saddle point
Hpend ∼ 2 + (p2 − x2)/2, where x = (θ − π ) mod 2π .

Figure 2(a) shows the equal-energy contours in the phase
space of the pendulum. Two separatrices, S+ and S−, divide
the phase space into three regions, denoted by A, B, and C,
with two distinct kinds of periodic motions: libration and
rotation. Libration, confined to region B, is an oscillation
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where θ is bounded and does not pass the inverted position,
θ = π . Its time period is Tlib = 4K(k), where K(k) is the
elliptic integral of the first kind [43], the modulus k = √

E/2,
and E is the energy. Rotation is an unbounded motion in
regions A or C, where the pendulum passes the inverted
position. Its time period is Trot = 2kK(k), where k = √

2/E .
Explicit expressions of libration and rotation motion are given
in Appendix A.

On the separatrices the period is infinite and, hence, the
action-angle coordinates (I1,ϕ1) are not defined. Thus, a
saddle point precludes the existence of global action-angle
coordinates. They are, however, defined separately in each of
the three regions. Although the explicit form of I1 and ϕ1 in
terms of p and θ is known [44], it is not required for our
analysis. We will need the location where ϕ1 is zero along
an equal-energy contour. We define it to be a point near the
saddle point where |p| is minimal. This condition is unique
for regions A and C. In region B there are two such points and
we choose the point where θ < 0. As the travel time between
the two points is a half the period, ϕ1 = π for the other point.
Our choice of ϕ1 = 0 is shown in Fig. 2(a) as dashed-dotted
lines originating from the saddle point.

We remark on the properties of solutions on the separatrix,
which will be useful later. The two solutions that vary
significantly only around t = 0 and for which θ (t = 0) = 0
are given by

θS±(t) = ±2 arcsin(tanh t), pS±(t) = ±2 sech(t). (9)

Note that pS±(t) is well approximated by a bump function (also
known as a test function [45]) that is nonzero in a finite domain,
called the support, and vanishes outside its support. Moreover,
an observable O(t) on the separatrix is (well approximated)
by a constant plus a bump function, as long as it is smooth in
both p and θ and periodic in θ .

Trajectories (θ (t),p(t)) that start near one of the separatrices
spend most of their time (within a period) near the saddle point
as shown with two examples in Fig. 2(b). Changes in θ (t) and
p(t) from their saddle-point value are to good approximation
equal to corresponding changes along trajectories on one or
more of the separatrices. For example, for the rotation trajec-
tory in Fig. 2(b) the momentum is pA(t) = pS+(t − Trot/2)
for t ∈ [0,Trot), while for the libration trajectory in Fig. 2(b)
the momentum is pB (t) = pS+(t − Tlib/4) + pS−(t − 3Tlib/4)
for t ∈ [0,Tlib). In fact, the momentum along any trajectory
starting near the saddle point in region R = A, B, or C,
respectively, can be written as

pR(t) ∼
∞∑

n=−∞

{ ∑
s={S±}

χR(s) ps[t − t0,R(s) − nTR]

}
, (10)

where the sum over n defines the momentum for all t (rather
than a single period) and indicator functions χR(s) are either
zero or one. For the pendulum χA(S+), χB(S+), χB(S−), and
χC(S−) are one; others are zero. The time shift t0,R(s) ∈ [0,TR)
and period TR are determined by the starting point, where TR =
Trot and Tlib for R = A,C and R = B, respectively. Thus, pR(t)
is a sum over periodically occurring, nonoverlapping bump
functions whose support is much smaller than the time period.

The asymptotic symbol ∼ in Eq. (10) and elsewhere in
this paper implies that either the trajectories start close to the

saddle point or the averages are over a Wigner distribution that
is initially localized around the saddle point and whose initial
width goes to zero. We also reserve the word asymptotic for
these two cases, unless otherwise stated.

VII. LONG-TIME EXPECTATION VALUE

We now derive the long-time expectation value of ob-
servables 〈O(t)〉 that are smooth functions of the canonical
coordinates (x,p) and depend only on the single action-angle
coordinate ϕ1 of the subspace �2D in which the system
undergoes phase-space mixing. For periodic coordinates, like
angle θ of the pendulum, we restrict the observables to
be periodic in θ . These constraints are not severe as many
physically interesting observables have these properties.

The first step is to write the asymptotic form of observable
OR(t) in region R, along a trajectory that comes close to
the saddle point, in terms of its value along the separatrix
trajectories (x1,s(t),p1,s(t)) in subspace �2D. Here, s labels
separatrices. (For the pendulum s ∈ {S + ,S−}.) We define
Os(t) = O(x1,s(t),p1,s(t)) and realize that Os(t) = Osp +
Ds(t), where Osp is the value of the observable at the saddle
point and Ds(t) is a bump function localized around t = 0.
Similarly, we decompose OR(t) = Osp + DR(t), where DR(t)
is a series of periodically occurring, nonoverlapping bump
functions. Then, similar to Eq. (10), we write

OR(t) ∼ Osp +
∞∑

n=−∞

∑
s

χR(s)Ds[t − t0,R(s) − nTR]. (11)

The indicator functions χR(s) are system dependent and the
sum s is over one or more separatrices.

To compute the long-time limit of 〈O(t)〉 using Eq. (7),
we need to evaluate the integral over angle ϕ1. (Those over
ϕj for j > 1 evaluate to unity for allowed observables.) We
transform this integral to one over time by choosing a reference
trajectory that starts near the saddle point with ϕ1(0) = 0. For
the pendulum, two such trajectories are shown in Fig. 2(b).
Then, ϕ1(t) = ω1t and∫ 2π

0

dϕ1

2π
OR(I,ϕ1) ∼ Osp +

∑
s

χR(s)
ω1(I)

2π

×
∞∑

n=−∞

∫ TR

0
dt Ds[t − t0,R(s) − nTR].

(12)

For n = 0, the integrand Ds[t − t0,R(s)] is localized around
t = t0,R(s) ∈ (0,TR). Its support is enclosed by the integration
bounds t = 0 and TR as the reference trajectory is near the
saddle point at these times. For n �= 0, there is no overlap
between the support and the integration interval; hence, the
integral is zero. We extend the integration limits of t to
(−∞,∞) for the surviving n = 0 term and find∫ 2π

0

dϕ1

2π
OR(I,ϕ1) ∼ Osp +

∑
s

χR(s)
ω1(I)

2π

×
∫ ∞

−∞
dt Ds(t). (13)
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Substituting this expression in Eq. (7), the long-time average
becomes

lim
t→∞〈O(t)〉 ∼ Osp +

∑
R

〈ω1〉R
2π

[∑
s

χR(s)
∫ ∞

−∞
dt Ds(t)

]
,

(14)

where the average frequency 〈ω1〉R = ∫
R

dI f̄R(I) ω1(I) and
the expression in the square brackets is independent of the
distribution. Equation (14) is an important result of our paper
and relates the long-time expectation value of an observable to
the mean frequency. The quantity Osp is the classical value of
the observable and the second term is the quantum correction
within the TWA.

For the pendulum we assume the initial Gaussian distribu-
tion

F0(θ,p) = 1

2πd2
e−(x2+p2)/(2d2), (15)

where x = (θ − π ) mod 2π . It is centered around the saddle
point, analogous to the Wigner distribution of a mean-field
state, where the width d � 1.1 Both Hpend and F0(θ,p) are
invariant under the transformations p → −p and θ → −θ .
Thus, the time-evolved distribution function is also invariant
and observables O(θ,p) that are odd functions of either θ or
p have a vanishing expectation value at all times. In contrast,
observables that are even functions in both θ and p can have
nonvanishing expectation value.

As an illustration, consider O(θ,p) = p2. Its functional
form along the two separatrix solutions in Eq. (9) is the same,
i.e., [pS+(t)]2 = [pS−(t)]2 and, using the indicator functions
χR(s) for the pendulum, we find

lim
t→∞〈p2(t)〉 ∼ 〈ω1〉A + 〈2 ω1〉B + 〈ω1〉C

2π

∫ ∞

−∞
dt p2

S+(t).

(16)

Next, we realize that

lim
t→∞〈p2(t)〉 ∼ 〈� 〉

2π

∫ ∞

−∞
dt p2

S+(t) = 8〈� 〉
2π

, (17)

where we have used Eq. (9) to evaluate the time integral and
defined the “auxiliary frequency” � to be ω1 in region A, C

and 2ω1 in region B with average 〈� 〉 = 〈ω1〉A + 〈2 ω1〉B +
〈ω1〉C . From the definition of f̄0,R(I1), we also find that

〈� 〉 ≡
∫ ∞

0
d� �F(� ), (18)

where the unit-normalized distribution function

F(z) =
∑
R

∫
dI1

∫ 2π

0

dϕ1

2π
f0,R(I1,ϕ1) δ[z − � (I1)]

=
∫

�

dθ dp F0(θ,p) δ[z − � (θ,p)] (19)

1The quantum Hamiltonian of a pendulum in the θ basis is
−(h̄2/2)∂2

θ + 1 − cos θ . The ground state is (approximately) a coher-
ent (Gaussian) state around θ = 0 with width d = √

h̄/2. When the
sign of the potential cos θ is suddenly changed, the state becomes
dynamically unstable with the initial Wigner distribution as in
Eq. (15).

and δ(z) is the Dirac delta function. The second equality shows
that the explicit relationship between (I1,ϕ1) and (θ,p) is not
required for the analysis.

As shown in Appendix A 1, the distribution F(� ) is well
approximated by a Gaussian when the width d of the initial
distribution F0(θ,p) approaches zero. In fact, the location of
its peak value is

μ ≡ 〈� 〉 ∼ 2π

ln[32/(
d2)]
� 1 (20)

and its width is

σ ∼ μ2

2π
√

1 − 
2
� μ, (21)

where 
 = 0.595 . . . . Thus, the quantum correction to the
long-time expectation value of p2(t) is 1/O(ln |d|).

VIII. TIME DYNAMICS OF RELAXATION

In this section we study the relaxation of an observable to
its long-time expectation value. Observables again depend on
only a single angle ϕ1 and are periodic in ϕ1. We can then write
an observable in region R as a Fourier series

OR(I,ϕ1) =
∞∑

m=−∞
�R(I; m)eimϕ1 , (22)

with

�R(I; m) =
∫ 2π

0

dϕ1

2π
OR(I,ϕ1) e−imϕ1 . (23)

Now, as in Sec. VII, we transform the integral over ϕ1 into one
over time by choosing a reference trajectory with ϕ1(0) = 0
and insert ϕ1(t) = ω1(I)t . Using Eq. (11) we find

�R(I; m) ∼ Osp δm0 +
∑

s

χR(s)e−imαR (s)

×
∞∑

n=−∞

∫ TR−t0,R (s)

−t0,R (s)

dτ

2π
ω1Ds(τ − nTR)e−imω1τ ,

(24)

where δij is the Kronecker delta, αR(s) = ω1t0,R(s), the
integration variable τ = t − t0,R(s), and we have suppressed
the dependence of ω1 and TR on I. Only the n = 0 term
contributes and

�R(I; m) ∼ Osp δm0 +
∑

s

χR(s)e−imαR (s)ω1Ds(mω1),

(25)

where the Fourier transform Ds(x) =∫ ∞
−∞ dt/(2π )Ds(t)e−ixt . Substituting this expression into

Eq. (22) and using OR(t) ≡ OR(I,ϕ1(t)), Eq. (5) becomes

〈O(t)〉 ∼ Osp +
∞∑

m=−∞

∑
R,s

χR(s)e−imαR (s)

×〈ω1Ds(mω1)eim[ω1t+ϕ1(0)]〉R, (26)

where 〈. . . 〉R is the average over f0,R(I,ϕ), the initial distri-
bution restricted to region R. We realize that at long times all
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Fourier terms except the m = 0 term must go to zero in order
to recover Eq. (14).

We now specialize to the pendulum system. The phases
αR(s) are αA(S+) = αC(S−) = π , αB(S−) = π/2, and
αB(S+) = 3π/2 when χR(s) is nonzero and, as shown in
Appendix A 2, we have

〈O(t)〉 ∼ Osp +
∞∑

m=−∞
(−1)m

×
∫ ∞

0
d� F(� )�DS+(m� )eim�t , (27)

where, as in Sec. VII, the auxiliary frequency � is ω1 in
regions A, C and 2ω1 in region B. The distribution F(� ) is
well approximated by a Gaussian with mean and width given
in Eqs. (20) and (21), respectively. The factor �DS+(m� )
is slowly varying across the width of F(� ). Carrying out the
integral over � in Eq. (27) (after extending the lower limit of
the integral to −∞) gives

〈O(t)〉 ∼ Osp +
∞∑

m=−∞
(−1)mμDS+(mμ)eimμt−m2σ 2t2/2. (28)

Specifically, for O(θ,p) = p2 we have

〈p2(t)〉 ∼ 4μ

π
+

∞∑
m=1

(−1)m
4mμ2 cos(mμt)

sinh(πmμ/2)
e−m2σ 2t2/2, (29)

and the time evolution is a sum of oscillatory functions with
damping that is Gaussian in time. The oscillation frequency of
each term increases linearly with m, while simultaneously its
damping time 1/(mσ ) decreases.

IX. CONDENSATE IN A DOUBLE-WELL POTENTIAL

A Bose-Einstein condensate in a weakly coupled double-
well potential displays Josephson oscillations and macroscopic
self-trapping [9,46–49]. These phenomena are adequately de-
scribed by a mean-field approximation. Moreover, dynamical
instabilities, where quantum effects become important, have
also been studied [50–52].

A BEC in a symmetric double-well potential is well
described by assuming that only two modes �1(�r) and �2(�r)
are occupied, one for each well. In the mean-field description,
the time-dependent order parameter or condensate wave
function is ψ1(t)�1(�r) + ψ2(t)�2(�r) with complex-valued
amplitudes ψj (t). The real and imaginary parts of ψj (t) form
two pairs of canonical coordinates. Hence, the system has a
four-dimensional phase space. Its classical Hamiltonian is

Hdw = −J (ψ1ψ
∗
2 + ψ∗

1 ψ2) + U

2
(|ψ1|4 + |ψ2|4) , (30)

where U and J > 0 are the onsite interaction and tunneling
energies, respectively [9]. The total number of atoms N =
|ψ1|2 + |ψ2|2 and energy E are conserved, making the system
integrable. We note that the underlying quantum Hamiltonian
is solvable by the Bethe ansatz [53].

Following the literature it is convenient to introduce
ψj (t) = √

Nj (t)eiθj (t), where Nj is the number of atoms in
and θj is the phase of the condensate in the j th well [9].
We can then express Eq. (30) in terms of the fractional

FIG. 3. Equal-energy contours in the phase space (φ,z) of a
condensate in a double-well potential for � = 3. The phase space
is equivalent to a sphere, where the lines z = 1 and −1 correspond to
the north and south pole, respectively. Moreover, (0,z) and (2π,z) are
equivalent. Separatrices thick solid blue line (S+) and thick dashed
blue line (S−) intersect at the saddle point shown by a solid circle.
They divide the phase space into regions A, B, and C. For each region,
the thick dashed-dotted black line defines the action-angle coordinate
ϕ1 = 0. The color map is nonlinear in order to better visualize the
equal-energy contours.

population difference z = (N1 − N2)/N and phase difference
φ = θ1 − θ2, where φ ∈ [0,2π ] and φ = 0,2π are identical.
In fact, we have Hdw = NJ × hdw(φ,z), where hdw(φ,z) is
the “single-atom” Hamiltonian that depends on the effec-
tive N -dependent coupling strength � = UN/(2J ) and is
given by

hdw(φ,z) = �z2

2
−

√
1 − z2 cos φ. (31)

The Hamiltonian hdw(φ,z) has a single minimum located
at (φ,z) = (0,0) for � > 0. For � > 1, the Hamiltonian has
a saddle point located at (φ,z) = (π,0). Near the saddle point
hdw(φ,z) ∼ 1 + [(� − 1)z2 − (φ − π )2]/2. Figure 3 shows
equal-energy contours of hdw(φ,z) in the two-dimensional
phase space (φ,z) for � > 1. Two separatrices S+ and S−
divide the phase space into regions A, B, and C. Similar to
the pendulum, in regions A and C the motion is rotational
while in region B it is librational. Explicit expressions for
rotation and libration trajectories are given in Appendix B. On
each separatrix we consider a trajectory (φs(t),zs(t)) that only
varies significantly around t = 0 and for which |z(t)| has a
maximum at t = 0. Along these trajectories

zS±(t) = ±2
√

� − 1

�
sech(

√
� − 1t). (32)

The corresponding φS±(t) can be calculated by solving
hdw(φS±(t),z±(t)) = 1.

We now consider the dynamics of a (zero-temperature)
condensate with N atoms prepared at the saddle point within
the TWA. We assume that the initial state is (ψ1,ψ2) =
(
√

N/2, − √
N/2) with corresponding Wigner distribution

F0(ψi,ψ
∗
i ) = 4

π2
e−2|ψ1−

√
N/2|2−2|ψ2+

√
N/2|2 , (33)

where i ∈ {1,2} and the probability measure is
∏

i dψ∗
i dψi .

The distribution F0(ψi,ψ
∗
i ) corresponds to the Wigner trans-

form of a product of coherent states, one in each of the two
modes with mean atom number N/2 and a relative phase of π .
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Observables have a natural interpretation as spin operators
when we represent the phase space (φ,z) as a sphere with polar
angle ϑ = arccos(z) and azimuthal angle φ. Hence, observable
z corresponds to sz, the z component of the unit “spin” �s. The
other spin components are sx = sin ϑ cos φ = √

1 − z2 cos φ

and sy = sin ϑ sin φ = √
1 − z2 sin φ. As in the pendulum

case, observables that are odd functions of φ or z have
vanishing expectation values for all times. Thus, 〈sz(t)〉 =
〈sy(t)〉 = 0, but 〈sx(t)〉 is nonvanishing. Using Eq. (31), we
find that sx = �z2/2 − 1 on the separatrices.

Now, we evaluate the long-time limit and time dynamics
of 〈sx(t)〉. The indicator functions χR(s) are χA(S+) = 1,
χB(S+) = 1, χB(S−) = 1, χC(S+) = 1 and zero otherwise.
Then, using Eqs. (14) and (32) and following the derivation in
Sec. VII we find

lim
t→∞〈sx(t)〉 ≡ 〈sx(∞)〉 ∼ −1 + 2

√
� − 1

π�
〈� 〉, (34)

where the auxiliary frequency � is ω1 in regions A, C and 2ω1

in region B. The time evolution of 〈sx(t)〉 is found by repeating
the steps in Sec. VIII. Details are given in Appendix B, where
we find that the asymptotic expression of 〈sx(t)〉 is again given
by Eq. (27), with a distribution function F(� ) that is well
approximated by a narrow Gaussian with mean μ = 〈� 〉 and
width σ � μ that depend on � and N . Then, Eq. (28) holds
and

〈sx(t)〉 ∼ 〈sx(∞)〉

+
∞∑

m=1

(−1)m
2mμ2 cos(mμt)

� sinh[mμπ/(2
√

� − 1)]
e−m2σ 2t2/2.

(35)

It is important to note that, as shown in Appendix B 1, for large
N the mean μ is O(1/ ln N ) and the width is O[1/(ln N )2].
Thus, the quantum correction to the long-time value of 〈sx(t)〉
is O(1/ ln N ). Quantitative analytical expressions for μ and σ

have only been found for � − 1 � 1.
Figures 4(a) and 4(b) show the long-time expectation value

(34) as a function of � and Eq. (35) as a function of time,
respectively. In addition, the figures show good agreement
with numerical TWA results. In the numerical implementation
of TWA we sample from the initial distribution F0(ψi,ψ

∗
i ),

propagate the classical equations of motion, and compute
the expectation value of an observable by averaging over the
sample.

X. SPINOR BEC WITHIN THE SINGLE-MODE
APPROXIMATION

A trapped spin-1 (spinor) Bose-Einstein condensate is well
described by a single spatial mode for its three magnetic
sublevels [10,11,54]. This single-mode approximation (SMA)
is valid when the spin healing length, the length scale over
which the spin populations of the condensate can change
significantly, is larger than the condensate size. The mean-field
theory within SMA has turned out to adequately describe
atomic spinor experiments with strong spatial confinement
[55–58]. Quenches to dynamical instability, where quantum

FIG. 4. Long-time expectation values and time dynamics within
the TWA of a Bose-Einstein condensate in a double-well potential
following a quench to a dynamically unstable point. Panel (a) shows
the long-time expectation value of an observable sx as defined in the
text. The dotted black and solid blue lines show the analytic result of
Eq. (34) with mean μ ≡ 〈� 〉 given by Eq. (B14) and with μ obtained
by numerically sampling the initial Wigner distribution, respectively.
The red circles are values obtained by numerical TWA simulations.
Panel (b) shows the time dynamics of 〈sx(t)〉 for � = 3. The solid blue
line is 〈sx(t)〉 in Eq. (35) with μ and width σ obtained by numerically
sampling from the initial Wigner distribution. The red dashed line is
found from numerical TWA simulations. For both panels, the number
of particles N = 1000.

effects need to be treated, have also been studied experimen-
tally [29,59].

The mean-field wave function of the spinor BEC in
the SMA is the vector ��(�r,t) = (ψ−1(t),ψ0(t),ψ+1(t))T �(�r),
where ψj (t) is the complex amplitude of the j th magnetic
sublevel along the external magnetic field and �(�r) is the
time-independent unit-normalized spatial mode. The phase
space spanned by the ψj (t) has six dimensions and the system
has three mutually commuting conserved quantities, namely,
energy, total atom number N = ∑

j |ψj (t)|2, and magnetiza-
tion M = ∑

j j |ψj (t)|2. Thus, the system is integrable. We
note that the underlying quantum few-mode Hamiltonian is
solvable by the Bethe ansatz [60,61].

It is convenient to write ψj (t) = √
Nj (t)eiθj (t), where Nj

and θj are the number of atoms in and the condensate phase
of sublevel j , respectively. Nontrivial dynamics of the spinor
system occurs in a reduced two-dimensional space �2D with
coordinates φ and ρ0, for a fixed N and M . Here, φ = θ1 +
θ−1 − 2θ0, where φ ∈ [−π,π ] and φ = ±π are identical; and
ρ0 = N0/N is the fraction of atoms in the j = 0 sublevel.
In these coordinates, the system obeys the “single-particle”
classical Hamiltonian [11]

hspin(φ,ρ0) = cρ0[(1 − ρ0) +
√

(1 − ρ0)2 − m2 cos φ]

+ q(1 − ρ0), (36)

where the coupling strength c = g2N
∫

d3r |�(�r)|4 is N

dependent, g2 is the spin-changing atom-atom interaction
strength, the term q(1 − ρ0) describes atomic level shifts with
controllable strength q (in essence due to the quadratic Zeeman
interaction), and the conserved unit magnetization m = M/N .
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FIG. 5. Equal-energy contours in the phase space (φ,ρ0) of an
antiferromagnetic spin-1 condensate in the single-mode and mean-
field approximations. The magnetization M = 0, q = −1, and c = 1.
The phase space is geometrically equivalent to a sphere as the edges
φ = −π and π are equivalent and the lines ρ0 = 1 and 0 are identified
to the north and south pole, respectively. The thick solid blue line is
the separatrix (S) that divides the phase space into regions A and B.
The saddle point is located at the north pole ρ0 = 1. (Note that the
planar projection of the sphere incorrectly suggests that this point is a
line segment.) In region A the action-angle coordinate ϕ1 is zero along
the black dotted line, while in region B it is zero on φ = ±π . The
color map is nonlinear in order to better visualize the equal-energy
contours.

Here, we will only consider a condensate with antifer-
romagnetic c > 0 interactions and assume m = 0. Figure 5
shows equal-energy contours of hspin(φ,ρ0) for a representative
q in (−2c,0). The Hamiltonian then has a saddle point at the
north pole ρ0 = 1 and hspin(φ,ρ0) ∼ (1 − ρ0){c(1 + cos φ) +
q} with a linear energy dependence for small positive 1 − ρ0.
The slope, given in {. . . }, changes sign twice when φ goes
from 0 to 2π . Unlike the pendulum and double-well systems,
there is only one separatrix S, which divides the phase space
into regions A and B with rotation and bounded motion,
respectively. The expression for ρ0(t) along a general trajectory
is given in Appendix C. The solution along the separatrix that
is symmetric about t = 0 is

ρ0,S(t) = 1 − (1 − y1,S) sech2(�t), (37)

where y1,S = |q|/(2c) and � = √
2|q|c(1 − y1,S). By solving

hspin(φS(t),ρ0,S(t)) = 0 the corresponding φS(t) can be found.
We prepare the system in the mean-field ground state

for q > 0, i.e., ρ0 = 1 or equivalently (ψ+1,ψ0,ψ−1) =
(0,

√
N,0). The initial Wigner distribution is

F0(ψj ,ψ
∗
j ) = 8

π3
e−2|ψ−1|2−2|ψ0−

√
N |2−2|ψ+1|2 , (38)

where j ∈ {+1,0, − 1}, corresponding to a coherent state for
sublevel j = 0 with a mean atom number N and zero phase and
vacuum states for sublevels j = ±1. The probability measure
for the distribution is

∏
j dψ∗

j dψj .
The parameter q is then quenched to a value between −2c

and 0 at time t = 0 and the system becomes dynamically
unstable. Using Eq. (14) with two contributing regions and
one separatrix, the average 〈ρ0(t)〉 long after the quench is
given by

lim
t→∞〈ρ0(t)〉 ≡ 〈ρ0(∞)〉 ∼ 1 − 〈� 〉1 − y1,S

π�
, (39)

FIG. 6. Long-time expectation values and time dynamics of a
spin-1 BEC in SMA and TWA after an initial (polar) state with
all atoms in spin projection zero is quenched to a dynamically
unstable point with q < 0. The number of atoms N = 1000. (a)
Shows the long-time expectation value of the fraction of atoms in
spin projection zero, 〈ρ0(∞)〉, as a function of q/c. The dashed black
line and solid blue curve follow from Eq. (39) with mean μ ≡ 〈� 〉
given by our analytical result and a numerical value as determined
from sampling the initial Wigner distribution, respectively. Numerical
TWA simulations correspond to the red circles. (b) Shows the time
evolution of 〈ρ0(t)〉 for q/c = −1. The solid blue and dashed red
curves are obtained from Eq. (41) and numerical TWA simulations,
respectively. For the solid blue line, the mean μ and width σ

are obtained by numerical sampling the initial Wigner distribution.
Finally, (c) shows the time evolution of 〈ρ0(t)〉 for the special case
where q/c = 0. The solid blue curve corresponds to Eq. (42), while
the nearly indistinguishable dashed red curve is from numerical
TWA simulations. The horizontal dashed lines in (b) and (c) are
the long-time values.

where we used the indicator functions χA(S) = χB(S) = 1
and defined auxiliary frequency � that is now ω1 in both
regions with average 〈� 〉 = 〈ω1〉A + 〈ω1〉B . In Appendix C 1
we show that 〈� 〉 ∼ 2π�/ ln(16N ). The quantum correction
to the long-time value of 〈ρ0(t)〉 is, again, O(1/ ln N ).

Figure 6(a) shows 〈ρ0(∞)〉 as a function of q/c for
q ∈ (−2c,0) and fixed atom number N = 1000. The analytical
expression of 〈ρ0(∞)〉 with � = 2π�/ ln(16N ) gives a
straight line. The figure also shows the predictions from
numerical TWA for the same parameters. For small negative
q, the two curves differ appreciably. We can reproduce the
numerical TWA results when we replace 〈� 〉 in Eq. (39) by its
numerical value as obtained from sampling the initial Wigner
distribution. For |q|/c much smaller than the scale of our
figure, however, the 〈ρ0(∞)〉 from the numerical TWA and
that based on computing 〈� 〉 from sampling still differ. We
will return to this issue later on in this section.

The time evolution of 〈ρ0(t)〉 is again calculated from
Eq. (26). The dominant contribution to the expectation value is
from the trajectories with the action-angle coordinate ϕ1(0) ≈
0 (see Appendix C 2 for a formal justification). Hence, we can
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set ϕ1(0) = 0 and with αA(S) = αB(S) = π find

〈ρ0(t)〉 ∼ 1 +
∑

R=A,B

∞∑
m=−∞

(−1)m〈ω1DS(mω1)eimω1t 〉R,

(40)
where DS(x) is the Fourier transform of ρ0,S(t). As in the
previous section, we define the distribution function F(� )
with � = ω1 in both regions. It is approximately Gaussian
with mean μ = 〈� 〉 and width σ � μ (see Appendix C).
Then, in a manner similar to that used to find Eq. (29), we
derive

〈ρ0(t)〉 ∼ 〈ρ0(∞)〉 − (1 − y1,S)

×
∞∑

m=1

(−1)m
mμ2 cos(mμt)

�2 sinh[mμπ/(2�)]
e−m2σ 2t2/2 .

(41)

Figure 6(b) shows the typical behavior of 〈ρ0(t)〉 as a function
of time. For long times, the evolution is a damped sinusoid
oscillating around its asymptotic value, as only one term
in the sum significantly contributes. For shorter times, the
evolution is more complex and multiple terms are important.
The numerical TWA simulations are in good agreement with
our analytical expression.

At q = 0 the Hamiltonian hspin(φ,ρ0) has a degenerate line
of saddle points along φ = π , instead of a single saddle point.
The system is then critical and the formalism described so far
can not be applied. Nevertheless, we show in Appendix C 3
that

〈ρ0(t)〉 ∼ 1 − αt F (αt), (42)

where α = c
√

2/N and F (x) is the Dawson integral [43].
Figure 6(c) shows this evolution as a function of time. The
motion seems overdamped with little oscillatory behavior.
Agreement with TWA simulation results is very good.

XI. CONCLUSIONS AND OUTLOOK

We have analytically studied the time dynamics of two
integrable bosonic systems within the truncated Wigner ap-
proximation (TWA) when they become dynamically unstable
after a quench in a system parameter. The initial Wigner
distribution is then centered around a saddle point. We
considered a Bose-Einstein condensate (BEC) in a symmetric
double-well potential and an antiferromagnetic spinor BEC in
the single-mode approximation. Using action-angle variables
and the concept of phase-space mixing we derived the long-
time expectation value of observables [Eq. (14)]. We also
derived the relaxation dynamics of the expectation value as
given in Eq. (26). We used a simple pendulum as a guide for
these derivations.

The time dynamics of the expectation value of an observable
is determined by the distribution of frequency ω1 of the
classical, periodic trajectories. The evaluation of the time
dynamics simplified due to the symmetries of the Hamiltonian
and the initial Wigner distribution. These symmetries also
motivated the definition of an auxiliary frequency � , which
has a simple relationship to ω1. For the two bosonic systems
when the initial state is a coherent state of N atoms the mean

of � is O(1/ ln N ). Hence, the deviation of the long-time
expectation value from its classical value at the saddle point
is O(1/ ln N ). The mean determines the typical time scale
of the oscillations in the time evolution. The width of �

is O[1/(ln N )2] and determines the relaxation rate. Further-
more, we obtained their explicit dependence on external
parameters.

Although we only considered a representative observable
for each system, the time dynamics of observables that quantify
(condensate) phase or squeezing can be readily computed
using our formalism. Our analysis is also directly applicable
to other integrable systems with a single saddle point in phase
space, such as a (anti)ferromagnetic spinor BEC with nonzero
magnetization and a BEC in an asymmetric double-well
potential. The formalism can be generalized to integrable
Hamiltonians with multiple saddle points, for example, the
Lipkin-Meshkov-Glick model [62].

We give a brief outlook on the full quantum dynamics of our
two bosonic systems and its comparison with the TWA. The
Hilbert space of their underlying few-mode quantum Hamil-
tonians scales linearly with N when restricted to fixed values
of conserved quantities. Thus, quenches in these quantum sys-
tems can be simulated efficiently on a classical computer. The
eigenenergies near the saddle point have been studied using
the Wentzel-Kramers-Brillouin (WKB) approximation for a
BEC in a double-well potential [63] (and the Jaynes-Cumming
model [64–66]). The anharmonicity in the energy-level spac-
ing defines the quantum break time [64], which scales as
O(ln N ) near the saddle point [63,64]. In fact, we find (not dis-
cussed here in detail) that the TWA diverges from the quantum
dynamics after the first oscillation consistent with this quantum
break time. A detailed study will be the subject of a future
publication.
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APPENDIX A: PENDULUM

The simple pendulum is used throughout to illustrate our
derivation of dynamics and long-time expectation values for
few-mode integrable systems. In this appendix we derive
results specific to the pendulum. Its Hamiltonian is given
in Eq. (8) with canonical coordinates θ and p satisfying
{θ,p} = 1, where {·,·} is the Poisson bracket.

First, librational trajectories (θB(t),pB(t)) in phase-space
region B are [43]

sin (θB(t)/2) = k sn(t + t0,k), (A1)

pB(t) = 2k cn(t + t0,k), (A2)

where the modulus k = √
E/2, E is the energy of the

trajectory, and time t0 depends on the initial condition.
Second, rotational trajectories (θR(t),pR(t)) in regions R = A
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and C are

sin[θR(t)/2] = ± sn ((t + t0)/k,k), (A3)

pR(t) = ±(2/k) dn ((t + t0)/k,k), (A4)

where k = √
2/E . The + and − signs correspond to regions A

and C, respectively. The functions sn(z,k), cn(z,k), and dn(z,k)
are Jacobi elliptic functions [43]. Finally, on the separatrices
E = 2 with trajectories (θS±(t),pS±(t)) given by Eq. (9).

1. Distribution function F (� )

In this section, we calculate the distribution function

F(z) =
∫

�

dθ dp F0(θ,p) δ(z − � (θ,p)), (A5)

as defined in Eq. (19), as well as its mean and width. Here,
the integral is over the whole phase space � and the initial
Gaussian distribution F0(θ,p), given in Eq. (15), has a width d

along both θ and p. The auxiliary frequency � (θ,p) = ω1 =
π/[kK(k)] in regions A and C and � (θ,p) = 2ω1 = π/K(k)
in region B, where K(k) is the complete elliptic integral of the
first kind with modulus k ∈ [0,1] [43].

Near the saddle point, the energy E ∼ 2 + (p2 − q2)/2,
where q = (θ − π ) mod 2π . The relationship between en-
ergy and modulus leads to k2 ∼ 1 − |p2 − q2|/4 in all
regions. Finally, � ∼ π/K(k) ∼ 2π/ ln(64/|p2 − q2|) using
the asymptotic expansion K(k) ∼ ln(16/k′2)/2 around k = 1
with complementary modulus k′ defined by k′2 = 1 − k2.

To compute F(� ), it is convenient to first introduce the
invertible transformation X (� ) = 2k′2/d2 ∼ 32e−2π/� /d2.
The dependence of X (� ) on d will become clear later. We
then write

F(� ) ∼ 2π

� 2
X (� )P (X (� )), (A6)

as d → 0 with the distribution

P (X ) =
∫

�

dθ dp F0(θ,p) δ

(
X − |p2 − q2|

2d2

)
, (A7)

and the factor in front of P (X (� )) in the right-hand side of
Eq. (A6) is the Jacobian dX /d� .

The separatrices divide the neighborhood of the saddle
point into four quadrants. We solve Eq. (A7) in each quadrant
separately. For the quadrant in region A (p > 0 and p > q),
we change the integration variables to p = d

√
2X cosh u

and q = d
√

2X sinh u with u ∈ (−∞,∞). Similar changes
of variables can be used in the other three quadrants (noting
that two quadrants lie in region B). The contribution to P (X )
from each quadrant turns out to be the same and we finally
find

P (X ) = 2

π
K0(X ), (A8)

where K0(x) is a modified Bessel function [43] and P (X ) has
no explicit dependence on the width d. We then have

F(� ) ∼ 128e−2π/�

d2� 2
K0

(
32e−2π/�

d2

)
, (A9)

as d → 0 and for � � 1.
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FIG. 7. Distribution function F(� ) as a function of the auxiliary
frequency � for the pendulum with an initial Wigner distribution
[Eq. (15)] with width d = 1

20 . The blue solid line is the distribution in
Eq. (A9). Indistinguishable from this curve is the F(� ) shown by red
circles, which are obtained by numerical Monte Carlo sampling of the
initial Wigner distribution. The cyan solid, black dashed, and black
dashed-dotted lines are Gaussians whose mean and standard deviation
are given by that of (1) the numerical distribution, (2) Eqs. (A11) and
(A13), and (3) Eqs. (A14) and (A15), respectively.

Figure 7 shows F(� ) as a function of � for a single d.
We find that F(� ) is sharply peaked. It approaches zero as
C e−2π/� /� 3 when � → 0+ and C is a constant. For � � 1,
where Eq. (A9) is invalid, either p or q is much greater than d

and F0(θ,p), hence F(� ), is exponentially small. Thus, it is
reasonable to approximate F(� ) by a Gaussian as shown in
Fig. 7.

We now calculate the mean and variance of � using
one of two methods. The mean μ ∼ ∫ ∞

0 dX P (X )� (X )
with � (X ) = 2π/ ln[32/(d2X )]. We then identify the small
parameter λ−1 = ln(C/d2)−1 � 1, where the constant C will
be determined later, and find

μ ∼ 2π

λ
+ 2π

λ

∞∑
n=1

E[Yn]

λn
, (A10)

with the help of the geometric series. Here, Y = ln(CX /32)
and E[Y] is the expectation value of Y with respect to P (X ).
For C = 64eγ , where γ is the Euler-Mascheroni constant, the
expectation value E[Y] = 0. Hence,

μ ∼ 2π

λ
+ O(1/λ3). (A11)

Similarly, the variance

σ 2 ∼
(

2π

λ

)2[
E[Y2] − E[Y]2

λ2
+ O(1/λ3)

]
(A12)

and evaluation of the second moment of Y gives

σ ∼ π2

λ2
+ O(1/λ3). (A13)

Thus, we find μ = O(1/| ln d|) and σ = O(1/| ln d|2).
The second method estimates μ and σ from the location of

and curvature at the maximum of F(� ) using the fact that the
distribution is well approximated by a narrow Gaussian. We
could not find a closed form for maximum of F(� ). Instead,
we present results based on the extremum of � 2F(� ). This
only introduces small corrections as � 2F(� ) ∼ μ2F(� )
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over the width of the distribution near � = μ. After some
algebra, we find

μ ∼ 2π

ln[32/(
d2)]
, (A14)

σ ∼
√

− g(X )

d2g(X )/d� 2

∣∣∣∣
�=μ

= μ2

2π
√

1 − 
2
, (A15)

where g(X ) = � 2F(� ) = 4XK0(X ) and 
 = 0.595 . . . is
the solution of dg(X )/dX = 0.

The estimates of μ and σ obtained by either method gives
the same logarithmic scaling with d. The numerical prefactors
inside the logarithm, however, are different. Figure 7 shows
Gaussian distributions with the estimated mean and width
based on the two methods. Their difference from the trueF(� )
vanishes as d → 0.

2. Time dynamics of observables

In this section we derive the time dynamics of observables
for a pendulum. That is, we derive Eq. (27) from Eq. (26). The
dependence of the quantity in the angular brackets 〈. . . 〉R in
Eq. (26) on the action-angle coordinates is only through ω1

and ϕ1. (This is also true for the other two systems studied
in the paper.) Denoting the quantity by A(ω1,ϕ1) it is then
convenient to write

〈A〉R =
∫

dω1

∫
dϕ1

2π
A(ω1,ϕ1)g0,R(ω1,ϕ1), (A16)

where

g0,R(ω1,ϕ1) =
∫
I
dI

∫ 2π

0

dϕ′

2π
f0,R(I,ϕ)δ[ω1 − ω1(I)]

(A17)

and ϕ′ = (ϕ2, . . . ,ϕn) are all the angles except ϕ1. (The time
dependence of A is suppressed for clarity.) For the pendulum
with its 2D phase space, Eq. (A17) simplifies to g0,R(ω1,ϕ1) =
dI1/dω1 f0,R(I1,ϕ1), where dI1/dω1 is the Jacobian of the
transformation between I1 and ω1.

The function g0,R(ω1,ϕ1) is concentrated around a few
points in the (ω1,ϕ1) space from the observation that F0(θ,p)
is localized around the saddle point. The justification of this
approximation is subtle and technical; it has been relegated to
Appendix A 2 a. We find that

g0,R(ω1,ϕ1) ≈
{

2π g0,A(ω1) δ(ϕ1), R = A,C

π g0,B(ω1)[δ(ϕ1) + δ(ϕ1 − π )], R = B

(A18)

where g0,R(ω1) = ∫ 2π

0 dϕ1/(2π )g0,R(ω1,ϕ1) is a marginal
distribution.

We can now simplify the average and sums on the right-
hand side of Eq. (26) into a single average for observables
that are even in θ and p. The bump functions DS+(t) and
DS−(t) are then identical. Moreover, the angular dependence
of g0,B(ω1,ϕ1) implies that 〈eimϕ1〉B = 0 when m is odd so
that odd Fourier components in region B do not contribute
to 〈O(t)〉. (For regions A and C, both even and odd Fourier
components contribute.) Using these observations, the defini-
tion of the auxiliary frequency � and the values of αR(s), we

combine the sum over regions and separatrices into a single
sum and arrive at Eq. (27).

a. Derivation of Eq. (A18)

We give a quantitative argument for Eq. (A18). In
the evaluation of F(� ) in Appendix A 1 we observed
that each quadrant in the neighborhood of the saddle
point contributes equally. In region A, where � = ω1,
a comparison of Eq. (19) and the definition of g0,A(ω1)
shows that g0,A(ω1) ∝ F(ω1). Thus, g0,A(ω1,ϕ1) is local-
ized around μ = 〈� 〉 with a width σ � μ along the ω1

coordinate.
Next, we define the standard deviation �A(ω1) of ϕ1 with

respect to the conditional distribution g0,A(ω1,ϕ1)/g0,A(ω1)
at each value of ω1. We now estimate �A(ω1) from the
momentum spread �pA = O(d) in region A, where d is the
width of F0(θ,p). Using Eq. (A4), we find

pA = 2

k
dn

(
ϕ1

ω1k
+ K(k),k

)
, (A19)

where t0 = kK(k) because pA is minimal when ϕ1 = 0 [see
Fig. 2(a)]. Now, we expect the relevant ϕ1 to be small and use
the Taylor expansion dn (x + K(k),k) = k′ + k′k2x2/2 + · · ·
for small x to find

pA − pmin
A ∼ k′

(
ϕ1

ω1

)2

, (A20)

where k′ = √
1 − k2 ∼ 4e−π/ω1 and pmin

A = 2k′/k. Thus,
the width �A(ω1) ∝ ω1

√
�pA/k′ ∝ ω1e

π/(2ω1)
√

d . At first
glance, this relation contradicts the assumption that �A(ω1)
is small because �A(ω1) diverges as ω1 → 0+. From Ap-
pendix A 1, however, we know that F(ω1) and, thus,
g0,A(ω1) go to zero rapidly as ω1 → 0+. In fact, at the
mean value ω1 = μ, given in Eq. (A14), we find �A(μ) =
O(1/| ln d|) � 1. Furthermore, �A(ω1) remains small where
g0,A(ω1,ϕ1) is significant as σ � μ. Hence, g0,A(ω1,ϕ1) is
localized in both ω1 and ϕ1. [The distribution f0,A(I1,ϕ1)
is not localized in ϕ1 as it does not approach zero
as ω1(I1) → 0+.]

The nonzero, albeit small, width of g0,R(I1,ϕ1) in the
ω1 coordinate leads to mixing in ϕ1. On the other hand,
the distribution over ω1 is invariant in time. We can then
replace the narrow distribution g0,A(ω1,ϕ1) along ϕ1 by a delta
function. That is, g0,A(ω1,ϕ1) ≈ 2πḡ0,A(ω1)δ(ϕ1). A similar
analysis in regions B and C leads to the other two equations
in Eq. (A18).

APPENDIX B: A CONDENSATE IN A DOUBLE-WELL
POTENTIAL

In this appendix, we derive results pertaining to a
two-mode Bose-Einstein condensate in a double-well po-
tential. Its “single-particle” Hamiltonian hdw(φ,z) is de-
fined in Eq. (31) and {φ,z} = 1. For � > 1 the Hamil-
tonian has a single saddle point and two separatrices
S divide the phase space into three distinct regions
R = A, B, and C. The solutions to the equations of
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motion are [46]

zR(t) =
{
C cn (C�(t − t0)/(2κ),κ), R = B

±C dn (C�(t − t0)/2,1/κ), R = A,C
(B1)

where

C2 = 2

�2
(E� − 1 +

√
�2 − 2E� + 1), (B2)

κ2 = 1

2
+ E� − 1

2
√

�2 − 2E� + 1
. (B3)

The “single-particle” energy of the trajectory is E and t0
depends on the initial condition. The corresponding φR(t)
can be obtained by solving h(φR(t),zR(t)) = E . [Note that
Ref. [46] misses a factor of 1

2 in the first argument of both
cn(z,k) and dn(z,k).] Finally, on the separatrices E = 1, κ = 1,
and C = 2

√
� − 1/� with solutions zS±(t) given by Eq. (32).

1. Distribution function F (� )

We now compute the distribution function F(� ) for
a Bose condensate in a double-well potential. The initial
Wigner distribution (33) is localized around the saddle point
(ψ1,ψ2) = (

√
N/2, − √

N/2). It is convenient to introduce
real coordinates pi and qi defined by p1 + iq1 = ψ1 − √

N/2
and p2 + iq2 = ψ2 + √

N/2. In these coordinates, the Wigner
distribution becomes

F0(pi,qi) = 4

π2
e−2(p2

1+q2
1 +p2

2+q2
2 ) , (B4)

where i ∈ {1,2} and the probability measure is dp1dq1dp2dq2.
Near the saddle point

z =
√

2

N
(p1 + p2) + O(N−1), (B5)

φ = −π + q1 + q2√
N

+ O(N−1) (B6)

and their substitution into hdw(φ,z) gives the energy

E = 1 + 1

N
[(� − 1)(p1 + p2)2 − (q1 + q2)2] + O(N−3/2)

(B7)
close to one.

Next, we express the auxiliary frequency � = ω1 in regions
A, C and 2ω1 in region B in terms of coordinates pi and
qi . From Eq. (B1) and the periodicity of elliptic functions,
it follows that near the separatrix � ∼ π

√
� − 1/K(k) ∼

2π
√

� − 1/ ln(16/k′2) where k = κ in region B and 1/κ in
regions A,C. The modulus k and its complement k′ depend on
E and thus on the pi and qi . With the help of Eqs. (B3) and
(B7), we find

X ≡ 2

(
� − 1

�

)2

Nk′2 ∼ |(� − 1)(p1 + p2)2 − (q1 + q2)2|.
(B8)

This choice of X , in particular its N dependence,
will simplify later derivations. We realize that � ∼
2π

√
� − 1/ ln[32N (� − 1)2/(X�2)] andX (� ) = 32N (1 −

�−1)2e−2π
√

�−1/� . Thus, we have established a relation
between � and pi , qi via the variable X .

The distribution F(� ) is then

F(� ) = 2π
√

� − 1

� 2
X (� )P(X (� )), (B9)

where

P(X ) =
∫

dp1dq1dp2dq2 F0(pi,qi) δ(X − Z(pi,qi)),

(B10)
with Z(pi,qi) equal to the right-hand side of Eq. (B8) and the
factor multiplying P(X ) in Eq. (B9) is the Jacobian dX /d� .

We simplify the integrals in Eq. (B10) by changing
to “center of mass” and “relative” coordinates P = (p1 +
p2)/2, p = p1 − p2, Q = (q1 + q2)/2, and q = q1 − q2.
We find

P(X ) = 4

π

∫ ∞

−∞
dP dQe−4P 2−4Q2

δ

× (X − 4|(� − 1)P 2 − Q2|), (B11)

which yields

P(X ) = 2

π
√

� − 1
cosh

[
� − 2

2(� − 1)
X

]
K0

[
�X

2(� − 1)

]
.

(B12)

Figure 8 shows F(� ) for N = 1000 and � = 2. It is evident
from the figure that F(� ) is well approximated by a Gaussian
distribution. The mean μ and width σ of F(� ) can be
computed from Eqs. (A10) and (A12), respectively, with
λ = ln[32N (1 − �−1)2/�2]/

√
� − 1. Although we have not

been able to evaluate analytically the moments E[Yn] with
Y = ln(X ), the equations imply that μ is O(1/ ln N ) and σ is
O[1/(ln N )2].

We can compute μ using the second method described in
Appendix A 1. The location of the maximum of Eq. (B9) is
a solution to a transcendental equation that does not have a
closed form for arbitrary values of �. For small positive � − 1,
however, we find a closed-form solution by replacing cosh in
Eq. (B12) by a constant, chosen such that the approximate
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FIG. 8. Distribution function F(� ) as a function of auxiliary
frequency � for a Bose-Einstein condensate in a double-well
potential with 1000 atoms and � = 2. The solid blue curve is the
distribution in Eq. (B9). Indistinguishable from this curve is theF(� )
shown by red circles, which is obtained by Monte Carlo sampling of
the initial Wigner distribution. The cyan solid line is a Gaussian fit to
these data. The dashed line is a Gaussian distribution whose mean and
standard deviations are given by Eqs. (B14) and (B15), respectively.
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P (X ) remains unit normalized. Thus,

P (X ) ≈ �

π (� − 1)
K0

[
�X

2(� − 1)

]
(B13)

and we find

μ ≈ 2π
√

� − 1

ln[16N (� − 1)/(�
)]
, (B14)

σ ≈ μ2

2π
√

(� − 1)(1 − 
2)
, (B15)

where 
 = 0.595 . . . and � − 1 � 1.

2. Time dynamics of observables

The structure of the phase space of a condensate in double-
well potential is similar to that of the pendulum. Therefore,
we can directly apply the analysis of time dynamics for a
pendulum given in Appendix A 2. In particular, the distribution
functions g0,R(ω1,ϕ1), as defined in Eq. (A17), are localized
and are given by Eq. (A18). Furthermore, observable 〈sx(t)〉
obeys Eq. (28).

APPENDIX C: SPINOR GAS IN SINGLE-MODE
APPROXIMATION

In this appendix, we obtain results for an antiferromagnetic
(c > 0) spinor condensate under SMA. Its “single-particle”
Hamiltonian hspin(φ,ρ0) is given in Eq. (36) and {φ,ρ0} = 1.
For −2c < q < 0, the Hamiltonian has a single saddle point
and a separatrix S dividing the phase space into regions R = A

and B. In both regions [11]

ρ0,R(t) = y2 − (y2 − y1) cn2 (�(t − t0),k), (C1)

where cn(z,k) is a Jacobi elliptic function [43] and y1 � y2 �
y3 are the three real roots of the cubic equation in ρ0:

[E − q(1 − ρ0)][(2cρ0 + q)(1 − ρ0) − E] − (cρ0m)2 = 0.

(C2)
Here, E is the “single-particle” energy of the trajectory and
m is the unit magnetization. In terms of these roots, � =√

2|q|c(y3 − y1) and the modulus k = √
(y2 − y1)/(y3 − y1).

The solution is periodic in time with period T = 2K(k)/� and
frequency ω1 = 2π/T = 2π�/[2K(k)]. The corresponding
φR(t) is obtained by solving hspin(φR(t),ρ0,R(t)) = E .

On the separatrix S the energy E = 0 and the roots of
Eq. (C2) are y1,S = |q|/(2c) and y2,S = y3,S = 1. Using the
fact cn(x,k) ∼ sech(x) as k → 1 and setting t0 = 0, we find
the separatrix solution

ρ0,S(t) = 1 − (1 − y1,S) sech2(�St), (C3)

where �S = √
2|q|c(1 − y1,S).

1. Distribution function F (� )

We now study the distribution F(� ) for the spinor conden-
sate by relating the auxiliary frequency � to the conserved
quantities E , m, and N . As the initial Wigner distribution
F0(ψj ,ψ

∗
j ) is localized near the saddle point with ρ0 = 1, i.e.,

(ψ+1,ψ0,ψ−1) = (0,
√

N,0), we again define real coordinates
pj and qj via ψj = δj0

√
N + pj + iqj . Then, the relevant
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FIG. 9. Distribution function F(� ) as a function of the auxiliary
frequency � for a spinor condensate with 1000 atoms and q/c = −1.
Red dots represent F(� ) obtained by Monte Carlo sampling of the
initial Wigner distribution given by Eq. (38) and the blue solid line
is a Gaussian fit to these data. The mean according to Eq. (C5) is the
dashed vertical line.

trajectories have energy E = 0 + Ẽ/N + O(N−3/2) and unit
magnetization m = 0 + m̃/N + O(N−3/2), both close to zero.
The quantities Ẽ and m̃ are O(1) and depend on pj and qj .
We solve for the roots yi perturbatively with small parameter
1/N and find that the modulus k is close to one. Then, the
auxiliary frequency � = ω1 ∼ 2π�/ ln(16/k′2) in regions A

and B. We define

X ≡ Nk′2 ∼ c

|q|

√
Ẽ2 + αm̃2

(1 − y1,S)2
, (C4)

which is independent of N , and α = 2|q|(1 − y1,S)/c. Con-
versely, � = 2π�/[ln(16N/X )]. Unlike for the previous two
systems, we have not been able to find an analytical expression
for the distribution ofX . Nevertheless, we can apply Eq. (A10)
with small parameter λ−1 = �/ ln(16N ) and find

μ ∼ 2π�

ln(16N )
. (C5)

Moreover, Eq. (A12) implies that σ = O[1/(ln N )2]; hence,
σ � μ as N → ∞.

We have numerically evaluated F(� ) and found that it is a
Gaussian to a good approximation for −2c < q < 0. Figure 9
shows F(� ) for q/c = −1 and N = 1000 and a Gaussian fit
to this distribution. For Fig. 6 we use the mean and width of
the numerically obtained F(� ).

2. Time dynamics of observables for −2c < q < 0

We now obtain an approximation for g0,R(ω1,ϕ1), as defined
in Eq. (A17), for the spinor system, where R ∈ {A,B}. The
initial Wigner distribution F0(ψi,ψ

∗
i ) is localized around the

saddle point and, thus, we expect g0,R(ω1,ϕ1) to be localized
around the ϕ1 = 0 (see Fig 5). This can be formally justified by
writing ρ0(t) along a trajectory near the separatrix in terms of
the angle ϕ1. Then, similar to Appendix A 2 a we can show that
the spread in ϕ1 is much smaller than one where g0,R(ω1,ϕ1)
is significant. Thus,

g0,R(ω1,ϕ1) ≈ 2πg0,R(ω1)δ(ϕ1), (C6)

where g0,R(ω1) = ∫ 2π

0 dϕ1/(2π )g0,R(ω1,ϕ1) is a marginal
distribution.
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3. Time dynamics for q = 0

The dynamics of a spinor condensate quenched to q = 0 is
qualitatively different from that for q < 0. Instead of a single
saddle point, the Hamiltonian has a degenerate line of saddle
points along φ = π . Along a trajectory close to this line ρ0(t)
is a sinusoid given by

ρ0(t) ∼ cos2[
√

2cE(t + t0)], (C7)

where energy E ≡ hspin(φ,ρ0) > 0 and t0 is determined by the
initial condition. This trajectory does not spend a significant
fraction of its time period near ρ0 = 1 that violates one of the
assumptions under which Eq. (14) was derived.

We can, nevertheless, find an analytical expression for
〈ρ0(t)〉 by evaluating the expectation value directly from
Eq. (1). The initial Wigner distribution (38) is localized around
ρ0 = 1, and thus time t0 ≈ 0 for the relevant trajectories.

Hence, we only require the distribution function

P (E) =
∫

dψ∗
i dψi F0(ψi,ψ

∗
i )δ(E − hspin(φ,ρ0)). (C8)

Now, ρ0 = 1 corresponds to the mean-field state (ψ+1,ψ0,

ψ−1) = (0,
√

N,0) and near ρ0 = 1 the Hamiltonian
hspin(φ,ρ0) = c[(p+1 + p−1)2 + (q+1−q−1)2]/N+O(N−3/2),
with quadratures pj and qj defined by ψ+1 = p+1 + iq+1

and ψ−1 = p−1 + iq−1. Substituting the Wigner distribution
into Eq. (C8) and computing the integrals, we find
P (E) ∼ Nc−1e−NE/c. Finally, averaging Eq. (C7) over this
distribution yields

〈ρ0(t)〉 ∼ 1 − αt F (αt), (C9)

where α = c
√

2/N and F (x) is the Dawson integral [43].
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