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Nematic ordering dynamics of an antiferromagnetic spin-1 condensate
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We consider the formation of order in a quasi-two-dimensional antiferromagnetic spin-1 condensate quenched
from an easy-axis to an easy-plane nematic phase. We define the relevant order parameter to quantify the
spin-nematic degrees of freedom and study the evolution of the spin-nematic and superfluid order during the
coarsening dynamics using numerical simulations. We observe dynamical scaling in the late-time dynamics, with
both types of order extending across the system with a diffusive growth law. We identify half-quantum vortices
as the relevant topological defects of the ordering dynamics and demonstrate that the growth of both types of
order is determined by the mutual annihilation of these vortices.
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I. INTRODUCTION

Spin-1 condensates [1–3] with antiferromagnetic inter-
actions prefer to order into spin-nematic phases [4]. Such
phases have a vanishing average spin density and are, instead,
characterized by the nematic tensor Nab = 1

2 〈fafb + fbfa〉,
where fa∈{x,y,z} are the spin matrices. The ground states
of this system have an axially symmetric nematic tensor
(uniaxial nematic) with a preferred axis (but not direction)
characterized by a director �u in spin space (i.e., �u and −�u are
equivalent). Recently experimental evidence was presented for
spin-nematic order in an antiferromagnetic condensate [5].

The concept of nematic order is typically discussed in
the context of liquid crystals, where the order is associated
with the orientation of long molecules. Indeed, many beautiful
studies of phase transition dynamics and coarsening have been
performed in liquid crystal systems (e.g., see [6–12]). A sudden
change in conditions (e.g., temperature or pressure) is used
to quench this system from an isotropic phase (unoriented
molecules) to the nematic phase, and the formation of order
and defect dynamics can be observed optically.

In this paper we develop a theory for the ordering dynamics
(coarsening) of an antiferromagnetic spin-1 condensate. There
has been considerable theoretical work on the coarsening dy-
namics of ferromagnetic spin-1 condensates [13–16], however,
this area is largely unexplored in the antiferromagnetic system.
Our interest is in the symmetry-breaking phase transition from
an easy-axis (EA) phase (with �u along the direction set by the
external magnetic field) at positive quadratic Zeeman energy q

to an easy-plane (EP) phase (�u transverse to the external field)
at negative q (see Fig. 1(d) and Refs. [17–21]). We consider a
quench between these phases implemented by a sudden change
in q, e.g., using microwave dressing (see [17,18,20]). Upon
entering this new phase, the system breaks the continuous
axial symmetry of the initial state by developing transverse
spin-nematic domains. Here our interest lies in characterizing
the dynamics of the phase transition, with particular emphasis
on the late-time coarsening dynamics, that is, to understand
the universal aspects of how small domains created after the
quench anneal together to bring the system towards an ordered
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equilibrium state. To undertake this study we first discuss
how the nematic order is characterized in a spinor condensate
and develop an appropriate order parameter for the EP phase.
Using numerical simulations we study how the EP order forms
in the system. We demonstrate that the late-time coarsening
behavior exhibits dynamical scaling with a diffusive domain
growth law of L(t) ∼ [t/ ln(t)]1/2, where L is the size of
the ordered domains and t is the time after the quench. We
separately consider the superfluid order and show that it grows
with an identical law to the spin-nematic order, in contrast
to recent results for the ferromagnetic spin-1 system [22].
The order parameter growth is determined by the dynamics
of half-quantum vortices (HQVs) in the system, and we
verify that the number of these vortices scales as L(t)−2, i.e.,
that coarsening proceeds by vortex-antivortex pairs mutually
annihilating. Recent experiments have demonstrated that it
is possible to measure HQVs in antiferromagnetic spin-1
condensates [23,24] due to their ferromagnetic cores [25].
Thus, measuring the HQV distribution as a function of the time
after the quench could be a practical method for experiments
to quantify the coarsening of this system. Alternatively, it may
be possible to directly image [26,27] or probe [28] nematic
properties of the condensate.

We note that the symmetries and defects of the EP phase
are similar to those of a (two-component) binary condensate in
the miscible regime. Indeed, work by Karl et al. [29] discussed
the role of equivalent vortices in the ordering dynamics
of a two-component system, although that work focused
on understanding the emergence of power-law behavior in
various momentum correlation functions and relating these to
turbulence cascades.

The outline of the paper is as follows. In Sec. II we
introduce the basic formalism for spin-1 condensates and
consider how to quantify spin-nematic order. We discuss the
EA-to-EP quench and introduce the relevant order parameter
for this phase transition. In Sec. III we start by introducing
the quasi-two-dimensional (quasi-2D) system, equation of
motion, and simulation technique we use to study the quench
dynamics. We present results for the evolution of various
local densities and correlation functions that illustrate the
early-time dynamics of the quench and show the emergence
of EP order. We then focus on the late-time dynamics of the
system and characterize the phase ordering dynamics. To do
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FIG. 1. (a) Representation of the nematic tensor N of a spin-1
state as an ellipsoid. The semiprincipal axes are along eigenvectors
of N indicated by the unit vectors of {�u,�v,F}, with the widths in
these directions given by the corresponding eigenvalues {λu,λv,λF }.
A polar state is a flat disk-shaped ellipsoid [see (b) and (c)] completely
characterized by the director �u, with spin fluctuations maximized in
the plane transverse to �u. (b) Easy-plane and (c) easy-axis cases of
the polar state. (d) Ground-state phase diagram as a function of q.
Note that the direction of the external magnetic field sets our z axis.

this we introduce correlation functions for the spin-nematic
and superfluid order. We evaluate these using an ensemble
of large-scale simulations, demonstrate correlation function
collapse (dynamic scaling), and extract the relevant growth
laws. Finally, we examine the role of HQVs and show that the
average distance between vortices characterizes the growth of
order. Then we conclude in Sec. IV.

II. FORMALISM

A. Spin-1 antiferromagnetic condensate

A spin-1 condensate is described by the spinor field

ψ ≡ (ψ1,ψ0,ψ−1)T , (1)

where the three components describe the condensate amplitude
in the spin levels m = 1, 0, and −1, respectively. The

short-ranged interactions between atoms are described by the
rotationally invariant Hamiltonian density

Hint = gn

2
n2 + gs

2
|F|2. (2)

The first term describes the density-dependent interactions,
with coupling constant gn, where n ≡ ψ†ψ is the total density.
The second term describes the spin-dependent interactions
gs |F|2, with coupling constant gs , where F ≡ ψ† f ψ is the
spin density and f ≡ (fx,fy,fz) are the spin-1 matrices. For
the case gs > 0, known as antiferromagnetic interactions, the
condensate prefers to minimize the spin density to reduce the
interaction energy. In addition to interactions, the (uniform)
quadratic Zeeman shift,

HQZ = qψ†f 2
z ψ, (3)

also plays a role in determining the preferred spin ordering
of the condensate. The quadratic Zeeman energy q can be
controlled using the magnetic bias field; it can also be varied
by using microwave dressing (e.g., see [30,31]).

B. Nematic order

To quantify the spin order it is useful to introduce the
Cartesian representation of the spinor field �ψ ≡ (ψx,ψy,ψz),
where ψx = (ψ−1 − ψ1)/

√
2, ψy = −i(ψ1 + ψ−1)/

√
2, and

ψz = ψ0. We give results in both the Cartesian �ψ and the
spherical [ψ , see Eq. (1)] bases as needed.

A general spinor can be decomposed in the form

�ψ = eiθ (�u + i�v), (4)

where θ is the global phase, {�u,�v} are mutually orthogonal
real vectors satisfying |�u|2 + |�v|2 = n, and |�u| � |�v| (also see
[3,5,32,33]). For a spin-1 spinor, the local spin information
described by the spin density vector is

F = −i �ψ∗ × �ψ = 2�u × �v, (5)

and the symmetric nematic (or quadrupolar) tensor density is

Nab = 1
2 〈fafb + fbfa〉, a,b ∈ {x,y,z} (6)

= nδab − 1
2 ( �ψ∗ ⊗ �ψ + �ψ ⊗ �ψ∗) (7)

= nδab − (�u ⊗ �u + �v ⊗ �v). (8)

The nematic tensor describes the anisotropy of the spin
fluctuations and, in general, has the symmetries of an ellipsoid.
This is revealed by diagonalizing N , giving {�u,�v,F} as
the eigenvectors with respective eigenvalues λu = 1

2 (n − A),
λv = 1

2 (n + A), and λF = n. Here A = 2|�u|2 − n � 0 is the
alignment parameter [5], which characterizes the relative fluc-
tuations of magnetization along the directions orthogonal to
F. The alignment is related to the spin-singlet amplitude [34],

α = �ψ · �ψ = ψ2
0 − 2ψ1ψ−1, (9)

as A = |α|. It is conventional to take the eigenvector
associated with the smallest eigenvalue of N as the nematic
director, i.e., the vector �u. We can use the eigenvectors and
eigenvalues to represent the nematic tensor density as an
ellipsoid [see Fig. 1(a)]. We also note that λu = |�v|2 and
λv = |�u|2, so that the extent of the ellipsoid along the �u
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direction is the squared length of �v, and the extent of the
ellipsoid along the �v direction is the squared length of �u.

Two limiting states are of interest. First, the fully mag-
netized ferromagnetic state with |F| = n, where |�u| = |�v| =√

n/2, and A = 0. Second, and of primary concern in our
work, is the fully polar (or spin-nematic) state, which has the
form

�ψP = eiθ �u, (10)

with |�u| = √
n, A = n, and F = 0 [see Figs. 1(b) and 1(c)].

The spin properties of this state are completely characterized
by the director �u, and the state is invariant under the
transformation

θ → θ + π and �u → −�u. (11)

For general spin-1 states the relation

|F|2 + A2 = n2 (12)

holds, so that A can be used to characterize how close a state is
to the limiting case of ferromagnetic (A = 0) or polar (A = n)
order.

C. Order parameter for the EA-to-EP phase transition

Here we are concerned with an anti-ferromagnetic conden-
sate in which a quench is performed by a sudden change in the
quadratic Zeeman energy from a positive value to a negative
value [35] crossing a quantum phase transition between two
different ground states [see Fig. 1(d)]. In both cases the ground
state is fully polar �ψ = eiθ �u. For q > 0 the director (�u) is
along the z axis [EA phase; see Fig. 1(c)]. For q < 0 the
director lies in the xy plane [EP phase; see Fig. 1(b)]. Thus
the EP phase breaks the axial symmetry (invariance to spin
rotations about z) of the Hamiltonian. This type of quench
in an antiferromagnetic spinor condensate of 23Na atoms has
been performed in a number of experiments [17,18,20,21,36],
however, the EP nematic order was not directly probed in
these studies (cf. [5]). We also note that other phase transitions
can be considered in this system, e.g., Witkowska et al. [37]
considered a q quench for an antiferromagnetic condensate
with a nonzero (conserved) z magnetization, where a transition
to a phase-separated state occurs.

We would like to obtain an order parameter that can distin-
guish between these two states, notably the order parameter
should be 0 in the EA phase and nonzero in the EP phase.
To do this we note that in the EA phase the nematic tensor
is isotropic in the xy plane [see Fig. 1(c)], while in the
EP phase the nematic tensor is anisotropic in the xy plane
[see Fig. 1(b)]. To quantify the EP nematic order, and taking
motivation from nematic liquid crystals [38], we use a traceless
symmetric tensor to quantify order in this system. Particular
to the EA-to-EP phase transition we use the planar tensor,

Q = N2×2 − 1
2 Tr{N2×2}I2 (13)

=
(

Qxx Qxy

Qxy −Qxx

)
, (14)

where N2×2 is the xy submatrix of N , and I2 is the
identity matrix. Evaluating this expression we find that
Qxx = Re{ψ∗

1 ψ−1} and Qxy = Im{ψ∗
1 ψ−1}, i.e., it depends

on the relative phase coherence between the ψ1 and the
ψ−1 components of the system. While Q is traceless by
construction, Tr(Q2) = 0 only when the spin fluctuations are
isotropic in the xy plane. The EP phase is thus revealed
by Tr(Q2)’s becoming nonzero, thus demonstrating how Q

serves as an order parameter. We can write the eigenvalues
of Q as {− 1

2A⊥, 1
2A⊥}, where we have defined a “transverse

alignment” parameter [39],

A⊥ = |α⊥|, (15)

and have introduced [cf. Eq. (9)]

α⊥ ≡ −2ψ1ψ−1. (16)

Using this result gives Tr(Q2) = 1
2A2

⊥. In Appendix A we
present an alternative formulation of the planar tensor Q and
order parameter results.

III. RESULTS

A. Quasi-two-dimensional quench

In order to explore the quench dynamics we focus on a
quasi-2D system. In this regime the extent of the condensate
in one direction (which we take to be z) is less than the spin
healing length, so spin motion is effectively frozen out in
this direction. This regime has been realized in experiments
by applying a tight optical trap in this direction (e.g., see
[23,40]). Additionally, we neglect any transverse confinement
and take the condensate to be homogeneous in the plane. The
dynamics of this system is described by the spin-1 Gross-
Pitaevskii equation (GPE):

ih̄
∂ψ

∂t
=

(
− h̄2∇2

2M
+ qf 2

z + gnn + gs F · f
)

ψ . (17)

Note that we have neglected the linear Zeeman shift, which
can be removed from the equation of motion by transforming
to a rotating frame.

To numerically solve this equation we represent each
component of the spinor field ψ in a 2D square region of
dimensions l × l covered by an N × N grid of equally spaced
points. Taking periodic boundary conditions for the solution
we evaluate spatial derivatives in the kinetic energy term of
Eq. (17) with spectral accuracy using fast Fourier transforms.
To evolve the GPE in time we use the second-order symplectic
method presented in Ref. [41].

The initial condition for the simulations is a uniform EA
ground state (in the spherical basis),

ψ(x,t = 0) = √
nc

⎛
⎝0

1
0

⎞
⎠ + δ(x), (18)

where nc is the condensate (areal) density and δ is a small noise
field added to seed the growth of unstable modes following
the quench. The late-time results are insensitive to the form
of white spatial noise we add to the initial state as long as the
noise is weak (|δ|2 � nc). We choose to add noise according
to the truncated Wigner prescription [42], which is consistent
with the quantum vacuum noise in the initial state (see
[43] for details). We introduce the characteristic spin energy
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FIG. 2. Growth of densities, local pair correlations, and R	

following a quench from the EA to the EP phase. (a) The local
densities O = {n,A,A⊥,F} are evaluated from the results of a
single simulation trajectory according to Eq. (19). (b) Local pair
correlations functions, as defined in Eq. (20). (c) Relative phase
correlation function R	 as defined in Eq. (22). Inset: Evolutions
of the mean component densities, noting that the m = ±1 results are
approximately identical. Simulation is for a quench to q = −0.5q0

with gn = 3gs . The simulation is for a condensate density nc =
104/ξ 2

s of size l = 400 ξs with N = 512 points in each direction.

q0 ≡ 2gsnc and associated spin healing length ξs = h̄/
√

Mq0

and spin time ts = h̄/q0 as convenient units.

B. Early-time dynamics: Development of local order

Immediately following the quench the initial EA state is
unstable and begins to evolve towards the new phase. Aspects
of these early-time dynamics and the emergence of local EP
order can be revealed by studying the behavior of the spin
and alignment densities. Since some of these densities (e.g.,
Fz) can be locally negative, we quantify the development of a
particular density of interest O by spatially averaging O2, i.e.,
we evaluate

〈O2(t)〉 = 1

l2

∫
d2x O2(x,t). (19)

We present results for a variety of densities of interest in
Fig. 2(a). These results show that immediately following the

quench the EA state becomes dynamically unstable to magnon
excitations, which grow exponentially and cause the system to
develop transverse magnetization [i.e., F⊥ = (Fx,Fy)]. The
precise nature of the instability and the wave vectors of the
unstable modes depends upon the value of q, and aspects of this
have been explored in experiments [17,18,21,36]. The axial
magnetization (Fz) similarly experiences exponential growth.
The general behavior of spin density growth we observe is sim-
ilar for quenched condensates with ferromagnetic interactions
(e.g., see [31,44–46]). Noting that the average z magnetization
of the initial state is 0 (and conserved), the quantity 〈F 2

z (t)〉
corresponds to the fluctuations in magnetization studied in
recent experiments [36].

More direct insight into the change in nematic order is
provided by the alignment densities {A,A⊥} discussed in
Sec. II B. The initial EA state is fully aligned (i.e., A = nc),
but this dips down in the early dynamics as the magnetization
develops [as required by relation (12)]. As the alignment is
restored for t � 20ts it is of a different character, consistent
with EP order emerging. We see this by evaluating the
transverse alignment A⊥ order, which is initially negligible
but then grows and is seen to saturate towards the value of A.

Various in situ measurements of correlations between
components of the density have been performed in spinor con-
densate experiments (e.g., see [18,24,36,47]). Most relevant to
our system are the measurements by Vinit et al. [18] of the time
evolution of the local pair correlation function following the
EA-to-EP quench of a quasi-one-dimensional antiferromag-
netic condensate. The correlation functions measured were
[48]

Rmm′ (t) = 〈δnmδnm′ 〉, (20)

where δnm(x,t) = nm(x,t) − 〈nm〉 is the m-component density
fluctuation operator, with nm = |ψm|2 and 〈nm〉 being the
mean density of this component. We have evaluated the same
correlation functions measured in experiments (cf. Fig. 3
in Ref. [18]) and present the results in Fig. 2(b). We find
qualitative behavior similar to their results, however, note
that their measurements were for a shallow quench (to q ≈
−0.02q0) and with appreciable thermal effects. These same
types of local density measurements could be used to evaluate
the alignment densities. Indeed, noting that 〈A2

⊥〉 = 4〈n1n−1〉
[see Eqs. (15) and (16)], taking n1 and n−1 as uncorrelated, we
can make the estimate

〈A2
⊥〉uc ≈ 4〈n1〉〈n−1〉. (21)

For the uniform system 〈nm〉 = Nm/l2, and thus 〈A2
⊥〉uc is

determined by the component populations Nm = ∫
d2xnm,

which are readily measured in experiments. As shown in
Fig. 2(a) the uncorrelated approximation tends to overestimate
the EP order (〈A2

⊥〉) once it develops (t � 20ts). Noting that
〈n1n−1〉 = 〈n1〉〈n−1〉 + R1,−1, this overestimate of Eq. (21) is
due to the negative value R1,−1 takes for t � 20ts [Fig. 2(b)].
Evidence of R1,−1’s becoming negative was also found in
experiments at late times [18].

Finally, we examine the system evolution to quantify the
local “phase locking” of the m = ±1 components relative
to the m = 0 component. This was recently observed in
experiments by applying a spin rotation to the system and
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measuring the resulting magnetic fluctuations [5]. In our
simulations we can directly access this from the local (spatially
averaged) correlation function

R	(t) ≡ 〈ψ−1ψ1ψ
∗
0 ψ∗

0 〉. (22)

Taking ψm = √
nmeiθm , we see that R	 ∼ ei(θ1+θ−1−2θ0), which

conventionally defines the relative phase 	 ≡ θ1 + θ−1 − 2θ0.
To understand the physical relevance of this correlation
function, we note that the transverse spin density squared and
the alignment density squared are

〈|F⊥|2〉 = 2〈n0(n−1 + n1)〉 + 4Re{R	}, (23)

〈A2〉 = 〈
n2

0

〉 + 4〈n1n−1〉 − 4Re{R	}, (24)

respectively. Thus varying the real part of R	 enables the
system to enhance or reduce the spin density, while having
the opposite effect on the alignment [also see Eq. (12)].
Antiferromagnetic systems prefer 	 = π to reduce the spin
density. The behavior of R	 is shown in Fig. 2(c); note that
we have normalized R	 by the average densities of each
component [using 〈n−1〉 ≈ 〈n1〉; also see inset in Fig. 2(c)]
so that the magnitude measures the concentration of 	.
These results show that after the early dynamics settles down
(t � 25ts) the function R	 approaches a negative real value,
i.e., 	 → π . The m = 0 component is unoccupied in the
EP ground state but maintains a small population [see inset
in Fig. 2(c)] at late times due to heating from the quench.
The m = 0 component of the system is noisy (consistent
with a thermalized gas, e.g., see [43]) and the amplitude
of the R	 correlation function is significantly reduced by
these fluctuations. However, our results show that there is
still a tendency for the spin-dependent interactions to lock
the relative phase of the m = ±1 components relative to the
m = 0 component.

C. Late-time universal coarsening dynamics

In addition to considering the emergence of local spin-
nematic order we wish to examine the spatial dependence of
the textures (domains) that develop and how these evolve in
time. In Fig. 3 we visualize the system order in a region of a
simulation soon after local order is established [Fig. 3(a)] and
at a later time [Fig. 3(b)]. This visualization is performed
by decomposing the spinor field at each simulation point
according to Eq. (4) to obtain �u(x) and θ (x). The results in
Fig. 3 demonstrate that the spin-nematic and superfluid (i.e.,
global phase θ ) order tends to extend over larger length scales
as time passes, showing that the system is coarsening toward
an EP state with (quasi-)long-range order.

To quantify the spatial dependence of the ordering we
introduce the correlation functions

Gφ(r,t) = 2

n2
c

〈Tr{Q(0)Q(r)}〉t , (25)

Gθ (r,t) = 1

n2
c

〈
α∗

⊥(0)α⊥(r)
〉
t

(26)

FIG. 3. Evolution of order after the quench in a 50ξs × 50ξs

subregion of a simulation at (a) t = 100ts and (b) t = 500ts . Arrows
indicate planar projection of the director �u and colors indicate the
phase order θ in these regions. In general there are two possible values,
�u and θ , for the spinor at each simulation point [see Eq. (4)] because
of the symmetry, (11), and we impose the further condition uy � 0.
We also show the locations of HQVs (see Sec. III D) with circulations
σ1 = 1 (black cross), σ1 = −1 (black triangle), σ−1 = 1 (white cross),
and σ−1 = −1 (white triangle). Simulation parameters: gn = 3gs ,
q = −0.5 q0, nc = 104/ξ 2

s , l = 200 ξs , and N = 256 points.
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s , and q = −0.5 q0.

for the spin-nematic and superfluid orders, respectively,
evaluated at time t after the quench. See Appendix B for
more details about how these correlation functions relate to
the atomic-field operators.

To illustrate the use of these correlation functions, we
consider the EP ground-state spinor

ψEP =
√

nc

2
eiθ

⎛
⎝−e−iφ

0
eiφ

⎞
⎠, (27)

where the angle φ is associated with the spin-nematic
order (i.e., �u ∝ cos φ x̂ + sin φ ŷ) and the global phase θ is
associated with the superfluid order. Taking θ and φ to be
spatially dependent random variables, we use ψEP to evaluate
the correlation functions (25) and (26), yielding

GEP
φ (r) = 〈cos 2[φ(r) − φ(0)]〉, (28)

GEP
θ (r) = 〈

ei2[θ(r)−θ(0)]
〉
. (29)

In practice we compute the spin-nematic order parameter
correlation function as

Gφ(r,t) =
∫

dr

∫
d2x′

l2

2

n2
c

〈Tr{Q(x′)Q(x′ + r)}〉t , (30)

which includes averaging to improve the statistics of our
results: 〈 〉t denotes an average over trajectories (simulations

with different seeding noise). The integral
∫

dr is an
angular average in 2D position space (utilizing the isotropy
of the system) and l−2

∫
d2x′ denotes spatial averaging.

The convolutions are efficiently computed using fast Fourier
transforms. We also apply these additional averaging steps
when computing the Gθ (r,t) correlation function.

Results for the evolution of Gφ(r,t) are shown in Fig. 4(a).
As time increases the correlation function is seen to decay
more slowly, indicating that the in-plane spin-nematic order
is extending over larger distances. We can investigate whether
the growth of this order exhibits dynamic scaling whereby the
nematic domains are statistically self-similar at different times,
up to an overall length scale that grows with time. This property
often holds in the late-time (when the domain sizes are much
larger than the microscopic length scales of the system) phase-
ordering dynamics of systems [49]. To verify dynamic scaling
we demonstrate that the correlation function collapses to a
universal (time-independent) function under time-dependent
rescaling of space, i.e., by showing that with an appropriate
choice of Lφ(t) we have

Hφ(r) = Gφ(r/Lφ(t),t). (31)

Results showing the collapse are presented in Fig. 4(b), where
we have taken Lφ(t) to be the correlation length defined by
the distance over which the correlation function decays to
one-fourth of its local value, i.e., Gφ(Lφ,t) = 1

4Gφ(0,t). The
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collapse is reasonably good except at short length scales (r �
Lφ), where the correlation function sharpens as t increases.

The length scale Lφ(t) is not unique and can be multiplied
by a constant and still yield correlation function collapse.
However, as chosen Lφ(t) gives a reasonable characterization
of the domain size [50] in the ordering EP system. By
considering the evolution of Lφ(t) we can extract the dynamic
critical exponent zφ as Lφ(t) ∼ t1/zφ , providing a key char-
acterization of the dynamic universality class of the system.
In Fig. 4(e) we show the time evolution of Lφ(t) in a log-log
graph and find that at late times (t � 103ts) this grows as
Lφ(t) ∼ [t/ ln(t/t0)]1/2, i.e., with a dynamic critical exponent
of zφ = 2 and logarithmic corrections. We find that the growth
law exhibits a slight bulge (i.e., above the asymptotic growth
law) extending from early times up until times of order 103ts .
We find that this correlates with the time period over which the
magnetic fluctuations evolve appreciably in the system [see
Fig. 4(f)], suggesting that the decay of magnetic fluctuations
may set an important time scale for the system entering into
the late-time coarsening regime (also see [36]).

The Lφ(t) ∼ [t/ ln(t/t0)]1/2 growth law we obtain here is
the same form of growth known from the dissipative 2D XY
model [51,52] (also see [53]) and was established in early work
considering the coarsening dynamics of smectic liquid crystal
films [54] (also see [55–57]). Singh et al. [56] have predicted
an analytic form of Hφ for nematic liquid crystals, which they
have favorably compared to the results of Monte Carlo simula-
tions using a spin-nematic liquid crystal model [11]. We, how-
ever, find that this result is not a good fit to the Hφ we obtain.

We can also consider the superfluid scaling in this system,
with examples of the evolving Gθ correlation function shown
in Fig. 4(c). We verify dynamic scaling in a similar way to the
spin-nematic order by finding a length scale Lθ (t) such that
we have correlation function collapse:

Hθ (r) = Gθ (r/Lθ (t),t). (32)

Results showing this collapse are presented in Fig. 4(d), where
again we have taken Lθ (t) to be the distance over which
the correlation function decays to one-fourth of its local
value. These results also reveal that the late-time superfluid
correlation function Gθ has a shape similar to that of the
spin-nematic correlation function Gφ . By definition both
correlation functions have the same local value, i.e., Gθ (0) =
Gφ(0) = 〈A2

⊥〉/n2
c . However, in general the superfluid corre-

lation function decays more slowly and has a slightly longer
characteristic length than the spin-nematic correlation function
[e.g., see inset in Fig. 4(c)].

In Fig. 4(e) note that Lθ grows in a similar way to Lφ ,
consistent with the same dynamical critical exponent, i.e.,
zθ ≈ zφ ≈ 2 (to within log corrections). Thus we find that
the superfluid and spin-nematic order grow together in this
system. This is different from recent results for the ordering of
an EA ferromagnetic phase of a spin-1 condensate, which
showed that the superfluid order grows significantly more
slowly than the spin order [22] (also see [58]). We also note that
Ref. [22] demonstrates how the late-time coarsening results
are insensitive to the resolution of the numerical grid used
in simulations. Our particular choice of grid-point spacing
�x = l/N = 0.78 ξs is to resolve the unstable modes that
dominate the early-time dynamics following the quench.

10−1 100 101

kLφ(t)

10−2

10−1

100

S
φ
(k

,t
)/

L
φ
(t

)2

t = 0.6 × 10 t

t = 1.6 × 10 t

t = 4.6 × 10 t

t = 12.1 × 10 t

t = 34.4 × 10 t

t = 97.9 × 10 t

∼ k−3

FIG. 5. Sφ structure factor scaled by Lφ(t) to reveal the scaling
collapse. The power-law decay for kLφ > 1 reveals the Porod
tail, with a guide line indicating k−3 scaling for reference. Other
parameters as in Fig. 4.

It is conventional also to analyze the structure factors
associated with the order parameter correlation function. The
structure factor for spin-nematic order is defined as

Sφ(k,t) =
∫

d2r Gφ(r,t)eik·r. (33)

The structure factors also collapse with dynamic scaling
according to

Sφ(k,t) = Lφ(t)2ĥ
(
kLφ(t)

)
, (34)

where ĥ is the Fourier transform of Hφ , (31). Results for
the Sφ structure factor are shown in Fig. 5. For k vectors
in the range L−1

φ < k � ξ−1
s (i.e., length scales between the

microscopic healing length and the domain size), the structure
factor exhibits a power-law decay that is approximately of
the form k−3. This differs from the generalized Porod law
result of k−4 decay expected in 2D spin models [57,59].
The k−3 decay law is also found for the first-order structure
factors (single-particle momentum spectra) in studies of binary
condensates in relevant regimes [29] and is analyzed in terms
of turbulence scaling.

We can similarly define a superfluid structure factor Sθ from
Gθ . This structure factor has a collapse and power-law decay
similar to those we have presented for Sφ(k).

D. Topological defects

It is of interest to consider HQVs, which are the topological
defects supported by the EP order parameter. To illustrate
the properties of HQVs we first consider a single HQV
located at the origin. Away from the core the wave function is
approximately of the form

ψvort =
√

nc

2
eiqθ ϕ

⎛
⎝−e−iqφϕ

0
eiqφϕ

⎞
⎠ ∼

⎛
⎝−e−iσ1ϕ

0
eiσ−1ϕ

⎞
⎠, (35)
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FIG. 6. (a–d) Four types of HQVs that can occur in the EP phase
are illustrated, labeled by their winding numbers.

where we have set θ → qθϕ and φ → qφϕ in Eq. (27), ϕ is the
azimuthal angle about the core, and {qθ ,qφ} are the winding
numbers. In Eq. (35) we have also introduced the component
windings

σ±1 ≡ qθ ∓ qφ, (36)

where σm denotes the net phase winding in the mth component
of the field. The σm must be integers for the field to be
single-valued. The cases σ1 = ±1 (with σ−1 = 0) and σ−1 =
±1 (with σ1 = 0) define the four HQVs, corresponding to
qθ = ± 1

2 , qφ = ± 1
2 , i.e., vortices with half-quantized values

of the windings in θ and φ (see Fig. 6).
Much of our theoretical understanding of HQV dynamics

has come from studies of miscible two-component condensates
[60–62], which also support HQVs (also see [63]). Notably,
Eto et al., [61] have shown that the interaction potential
between two HQVs separated by a distance R (for R � ξs) is
of the form

Uint ∝ κ ln R, (37)

where

κ = q
(1)
θ q

(2)
θ + q

(1)
φ q

(2)
φ = 1

2

∑
m=±1

δ
σ

(1)
m ,σ

(2)
m

, (38)

with (q(1)
θ ,q

(1)
φ ) and (q(2)

θ ,q
(2)
φ ) [or (σ (1)

1 ,σ
(1)
−1) and (σ (2)

1 ,σ
(2)
−1)]

being the sets of winding numbers specifying HQV 1 and

102 103 104 105

t/ts

102

103

104

105

N
vo

rt

l2/L2
φ(t)

l2/L2
θ(t)

Nvort

FIG. 7. HQV number as a function of time for the simulation
case examined in Fig. 4. The vortex number is computed as the
total number of unit phase winding singularities in the m = ±1
components averaged over the trajectories. The vortex number is
compared to the number of domains l2/L2

ν , using the characteristic
length scales Lν = {Lφ,Lθ } [from Fig. 4(e)] as labeled in the plot.

HQV 2, respectively. In the case where both HQVs have
winding in the same component (i.e., both having |σ1| = 1
or |σ−1| = 1), then |κ| = 1

2 and the interaction is of the same
form as that for U(1) vortices in a scalar condensate. When
the vortices occur in different components, then κ = 0 and
there is no long-ranged interaction. However, a short-ranged
repulsive interaction is predicted, extending over a length scale
comparable to the vortex core size [61,63,64]. Two HQVs with
opposite circulation in the same component (e.g., an HQV with
σ1 = 1 and an HQV with σ1 = −1) can collide and annihilate,
as has recently been observed in experiments [24].

Coarsening dynamics can be viewed in terms of the
dynamics of topological defects of the order parameter which
are generated in the early stages of the quench dynamics. The
windings associated with these defects disrupt the order, and
as they mutually annihilate, order is able to extend over larger
length scales. We show the locations of HQVs in Fig. 3, which
reveals a qualitative relationship between the domain sizes
and the vortex locations. To quantify the role of defects we
detect the number of vortices in our simulations during the
evolution. In practice we identify vortices by detecting integer
phase windings of the field that occur around plaquettes of
the numerical grid. If such phase windings occur only in the
m = 1 or m = −1 component of the field and are spatially
isolated from other vortices, then they can be identified as
one of the four types of HQVs. Furthermore, HQVs have a
z-magnetized core, which we observe in our simulations. In
the early-time dynamics not all vortices detected are HQVs,
but we find that only HQVs persist at late times (t � 100ts). In
Fig. 7 we show the averaged total number of vortices Nvort as
a function of the time. The number of vortices decreases as the
coarsening progresses. We can compare these results to the
characteristic length scales discussed in Sec. III C. Crudely,
if the characteristic length scale is taken to be the distance
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between vortices, then we would expect

Nvort(t) ∼ l2

Lν(t)2
, ν ∈ {φ,θ}. (39)

We have added these results for the characteristic length to
Fig. 7, verifying that relationship (39) holds.

As noted above a pair of σ1 = 1 and σ1 = −1 HQVs (or
a σ−1 = 1 and σ−1 = −1 pair) evolves similarly to a vortex-
antivortex pair in a scalar condensate and has the potential
to mutually annihilate. In this case each component vortex
experiences a Magnus force which causes the pair to move at a
uniform velocity in a direction perpendicular to the line joining
them. Such motion, without some other source of dissipation,
does not lead to the vortices’ meeting and annihilating. This is
in contrast to oppositely charged polar core spin vortices (the
topological defects of the easy-plane ferromagnetic phase),
which accelerate towards each other and annihilate [65,66].
We expect that in our system dissipation will arise from
the interaction between the vortices and the sound waves
(spin waves) excited by the quench. However, recent results
on HQVs suggest an additional dissipative mechanism even
in the absence of spin waves: GPE simulations of a quiet
binary condensate (without excitation) showed that such a
pair of HQVs moves together and annihilates (see Sec. IV
in [62]). This effect was observed to be dependent on the
interaction parameter regime, occurring only for γ > 0.5,
where γ is the ratio of the interspecies to the intraspecies
interaction in the binary condensate. In the spin-1 system [67]
this parameter relates to the interaction parameters as γ ≈
(gn − gs)/(gn + gs). Since our main simulations presented are
for γ = 0.5, where this additional dissipative effect is expected
to be negligible, it is of interest to see if our coarsening
dynamics changes for a larger value of γ . To explore this
issue we have conducted quench simulations for gs = gn/12
(γ ≈ 0.85). The results for these simulations are roughly
comparable to our main results in Fig. 4 (which are for
gs = gn/3) and do not indicate that the coarsening proceeds
at a faster rate. Nevertheless, obtaining a better understanding
of HQV dynamics, particularly in the spin-1 system at finite q

values, would be a valuable direction for future research. Also,
a more detailed study of the dynamics and correlations between
HQVs during the coarsening will be needed to illuminate
the microscopic processes that are important in the system
evolution (cf. [68]).

IV. CONCLUSION

In this paper we have presented a theory for quantifying
order formation in an antiferromagnetic spin-1 condensate.
We have used this to study the dynamics of a quasi-2D
system quenched into the EP spin-nematic phase. This topic
has been of growing interest, with a number of experi-
mental developments motivating this work. These include
studies of correlations and spatial ordering in a quasi-one-
dimensional system [17,18] and the evolution of magnetic
fluctuations and HQV formation in a quasi-2D system [36].
A key issue has been identifying appropriate observables
for quantification of spin-nematic order. This issue has
been explored by Zibold et al. [5], who developed a novel
measurement scheme to demonstrate spin-nematic order in

the single-mode regime [5]. We motivate and define order
parameters for the system to quantify the spin-nematic and
superfluid order, and in doing this we have connected our
formalism to quantities that have already been measured
in experiments.

We have also studied the universal coarsening regime
that emerges at late times after the quench. We evaluate
the evolution of the order parameter correlation functions
by averaging over an ensemble of large-scale numerical
simulations and show that both types of order exhibit dynamic
scaling, with a characteristic length scale that grows as
L ∼ [t/ log(t/t0)]1/2. Our results also show that the coarsening
is determined by the mutual annihilation of HQVs produced
in the early stages of the quench. In experiments it may be
difficult to directly measure the order parameter correlation
function, whereas the average distance between HQVs (which
can be directly imaged [23,24,36]) will be a more convenient
method to measure a characteristic length scale of order
in the system. While the main coarsening results presented
are for the numerically convenient case of gn/gs = 3, we
have also conducted simulations for higher ratios (closer
to the ratio of the experimentally relevant species 23Na)
and found that the scaling is unchanged, as expected for
universal behavior.

Having developed and applied a formalism for nonferro-
magnetic ordering in a spin-1 system we open the door to
other studies of ordering in spinor systems. This includes
the rich array of spin orders that emerge in higher spin
systems (e.g., see [4]) and systems with topological interfaces
[69,70].
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APPENDIX A: PLANAR TREATMENT
OF SPIN-NEMATIC ORDER

We can formulate our order parameters by considering the
Cartesian spinor field projected onto the plane:

�ψ⊥ ≡ (ψx,ψy)T . (A1)

Recalling that ψx = 1√
2
(ψ−1 − ψ1), ψy = − i√

2
(ψ1 + ψ−1),

we see that the planar treatment depends only on the {ψ1,ψ−1}
spherical components of the spinor.

We now proceed to develop a mathematical description
of the spin properties of the planar-spin system analogously
to the three-dimensional treatment developed in Sec. II B.
We can decompose the planar spinor into two real planar
vectors,

�ψ⊥ = eiθ⊥ (�u⊥ + i�v⊥), (A2)

which are orthogonal and satisfy the normalization condition

|�u⊥|2 + |�v⊥|2 = n⊥, (A3)
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where n⊥ = �ψ∗
⊥ · �ψ⊥ = n1 + n−1. We choose �u⊥ to be the

effective planar director and take it to be the longest vector,
i.e., |�u⊥|2 � 1

2n⊥ � |�v⊥|2. We emphasize that the vectors
{�u⊥,�v⊥} are not in general the projected versions of the
three-dimensional vectors in Eq. (4) (e.g., projection of {�u,�v}
does not preserve their orthogonality).

Because our vectors are 2D we can only obtain a z

component of the cross product, which yields the usual
Fz = |ψ1|2 − |ψ−1|2 magnetization density, i.e.,

Fz = −i �ψ∗
⊥ × �ψ⊥ = 2�u⊥ × �v⊥. (A4)

The m = 0 component projected out of the spinor prohibits
us from quantifying the transverse magnetization. The singlet
amplitude to the planar system is defined as

α⊥ ≡ �ψ⊥ · �ψ⊥ = −2ψ1ψ−1 (A5)

and we have the relation [cf. Eq. (12)]

F 2
z + |α⊥|2 = n2

⊥. (A6)

We can construct a symmetric traceless tensor [i.e., the one
introduced in Eq. (13)] as

Q ≡ n⊥
2

I2 − 1

2
( �ψ∗

⊥ ⊗ �ψ⊥ + �ψ⊥ ⊗ �ψ∗
⊥) (A7)

= n⊥
2

I2 − (�u⊥ ⊗ �u⊥ + �v⊥ ⊗ �v⊥). (A8)

As noted in Sec. II C the elements of Q in spherical spinor
components are Qxx = Re{ψ∗

1 ψ−1} = −Qyy and Qxy =
Im{ψ∗

1 ψ−1}, with det(Q) = −n1n−1.
By inspection of Eq. (A8) we see that {�u⊥,�v⊥} are eigen-

vectors of Q with eigenvalues λu = 1
2n⊥ − |�u⊥|2 and λv =

1
2n⊥ − |�v⊥|2, respectively. Given our convention of choosing
�u⊥ as the longer vector we have that λu is negative (i.e., the
director corresponds to the lowest eigenvalue). Because the
matrix is traceless the eigenvalues are given by ±√−det(Q),
i.e., λu = −√

n1n−1 and λv = √
n1n−1. The trace of Q2 is

then just the sum of the eigenvalues squared, and recalling the
transverse alignment A⊥ = |α⊥| = √

2n1n−1, we obtain

Tr(Q2) = 1
2A

2
⊥. (A9)

We also note that Q can be written in the form

Q = A⊥
2

(
cos 2ϕ sin 2ϕ

sin 2ϕ − cos 2ϕ

)
, (A10)

where we have introduced ϕ ≡ 1
2 Arg(ψ∗

1 ψ−1), i.e., ψ∗
1 ψ−1 =

1
2A⊥e2iϕ . Note that this has eigenvalues and eigenvectors

λu = −A⊥
2

, �̂u⊥ =
(

cos ϕ

sin ϕ

)
, (A11)

λv = +A⊥
2

, �̂v⊥ =
(− sin ϕ

cos ϕ

)
, (A12)

where the hats emphasize that these are unit vectors. We
observe that the relative phase of the ψ1 and ψ−1 components
directly determines the orientation ϕ of the planar director �u⊥.
Note that this result is general for any spin-1 spinor, however,
for the particular case of the EP ground state, (27), we have
ϕ → φ, A⊥ → nc.

APPENDIX B: CORRELATION FUNCTIONS

Using the results in the previous section we can provide an
alternative motivation for the correlation functions used in the
paper. First, we consider the orientation of the director at two
points in space. For a spin model this might be characterized
by a correlation function of the form

Gu(r) = 〈|�̂u(0) · �̂u(r)|2〉 = 1
2 〈cos(2[ϕ(0) − ϕ(r)]) + 1〉, (B1)

where the inner product is squared to account for �u and −�u
being the same. In terms of the fields our relevant quantity is
the complex density � ≡ ψ∗

1 ψ−1 = 1
2A⊥e2iϕ . Correlating this

at two points in space we have

G�(r) = 〈�(0)�∗(r)〉 (B2)

= 〈ψ∗
1 (0)ψ−1(0)ψ∗

−1(r)ψ1(r)〉, (B3)

which is identical to Gφ as defined in (25) if we normalize by
a factor of 4/n2

c .
From Eqs. (A2) and (A5) we see that the superfluid phase

θ⊥ is related to the singlet amplitude as

α⊥ = −2ψ1ψ−1 = −A⊥e2iθ⊥ , (B4)

where we can take θ⊥ = 1
2 Arg(ψ1ψ−1). Thus to correlate this

superfluid order at two points we can consider the pairinglike
field α⊥ at these two locations, i.e.,

Gα⊥ (r) = 〈α∗
⊥(0)α⊥(r)〉, (B5)

= 4〈ψ∗
1 (0)ψ∗

−1(0)ψ−1(r)ψ1(r)〉. (B6)

Normalizing by a factor of n−2
c gives Gθ [Eq. (26)].
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