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We analyze the dynamics of two-component vector solitons, namely, dark-bright solitons, via the variational
approximation in Bose-Einstein condensates. The system is described by a vector nonlinear Schrödinger
equation appropriate to multicomponent Bose-Einstein condensates. The variational approximation is based
on a hyperbolic tangent (hyperbolic secant) for the dark (bright) component, which leads to a system of coupled
ordinary differential equations for the evolution of the ansatz parameters. We obtain the oscillation dynamics of
two-component dark-bright solitons. Analytical calculations are performed for same-width components in the
vector soliton, and numerical calculations extend the results to arbitrary widths. We calculate the binding energy of
the system and find it to be proportional to the intercomponent coupling interaction and numerically demonstrate
the breakup or unbinding of a dark-bright soliton. Our calculations explore observable eigenmodes, namely, the
internal oscillation eigenmode and the Goldstone eigenmode. We find analytically that the number of atoms in
the bright component is required to be less than the number of atoms displaced by the dark soliton in the other
component in order to find the internal oscillation eigenmode of the vector soliton and support the existence of
the dark-bright soliton. This outcome is confirmed by numerical results. Numerically, we find that the oscillation
frequency is amplitude independent. For dark-bright solitons in 87Rb we find that the oscillation frequency range
is 90 to 405 Hz and therefore observable in multicomponent Bose-Einstein condensate experiments.
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I. INTRODUCTION

Nonlinear waves have been a fascinating subject since the
discovery of the solitary wave in 1834 by John Scott Russell
in the Union Canal in Scotland, where he observed the “great
wave of translation”, as he called it at the time [1]. Since
then, solitary waves of all kinds have been observed in many
systems. Solitons in Bose-Einstein condensates (BECs), which
are the subject of this article, have been the focus of research
efforts since the creation of BECs [2,3].

A special structure of a coupled dark-bright soliton may
exist in two-component BECs with repulsive interatomic
interactions, where a dark soliton in one component creates
a potential well that traps a bright soliton in the second
component [4–10]. Although a bright soliton does not exist in
a system with repulsive interactions [11], it can be supported in
such a binary system due to the nonlinear interaction with the
dark-soliton component. These solitons can be referred to as
symbiotic [6,12]. A similar possibility for such a mechanism
was proposed early in the literature in terms of a Bose-Fermi
mixture in which bosons and fermions attract each other but the
interaction between the bosons themselves is repulsive [13].
Vector solitons also exist in fiber optics [14–16], including
bright-bright solitons [17] and dark-bright solitons [18].
Different types of vector solitons in multiple component BECs,
such as pseudospinor BECs or three- and higher-component
spinor BECs [19,20], can be created and transformed into each
other by tuning the intercomponent interaction via Feshbach
resonances [9,21,22]. Examples of these vector solitons in
two-component BECs include bright-bright solitons [23,24]
and dark-dark solitons [10,25], which exhibit rich dynamical
far-from-equilibrium phenomena such as beating dark-dark
solitons [26]. Among the techniques to create dark-bright
solitons in a binary mixture of BECs are phase imprinting
[4] and counterflowing of two binary BEC mixtures [27].

Many studies have been conducted to investigate the
oscillation of vector solitons to gain better understanding
of the dynamics of multicomponent nonlinear excitations.
The oscillation of bright-bright solitons is one example of
such studies. Another example is the oscillation of dark-
dark solitons. In the case of dark-bright solitons, there have
been investigations of the oscillation of multiple dark-bright
solitons [6,27,28] and the oscillation of the internal modes
for bright-bright solitons using a Gaussian ansatz [29] via
variational approximation methods. However, to the best of
our knowledge no one has treated the internal oscillations
of the dark-bright-soliton case variationally using hyperbolic
functions, which is the subject of this article. A popular
choice for the ansatz in the variational approximation method
is Gaussian functions for their relative ease in calculating
integrals over the Lagrangian density. In addition, Gaussian
functions do not impose any restriction on the choice of
the width of the two components in the vector soliton. A
disadvantage of using Gaussian functions is that they are
less accurate than using hyperbolic functions; in fact, it is
exactly the non-Gaussianity of solitons that sets them apart
from wave-packet solutions to the linear Schrödinger equation.
Thus in this article we perform calculations with variational
approximation methods using the hyperbolic tangent (hyper-
bolic secant) for the dark (bright) component in the dark-bright
soliton. This choice imposes restrictions on the width of the
two components such that they must be identical in order to
solve the integrals for the Lagrangian density analytically. We
study the behavior of the dark-bright soliton when a phase is
imprinted only on the bright component and find the oscillation
modes of the system in addition to the binding energy and
the velocity of the dark-bright soliton, which is affected by
the interaction coefficient between the two components. In
this scenario the moving bright component pulls the dark
component along with it and oscillates in addition to moving
the dark-bright soliton as a whole. One can think of this
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mode as a vibrational excitation of the dark-bright “soliton
molecule”, as two-component vector solitons are sometimes
called. We will use the term dark-bright soliton to describe
these vector solitons. Our calculation shows that the system
has a second oscillation mode in addition to the vibrational
mode, namely, a Goldstone mode [30], as expected since the
whole dark-bright soliton is moving.

This article is organized as follows. In Sec. II we study
the oscillation of the two components in the dark-bright
soliton by imprinting a phase on the bright component and
finding the normal modes of the system by means of a vari-
ational approximation method based on a hyperbolic tangent
(hyperbolic secant) for the dark (bright) soliton component
for the two-component ansatz. In Sec. II D we calculate the
binding energy between the bright and dark components in
the dark-bright soliton as a function of the distance between
the center of each component. In Sec. III we investigate
dark-bright-soliton dynamics by numerically integrating the
dimensionless nonlinear Schrödinger equation (NLSE) using
an algorithm that is pseudospectral in time and adaptive Runge-
Kutta in space. We focus on the intercomponent dynamics for
different interaction coefficients and discuss real experimental
values for the internal oscillation frequency in 87Rb. Finally,
we present our conclusions in Sec. IV.

II. ANALYTICAL CALCULATIONS

A. Lagrangian density and ansatz

The two-component dark-bright soliton is governed by
coupled NLSEs [2], which describe the evolution of the
macroscopic wave functions of Bose condensed atoms:

ih̄
∂

∂t̃
ũ
(
x̃,t̃

) = − h̄2

2m

∂2ũ(x̃,t̃)

∂x̃2

+ [g̃11|ũ(x̃,t̃)|2 − ũ2
0 + g̃12|ṽ(x̃,t̃)|2]ũ(x̃,t̃),

ih̄
∂

∂t̃
ṽ
(
x̃,t̃

) = − h̄2

2m

∂2ṽ(x̃,t̃)

∂x̃2

+ [g̃22|ṽ(x̃,t̃)|2 + g̃21|ũ(x̃,t̃)|2]ṽ(x̃,t̃), (1)

where tildes denote dimensional quantities. The wave function
of the dark soliton is given by ũ(x̃,t̃), and that of the bright
soliton is given by ṽ(x̃,t̃). The interaction strength, g̃ij =
2aijNh̄ω⊥ for i,j = 1,2 is renormalized to one dimension
[31], where g̃12 and g̃21 are the interatomic interaction
between the two components of the BEC and g̃11 (g̃22)
represents the intra-atomic interaction for the dark (bright)
component. The dark-soliton wave function is rescaled to
remove the background contribution ũ0, which is standard
to avoid divergent normalization and energy [32]. The s-wave
scattering length between components i and j is aij , N is the
total number of atoms, and ω⊥ is the oscillation frequency of
the transverse trap. We assume the atomic masses for the two
components m1 and m2 are equal to m, which is appropriate
for the case of multiple hyperfine components of, e.g., 87Rb.
To nondimensionlize Eqs. (1) we multiply them by (h̄ω⊥)−1

and scale all quantities according to the following units:

x = x̃

�⊥
,

t = t̃ω⊥,

gij = g̃ij

�⊥h̄ω⊥
,

|u|2 = �⊥|ũ|2,
|v|2 = �⊥|ṽ|2,

u2
0 = ũ2

0

h̄ω⊥
,

(2)

where �⊥ = √
h̄/(mω⊥) is the transverse harmonic oscillator

length. In Sec. III D we discuss specific choices that are
consistent with experimental observations. For simplicity we
take g11 ≡ g1,g22 ≡ g2, and g12 = g21 ≡ g. The dimension-
less NLSE becomes

i
∂u

∂t
= −1

2

∂2u

∂x2
+ [

g1|u|2 − u2
0 + g|v|2]u,

i
∂v

∂t
= −1

2

∂2v

∂x2
+ [g2|v|2 + g|u|2]v. (3)

We work with the dimensionless one-dimensional two-
component coupled NLSE, Eq. (3), throughout the rest of this
article. We use the normalization conditions

∫ ∞

−∞
dx

(
u2

0

g1
− |u|2

)
= N1

N
, (4a)

∫ ∞

−∞
dx |v|2 = N2

N
(4b)

for the dark and bright components, respectively. Noting the
background subtraction in the first component of Eqs. (4), N1

is the number of atoms displaced by the dark soliton, in other
words, the number of atoms involved in creating the density
notch or minimum. Thus we define the total number of atoms
N involved in the dark and bright solitons as

N1 + N2 = N, (5)

which is appropriate for the two-component BEC and standard
for the dark-bright-soliton problem, thereby incorporating N

into the definition of the nonlinear coefficient g̃ij [2]. To obtain
Eq. (3), we introduce the following Lagrangian density where
we use Euler-Lagrangian equations to get the equations of
motion, i.e., the coupled NLSE of Eq. (3):

L = i

2

[
u∗ ∂u

∂t
− u

∂u∗

∂t

][
1 − u2

0

g1|u|2
]

− 1

2

∣∣∣∣∂u

∂x

∣∣∣∣
2

− 1

2

[√
g1|u|2 − u2

0√
g1

]2

+ i

2

[
v∗ ∂v

∂t
− v

∂v∗

∂t

]

− 1

2

∣∣∣∣∂v

∂x

∣∣∣∣
2

− g2

2
|v|4 − g|u|2|v|2

+ u2
0

2g1
[2θ2(x + d(t)) + θ1(t)]2. (6)
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Note that the last term does not depend on the wave function of
the dark or the bright component and was added to eliminate
the infinity when using the ansatz, Eq. (7), with θ1 and θ2 to be
defined in the following. We adopt the following trial functions
as the dark-bright-soliton solutions to Eq. (3):

u(x,t) = u0√
g1

{
iA + c tanh

[
(d(t) + x)

w

]}

× exp(i{θ0 + [d(t) + x]θ1(t) + [d(t) + x]2θ2}),

v(x,t) = u0√
g2

F sech

[
(b(t) + x)

w

]

× exp(i{φ0 + [b(t) + x]φ1(t) + [b(t) + x]2φ2}).
(7)

The parameters A, c, and F describe the amplitude of the
two components, where A2 + c2 = 1, which is standard in the
formulation of an NLSE dark soliton [33]. In the exponential
terms, φ0 and θ0 give rise to a complex amplitude. φ1(t)
and θ1(t) are responsible for the dark- and bright-component
velocities. Note that the velocity of a dark soliton also depends
on the amplitude of the wave function as shown in Eq. (9d);
φ2 and θ2 are essential to vary the width [34], and d(t)
and b(t) are the positions of the dark and bright solitons,
respectively. The two components are assumed to have the
same width w. To study the oscillation of the two components
in time, we chose the variational parameters to be the two
component positions d(t) and b(t) and the phases θ1(t) and
φ1(t). As mentioned in Sec. I, the analytical calculations use
hyperbolic functions as an ansatz, which is more accurate
than using Gaussian functions. This choice requires the two
components have identical width in order for the problem to
remain analytically tractable, as opposed to using a Gaussian
ansatz [29]. However, we will relax this constraint in Sec. III.
Using the ansatz [Eqs. (7)] in the normalization [Eqs. (4)], we
find the relation between N1,N2, and the coefficients of the
two components in the dark-bright soliton:

2c2u2
0w

g1
= N1

N
,

2F 2u2
0w

g2
= N2

N
. (8)

B. Evolution equations

Substituting Eq. (7) into the Lagrangian density equation
(6) and integrating over space from −∞ to ∞ results in
the Lagrangian as a function of the variational parameters.
Applying the Euler-Lagrange equations then yields a system
of ordinary differential equations (ODEs) that describes
the evolution in time of the position and phase for both
components:

d

dt
φ1(t) = α csch

(
b(t) − d(t)

w

)4

×
{

2[b(t) − d(t)]

[
2 + cosh

(
2
b(t) − d(t)

w

)]

− 3w sinh

(
2
b(t) − d(t)

w

)}
, (9a)

d

dt
θ1(t) = β

d

dt
φ1(t), (9b)

d

dt
b(t) = −φ1(t), (9c)

d

dt
d(t) = −γ − θ1(t), (9d)

where

α ≡ c2gu2
0

g1w2
, β ≡ F 2g1

c2g2
, γ ≡ A

cw
. (10)

Equations (9) can be reduced to one second-order ODE:

d2

dt2
l(t) = (β − 1)α csch

(
l(t)

w

)4

×
{

2l(t)

[
2+cosh

(
2l(t)

w

)]
−3w sinh

(
2l(t)

w

)}
,

(11)

where l(t) ≡ b(t) − d(t). Despite the attractive simplicity
of this unified description, it is physically advantageous to
address the problem with Eqs. (9) to illustrate the behavior of
the evolution of the variational parameters in time and to clarify
the physical meaning of the fixed point and linear stability
analysis in the next section.

C. Normal modes

Equations (9) possess one stable fixed point:

φ1 = 0, θ1 = −γ, l = 0. (12)

Since l = 0, we can choose the original of the coordinate
system such that b = d = 0. In the Appendix we prove that
Eqs. (9) with the fixed point l = 0 do not possess a singularity.
We proceed by linearizing Eqs. (9) around the fixed point
equation (12), i.e., ai(t) = afp + δaeiωt , where ai represents
the variational parameters and afp is the fixed point mentioned
above. This results in a matrix equation of the form⎡

⎢⎣
iω 0 −A1 A1

0 iω −A2 A2

1 0 iω 0
0 1 0 iω

⎤
⎥⎦

⎡
⎢⎣

δφ1

δθ1
δb

δd

⎤
⎥⎦ =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦, (13)

where

A1 = (
8c2gu2

0

)
/(15g1w

2), (14)

A2 = (
8F 2gu2

0

)
/(15g2w

2). (15)

Taking the determinant of the matrix and solving for eigenfre-
quencies ω and the associated eigenvectors yields

ν∓ =

⎡
⎢⎢⎢⎢⎣

∓ 2√
15

(N1/N2)w− 3
2
√

g

√
N2−N1

N

∓ 2√
15

w− 3
2
√

g

√
N2−N1

N

N1/N2

1

⎤
⎥⎥⎥⎥⎦, (16a)

ν01 =

⎡
⎢⎣

0
0
1
1

⎤
⎥⎦, ν00 =

⎡
⎢⎣

0
0
0
0

⎤
⎥⎦, (16b)
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FIG. 1. Oscillation frequency of the two components in the
dark-bright soliton versus the interaction coefficients g. We set
N1 ≈ 0.503 × 105 atoms and width w = 1, where ω and g are
unitless. The range of the values in g is from 2.4 to 5.8, matching the
range of g in the numerical calculations.

and eigenfrequencies [35]

ω∓ = ∓2i

√
1

15
√

gw− 3
2

√
(N2 − N1)/N, (17a)

ω01 = 0, ω00 = 0, (17b)

where the oscillation frequency ω01 in Eq. (17b) corresponds
to the zero-energy mode, sometimes defined in the literature as
a Goldstone mode [30,36], and we have used the normalization
equations (4). This mode breaks translational symmetry with
no energy cost. We can interpret it as a moving dark-bright
soliton without internal oscillation of the two components.
Also, the eigenvector of this mode ν01 shows no contribution
from the phases that are responsible in the first place for
the oscillation and has b and d moving together with zero
frequency, i.e., at constant velocity.

Turning to the nonzero frequency eigenmode, in Eq. (17a),
stable oscillation requires the condition N1 > N2 be met,
in other words, g2 > F 2

c2 g1. Thus for the same amplitude
components there is no oscillation. This result is supported
by the numerical calculations in Sec. III A, where we find that
the bright component in the dark-bright soliton does not exist
when the total number of atoms in the bright component is
equal to or greater than the total number of atoms displaced
by the dark soliton in the other component (see Fig. 3 below).
Using N2 = N − N1, we can rewrite the oscillation frequency
as

ω∓ = ∓2

√
1

15
w− 3

2
√

g
√

(2N1/N) − 1. (18)

Note that for a real oscillation the normalization constant
2N1/N should be greater than 1, which in turn makes N1 >

N2. Considering the typical number of atoms in the 87Rb
experiment, we set N = 105 and N1 ≈ 0.503 × 105. Setting
w = 1 in Eq. (18), we plot the relative frequency versus the
interaction coefficient g in Fig. 1.

D. Binding energy of the vector soliton

In the Lagrangian density, Eq. (6), the term g|u|2|v|2
represents the coupling interaction per unit space between the
two components of the dark-bright soliton. Using the ansatz
(7), we can integrate this term over x to find the coupling

�6 �4 �2 2 4 6
l�t�

0.42

0.44

0.46

0.48

0.50
Ecoupling

FIG. 2. Coupling energy versus the distance between the two
components l(t) when t = 0. Here we normalize the interaction
coefficients to unity and set N1 ≈ 0.503 × 105 atoms. The solid blue
line represents Eq. (19), and the dashed red line represents Eq. (20).

interaction of the system. The binding energy can be found
when we subtract the coupling interaction energy at l = 0
from l = ∞, where l is the separation between the bright and
dark solitons. The energies associated with all other terms in
the Lagrangian density turn out to be independent of l. The
coupling interaction energy of the system is

Ecoupling = F 2gu4
0

g1g2
csch

[
l(t)

w

]2

×
{

4c2

(
w − l coth

[
l(t)

w

])
+ 2w sinh

[
l(t)

w

]2
}

.

(19)

In Fig. 2 we plot Eq. (19). As expected for a binding
energy, the coupling interaction energy is minimum at the
center, where the locations of the bright-soliton maximum and
dark-soliton minimum coincide. Applying a phase to the bright
component, i.e., giving it a “kick”, causes it to experience a
force due to the coupling interaction energy that brings it back
to the energy minimum, which creates an oscillation between
the two components. If the imprinted phase is large enough
to separate the two solitons beyond their relative widths, the
system reaches a point where the bright soliton escapes and is
then destroyed, as we will show in Sec. III.

To analytically explore the behavior of the oscillation
around the fixed point when l 	 1 we expand Eq. (19) to
quadratic order in l:

Ecoupling = 2(3 − 2c2)F 2gu4
0w

3g1g2
+ 8c2F 2gu4

0

15g1g2w
l2. (20)

As a result, we see that the coupling energy when l 	 1
behaves as a parabolic potential energy near the fixed point.
Therefore we should expect the oscillation frequency to be
amplitude independent for small amplitude excitations, and
this is indeed the result we obtain in Sec. III (see Fig. 7).
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We can treat the coupling energy as a potential energy and
derive the equation of motion for l(t):

m
d2

dt2
l(t) = − d

dl
Ecoupling = 2c2F 2gu4

0

g1g2w

× csch

(
l(t)

w

)4{
2l(t)

[
2 + cosh

(
2l(t)

w

)]

− 3w sinh

(
2l(t)

w

)}
, (21)

where m = 1 in our units. Comparing Eq. (21) to Eq. (11),
we find that the two equations are different only by the
coefficients and therefore yield different frequencies. This
can be understood by examining the Lagrangian density,
Eq. (6), where we subtract the background contributions from
the dark-soliton momentum term and the intracomponent
mean-field energy term. The calculations leading to Eq. (11)
account for this subtraction, whereas the calculations leading
to Eq. (21) do not. Consequently, the coefficients are different.

By taking the difference between Eq. (19) at l = 0 and
l = ∞ we find the binding energy:

Ebinding = Ecoupling(l→0) − Ecoupling(l→∞)

= −4c2F 2gu4
0w

3g1g2
.

(22)

We note that the binding energy is thus proportional to the
intercomponent coupling g and inversely proportional to the
intracomponent couplings g1, g2. The latter inverse propor-
tionality is due to normalization. In addition, we calculate the
kinetic energy EK and the intracomponent mean-field energy
EMF of the dark and bright components separately and compare
them to the binding energy above.

For the dark component in the dark-bright soliton,

EK = N1
[−2 + π2w4θ2

2

]
6Nw2

+ 1

2
θ1

(
4Acu2

0

g1
+ N1θ1

N

)
, (23)

EMF = − g1N
2
1

6wN2
. (24)

For the bright component in the dark-bright soliton,

EK = −N2
[
1 + π2w4φ2

2

]
6Nw2

− N2φ
2
1

2N
, (25)

EMF = − g2N
2
2

6wN2
. (26)

We found EK and EMF of the dark- (bright-) soliton component
are inversely proportional to the intracomponent coupling g1

(g2). Note that neither EK nor EMF of the two components
depends on the intercomponent coupling g as expected. This
result can be understood when we examine the Lagrangian
density, Eq. (6), where the intercomponent coupling g appears
only in the coupling term and therefore contributes only to the
binding energy.

Finally, we compare the binding energy to the kinetic
energies [i.e., Eqs. (23) and (25)] and the mean-field energies
[i.e., Eqs. (24) and (26)] of the dark-bright soliton. We find
that in order to break or unbind the dark-bright soliton the
imprinted phase on the bright component should be greater

than the following quantity:

φ1 >
1√
3N2

[
− 2N1 + N2 − 2N1w

w2
− N2

1 (2 + g1) + g2N
2
2

Nw

+π2w2
(
N1θ

2
2 − N2φ

2
2

) + 3N1θ
2
1

+
6 θ1

√
N1

√
2Nu2

0w − g1N1

w
√

g1

]−1

. (27)

In Sec. III B, we compare Eq. (27) to Fig. 9.

III. NUMERICAL CALCULATIONS

In this section we numerically investigate the interaction
between the two components. First, we explore the approach
to the integrable Manakov case of equal interaction coefficients
g = g1 = g2 and find the ground-state density of a dark-bright
soliton. The Manakov case formally precludes a dark-bright
soliton since the number of atoms in the bright-soliton
component must be less than the number of atoms displaced
by the dark-soliton component. In Sec. II C we derived this
condition as a requirement to find the real oscillation of the
two-component dark-bright soliton. Second, we investigate
the interaction between the two components with unequal
interaction coefficients by finding the ground state of the
system when the interatomic interaction goes from the miscible
to the immiscible domain, representing a quantum phase
transition for the dark-bright soliton. Third, we investigate
dark-bright-soliton dynamics, studying the velocity of the
dark-bright soliton, the oscillation frequency mode as a
function of the interaction coefficients, and the unbinding or
breakup process when the dark-bright soliton is too strongly
perturbed. Fourth, we end this section with a discussion
of the experimental case for 87Rb where we can use these
units to convert between the dimensionless variables in the
study conducted and physically measurable quantities such
as the oscillation time. Note that throughout this section, we
performed the simulations with grid size nx = 256 in a box
with hard-wall boundaries. The box length was set to L = 50
unless otherwise noted.

A. Dark-bright soliton with equal interaction coefficients

We obtain our initial state numerically by using the
imaginary-time-propagation method to find the ground-state
energy of the coupled NLSEs. Starting with constant initial
wave functions for both components, where we imprinted
a phase on only the constant dark component, we perform
two sets of simulations. We allow the particle number to
fluctuate between the two components during imaginary-time
propagation. Fixing g1 = g2 = 1 and allowing g to increase
toward the Manakov case of g = g1 = g2, we find the result
shown in Fig. 3, where in the last two panels the dark-bright
soliton ceases to exist and all atoms pile up in the “bright”
component.

B. Dark-bright soliton with unequal interaction coefficients

We explore the miscible-immiscible quantum phase transi-
tion at g2 = g1g2 in a non-Manakov system for which g1 �= g2,
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FIG. 3. Approach to the Manakov case. Ground-state density of
a two-component BEC when the interaction coefficients g1,g2 are
equal to unity versus the coupling interaction coefficient g. The bright
(dark) component is the dashed blue (solid red) line. In (a)–(h) g =
0.0,0.2,0.4,0.6,0.8,0.95,1.0,1.2, respectively. We allow the relative
particle number between the two components to fluctuate, and past
the Manakov point at g = 1 the lowest-energy solution places all
atoms in one component.

as shown in Fig. 4, where we again tune g through the
transition. For g < 2.3 we do not find a true bright soliton but
rather a bump on a nonzero background, in fact, a finite-size
effect. For g > 2.3 in the last two panels the dark-bright
soliton appears since the number of atoms in the bright
component is less than that displaced by the dark component.
In the miscible domain in Figs. 4(a)–4(f), the strength of the
repulsive interaction between the two components is less than
the repulsive interaction between the particles in the bright
component, which allows the bright soliton to expand and
reach the boundaries. In the immiscible domain in Figs. 4(g)
and 4(h), the coupling interaction is strong to the point that
it forces the bright component to live within only the dark
soliton.

To highlight the effect of the miscibility transition, in Fig. 5,
as we increase the intercomponent coupling g, the amplitude
of the bright component decreases, and the amplitude of the
dark component increases. With increasing intercomponent
coupling g, the ground state of the dark-bright soliton shows
that the density of the bright component decreases, and
therefore the amplitude does too. This can be understood
by examining Fig. 4. We see that when the intercomponent
coupling is zero, the sizes of the two densities of the dark and
bright components are governed by intracomponent couplings
g1 and g2, respectively. As we increase g, the dark-component
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FIG. 4. Dark-bright solitons through the miscible-immiscible
phase transition. We take g1 = 2.0 and g2 = 2.7. In (a)–(h) g =
0.0,0.4,0.8,1.2,1.6,2.0,2.4,2.8, respectively. The phase transition
occurs at g = 2.3, leading to well-localized bright solitons in the
immiscible domain in the last two panels.

density exerts a repulsive force on the bright-component
density and forces it to localize in the center. As we pass the
phase-transition point when g > 2.3, the density of the bright-
soliton component continues to decrease; thus its amplitude
decreases too, and the density of the dark-soliton component
increases at a slow rate compared to the change in the
bright-component density. The difference between the rate of
change with g in the density between the two components
depends on their sizes. The dark-soliton component is larger
than the bright-soliton component, as shown in Fig. 4, and
therefore increasing the density of the dark-soliton component
will have a small effect on increasing its amplitude. Finite-size
effects allow the soliton to exist slightly beyond the miscibility
boundary indicated by the dashed line in Fig. 4.

C. Dark-bright-soliton dynamics

We now turn to internal excitations of the dark-bright
soliton. Our procedure is to imprint a phase solely on the
bright component via state-selective manipulation of BECs.
The ensuing dynamics involves not only internal oscillations
but also an overall velocity of both dark and bright components,
i.e., the Goldstone mode. The results for our two case studies
from Fig. 5 are shown in Fig. 6. We find the velocity of the
dark-bright soliton drops quickly at the beginning; then it
slowly decreases as the coupling interaction increases. This
behavior can be understood if we examine the density of
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FIG. 5. Amplitude of the bright and dark components versus
the coupling interaction g. We measure the amplitudes of the two
components at the ground state with different values of g1, g2, and g.
(a) g1 = 1.0,g2 = 1.5 and (b) g1 = 2.0,g2 = 2.7.

the bright component. We find the form depicted in Fig. 5;
that is, the amplitude (and therefore the density) of the bright
component decreases as the coupling interaction increases. In
this case, the imprinted phase on the “small” bright component
will not pull the dark soliton quickly, and therefore the velocity
of the dark-bright soliton changes at a small rate as the
bright-component amplitude decreases. In addition, the initial
velocity of the dark-bright soliton when g1 = 2.0 and g2 = 2.7
is higher than the case when g1 = 1.0 and g2 = 1.5 because the
difference between the amplitudes of the two components in
the former case is less than in the latter. In other words, a phase
imprinted on the bright component will have a bigger impact
in the former case. The dashed lines distinguish the miscible
and immiscible domains. Note that a dark-bright soliton can
be created as we approach this line from the miscible domain.

Having explicated the trends in the overall velocity or
Goldstone mode, we examine our second mode of interest,
namely, the frequency of internal excitations. In Fig. 7,
we first discuss the numerical results; then we will discuss
the comparison between these outcomes and the analytical
results. Numerically, different values of imprinted phases
on the bright component are shown (φ = 0.7 and φ = 1.0).
The oscillation frequencies of the two components versus the
coupling interaction g are almost identical, indicating that the
frequency is amplitude independent. Imprinting a large phase
on the bright component can decouple the two components in
the dark-bright soliton. In the case with φ = 1.0 the imprinted
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FIG. 6. Collective velocity of dark-bright soliton after phase
imprint. We take a phase imprint of φ = 0.5 and two different cases for
g1 and g2 in the immiscible domain when g >

√
g1g2. See Sec. III D

for converted units. Note that a dark-bright soliton can be created as
we get very close to this line from the miscible domain. The amplitude
of the bright soliton controls the rate of the velocity of the dark-bright
soliton. As we increase the intercomponent coupling interaction g,
the amplitude of the bright soliton decreases as shown in Fig. 5, and
therefore the density of the bright soliton decreases too. Imprinting
a phase on the low-density bright soliton will have a small effect on
dragging the dark soliton and therefore will result in a low velocity
of the dark-bright soliton.

phase is large enough to cause a disturbance when the coupling
coefficient is close to the miscible domain, and therefore it
shows a different oscillation frequency for g just above the
critical value for the phase transition. In Fig. 7 we also plot
the analytical results obtained from Eq. (18). We did not

2.5 3.0 3.5 4.0 4.5 5.0 5.5
g

0.02
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Model

FIG. 7. Trends in internal dynamics. Oscillation frequency of
the two components in the dark-bright soliton, with g1 = 2.0, g2 =
2.7, and φ = 0.7 and 1.0, obtained from numerical integration of
Eq. (3) versus the oscillation frequency obtained from the analytical
calculations, Eq. (18). Numerically, the oscillation frequency of the
two components versus the coupling coefficient g for different values
of φ shows that the oscillation frequency is amplitude independent in
the case explored. We also plot the result from Eq. (18) to compare
the two outcomes from the analytical and numerical calculations. The
discrepancy between numerics and the model is due to the restricted
ansatz (equal soliton widths) in the variational calculation.
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include the oscillation of the width, i.e., the breather mode,
in the analytical calculations because we can only perform
the calculations for in-phase width oscillation analytically.
In contrast, in the numerical calculations the motion also
includes arbitrary-phase width oscillation. The range of the
values of g is bounded between two limits. In the lower
limit, when g <

√
g1g2, i.e., in the miscible domain, the bright

component in the dark-bright soliton exists on top of a finite
background caused by finite-size effects (for example, see
Fig. 4). Therefore imprinting the phase on the bright-soliton
component to start the oscillation motion will also move the fi-
nite background density, causing a larger-scale disturbance and
affecting the frequency results. The upper limit of the values
of g come from the fact that for large g the ground-state energy
of the system does not support a dark-bright soliton because
of the strong intercomponent interactions between the dark
component and the bright component.

We see also in Fig. 7 that the comparison between the
numerical and analytical results becomes better as we increase
the intercomponent interactions g. When g is close to the
miscible domain, the oscillation of the width of the two
components is stronger due to the fact that g is small, and
therefore the width oscillation contributes to the oscillation of
the two components. When g is large, the oscillation of the
width of the two components becomes smaller due to the fact
that the repulsive interaction between the two component is
stronger, and therefore it will force the two components to
be confined in their region. Thus as we increase g, we will
have a smaller contribution of the width oscillation mode in
the oscillation of the two components, which will improve the
comparison between the numerical and analytical results.

To explain the data underlying Figs. 6 and 7, we show
an example of the complete numerical integration and the
resulting density and phase of the two-component wave
function in Fig. 8. To obtain these data, we numerically
integrate Eq. (3) using a pseudospectral method as mentioned
in Sec. I. Figure 8 clarifies many features of the interactions
between the two components in the dark-bright soliton.
Figures 8(a) and 8(b) show the density and the phase of the
oscillating bright component, while Figs. 8(c) and 8(d) show
the corresponding dark-component oscillations. Figures 8(e)–
8(h) present a close-up of a small interval to display the
oscillation more clearly. The interaction coefficients are g1 =
2.0, g2 = 2.7, g = 3.2, and φ = 0.7. The oscillation frequency
amplitude of the dark component decreases as we increase the
interaction coefficient, which in turn makes the observation of
the oscillation in the dark component not obvious compared
to the oscillation of the bright component. For the above
interaction coefficient values the amplitude of the bright
component is almost half the amplitude of the dark component,
as shown in both Figs. 8 and 5.

Finally, we examine the breakup of a dark-bright soliton. In
Fig. 9, we again plot the dark-bright-soliton density and phase
in both components, but this time we imprint a relatively large
phase on the bright-soliton component in order to unbind the
dark-bright soliton. We emphasize that the bright component
of a dark-bright soliton can exist only at long times in the
bound form. When the imprinting phase is large (i.e., φ =
6 and 10), a significant portion of the bright-soliton density
escapes from the effective potential created by the dark-soliton

FIG. 8. Oscillation of the two-component wave function |u(x,t)|2
and |v(x,t)|2 in the immiscible domain with g1 = 2.0, g2 = 2.7, g =
3.2, and φ = 0.7. (a), (b), (c), and (d) represent the density and the
phase of the bright and dark components, respectively. In (e), (f),
(g), and (h) we plot the preceding images with small time and space
intervals to show the oscillations.

component (see Fig. 10) and therefore breaks up the dark-
bright soliton. Using the interaction coefficients mentioned in
Fig. 9 in Eq. (27) in addition to setting N1 ≈ 0.503 × 105,
N = 1 × 105, θ1 = 1, φ2 = 1, θ2 = 2, and w = 1, we find that
the system oscillates as long as φ < 3.4. Above this value
the dark-bright soliton starts to unbind or break up. We find
this value to be in good agreement with the numerical results
obtained in Fig. 9, where we see that a significant fraction of
the bright-soliton component breaks away from the effective
potential created by the dark-soliton component around φ = 6
and greater.

To quantify the breakup, in Fig. 10 we plot the percentage
of density loss of the bright component in the dark-bright
soliton as a function of time for different phase-imprinting
values. Below the critical value of φ, the bright-component
density is almost intact. Above the critical value the bright
component starts to lose a significant portion of the density,
characteristic of the breaking up of the dark-bright soliton. The
integration region for the bright-component density is taken to
be the line extending a distance r on either side of the dark-
component center r0. Therefore the local bright-component
density is given by

EBS =
∫ r0+r

r0−r

dx |v|2. (28)

We interpret the dark-soliton-component center as the point
of minimum density. We define numerically the distance r =
c1(L/nx), where L and nx represent box dimension and grid
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FIG. 9. Unbinding of a dark-bright soliton. We demonstrate the
breakup of the dark-bright soliton by imprinting different values of
the phase φ on the bright component with interaction coefficients
g1 = 2.0, g2 = 2.7, g = 2.6. (a)–(d), (e)–(h), and (i)–(l) use phase
imprintings of φ = 2, 6, and 10, respectively. The left (right) panels
show the density (phase) of the bright and dark components. The box
dimension is L = 100.

size, respectively. The factor c1 = 50 defines the cutoff region,
which is wide enough to capture the dark-component area, as
can be seen in Fig. 9.
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FIG. 10. Percentage density loss of the bright component in the
dark-bright soliton for different phase-imprinting values. Below the
critical value mentioned above (i.e., φ = 0, 1, and 2) the dark-
bright soliton maintains its internal structure, and the bright-soliton
component density is almost intact; see the inset. Above the critical
value (i.e., φ = 6, 8, and 10) we see that the bright soliton loses density
due to the relatively strong kick that allows for a significant portion
of the density to escape. The inset also highlights the stability of the
dark-bright soliton at long times for small enough phase imprinting.

D. Units

Typical experimental values for a 87Rb BEC are ω⊥ ≈
2π × 720 Hz, as ≈ 5.1 × 10−9m, and N ≈ 105. For these
parameters, the length scale is �⊥ ≈ 0.4 μm, and the time
scale is t⊥ ≈ 0.22 ms.

An example of using the units in Table I to calculate
the frequency of the oscillation mode in 87Rb is obtained
by examining Fig. 7. For g = 4 we find that the oscillation
frequency ω is 0.056. Using the units in Table I, the equivalent
SI units are ω = 252 Hz with g = 54.8 kB nK μm, which are
reasonable numbers for an experiment in 87Rb.

IV. CONCLUSIONS

We calculated the normal modes of the system using the
hyperbolic tangent for the dark component and the hyperbolic
secant for the bright component. We found the velocity of
each component depends on the imprinted phase, following the
known expression for the velocity of the condensate in which
the phase depends on x in order to cause the dark-bright-soliton
components to move. In the dark component, the velocity
also depends on the amplitude. There are two modes of the
oscillation of the dark-bright soliton, the Goldstone mode,
which we interpreted as a moving dark-bright soliton without
internal oscillation of the two components, and the oscillation
mode of the two components relative to each other. In addition,

TABLE I. Converted units.

SI units Factor per unit Unitless Unit

x̃ 0.4 × 10−6 x meters
t̃ 0.22 × 10−3 t seconds
g̃ij 13.7 gij kB nK μm
ω̃ 4.5 × 103 ω hertz
ũ0

2 33.9 u2
0 kB nK

ũ(x̃,t̃) 1.57 × 103 u(x,t) 1√
meter

ṽ(x̃,t̃) 1.57 × 103 v(x,t) 1√
meter
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we found numerically that in order to find a bright component
in a dark-bright soliton the density of the bright component is
required to be less than the density of the dark component. This
result was supported by analytical calculations in Sec. II C,
where we found that in order to make the dark and bright
components oscillate we must meet this criterion. In Sec. III,
we calculated different aspects of the interaction between the
two components. Of particular interest is the two-component
oscillation in the dark-bright soliton, for which we found that
the oscillation frequency is nearly independent of the imprinted
phase up to a critical value, meaning that the frequency
is amplitude independent. We illustrated the oscillation of
the density and the phase of the two-component dark-bright
soliton. Also, we calculated the binding energy of the dark-
bright soliton. We compared the binding energy to the kinetic
energy and the mean-field energy of the dark-bright soliton
in order to find the critical value of the imprinted phase on
the bright component that breaks or unbinds the dark-bright
soliton. Future work may extend our study to three-component
solitons in different hyperfine states of the same condensate
or for different species of atoms. In the multicomponent case,
the phase between the different components is coherent, and
the norm is not separately conserved.
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APPENDIX: FIXED-POINT SINGULARITY

Here we wish to prove that the system of equations (9)
does not possess a singularity. In particular, Eq. (9a) with
l ≡ b(t) − d(t) becomes

d

dt
φ1(t) = αcsch

(
l

w

)4{
2l

[
2 + cosh

(
2

l

w

)]

− 3wsinh

(
2

l

w

)}

= 4lαcsch

(
l

w

)4

+ 2lαcosh

(
2

l

w

)
csch

(
l

w

)4

− 3wαcsch

(
l

w

)4

sinh

(
2

l

w

)
.

When we expand the right-hand side of the above equation
around the fixed point, the terms l−3 and l−1 cancel out, and
we are left with terms proportional to l. That is, the fixed point
of the system (i.e., l = 0) is valid. Note that we will not be
able to address this fact if we work with Eq. (11) instead of
Eqs. (9).
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