
PHYSICAL REVIEW A 96, 013431 (2017)

Superadiabatic driving of a three-level quantum system
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We study superadiabatic quantum control of a three-level quantum system whose energy spectrum exhibits
multiple avoided crossings. In particular, we investigate the possibility of treating the full control task in terms
of independent two-level Landau-Zener problems. We first show that the time profiles of the elements of the
full control Hamiltonian are characterized by peaks centered around the crossing times. These peaks decay
algebraically for large times. In principle, such a power-law scaling invalidates the hypothesis of perfect
separability. Nonetheless, we address the problem from a pragmatic point of view by studying the fidelity
obtained through separate control as a function of the intercrossing separation. This procedure may be a
good approach to achieve approximate adiabatic driving of a specific instantaneous eigenstate in realistic
implementations.
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I. INTRODUCTION

The ability to control the dynamics of a quantum system is a
major task for the development of quantum technologies. For
this purpose, much effort has been recently invested toward
the development of explicit time-dependent control protocols.

Among the different methodologies to design control fields
inducing a desired quantum evolution, the two that are
attracting the most attention nowadays are optimal control
theory [1] and the emergent field of so-called shortcuts to
adiabaticity [2]. The latter, on which we will concentrate here,
comprises a number of techniques whose aim is to induce
perfect adiabatic evolution, that is, perfect following of the
instantaneous eigenstates of the time-dependent Hamiltonian,
in a finite time.

Specifically, we will focus on the shortcut known as transi-
tionless quantum driving (TQD) [3], also called superadiabatic
(SA) [4] or counterdiabatic (CD) protocol [5]. Its core idea is
that, given an initial Hamiltonian Ĥ (0)(t), it is always possible
to find a correcting term Ĥ (1)(t) which cancels nonadiabatic
effects. The full Hamiltonian Ĥ (t) = Ĥ (0)(t) + Ĥ (1)(t) then
drives the instantaneous eigenstates of Ĥ (0)(t) exactly.

The TQD algorithm suffers from two main weaknesses.
First of all, while in principle it provides the CD control
fields for quantum systems of arbitrarily many energy levels,
going beyond the two-level case often becomes analytically
infeasible, and must be treated numerically. Secondly, even
when the CD corrections are found, they might require physical
interactions which are not present in the original Hamiltonian,
leading to difficulties in the experimental realizations. The first
issue will be our concern here.

Exact analytical results have been produced and tested
for some specific problems, the major context being the
application of the TQD protocol to improve the efficiency
of “Rapid” adiabatic passage and stimulated Raman adiabatic
passage schemes [5–10], in terms of fidelity, robustness, and
transfer time. In addition, exact CD fields have been found for
scale-invariant dynamical processes [11–13].

In this paper, we will study the application of the SA
protocol to a three-level system featuring sequences of

Landau-Zener-Majorana-Stückelberg (LZ for brevity) cross-
ings. The motivation behind this choice resides in the fact
that adiabatic quantum control ultimately deals with the
suppression of nonadiabatic transitions, whose probability is
extremely enhanced in the proximity of avoided crossings in
the energy spectrum. For this reason, the LZ model [14–17]
has been a central playground for testing control protocols
[4,18]. Moreover, the LZ scenario usually yields a good local
approximation to more complex spectra [19–21].

Although for an isolated two-level LZ avoided crossing the
SA algorithm provides exact analytical shapes for the control
fields, the case of more-levels spectra is an open problem.

The approach which we shall adopt here differs from
the typical quest for shortcuts to adiabaticity. Rather then
searching alternative correcting fields which would give the
exact adiabatic evolution, our main concern is to study the
possibility of decomposing the TQD control Hamiltonian into
the sum of separate single crossing corrections, and to test the
validity of such an approximation.

After a brief review of the TQD theory and its application
to the control of a single LZ anticrossing in Sec. II, the
system under analysis is presented in Sec. III, together with
the limiting cases where the control fields can be analytically
calculated. Section IV is devoted to the discussion of the gen-
eral case: the control fields are wholly determined numerically
and their long-range properties are discussed according to
perturbative arguments. We will see that they decay in time
as power laws, preventing the definition of a natural scaling
for the separability into single-crossing problems. In Sec. V
the problem of separability of the control is addressed, by
proposing possible constructions of the “separated-control”
strategy for simple experimental implementations. Numerical
estimates are given for the dependence of the nonadiabatic
transition probability from the time separation between the
crossings, which turns out to be another power law. Such
a study permits one to determine the threshold value for
the time separation which is required in order to achieve
a desired fidelity at the end of the protocol (i.e., a given
overlap between the approximately driven and the true ground
state).
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We finally discuss, in Sec. VI, aspects concerning possible
experimental realizations. We first test the robustness of our
results against the introduction of asymmetries in the system
under investigation, which can result from experimental
constraints. The section is then concluded by proposing and
analyzing possible experimental setups where the model can
be realized and tested.

II. TRANSITIONLESS QUANTUM DRIVING

In this section, the theory of TQD is briefly reviewed [3,5].

A. General TQD theory

Let Ĥ (0)(t) be the n-level system’s Hamiltonian with in-
stantaneous eigenvalues En(t) and eigenstates |ψn(t)〉 defined
by

Ĥ (0)(t) |ψn(t)〉 = En(t) |ψn(t)〉 . (1)

The time evolution of a general state |�(t)〉 is given by the
Schrödinger equation

ih̄
∂ |�(t)〉

∂t
= Ĥ (0)(t) |�(t)〉 . (2)

Nonadiabatic effects arising from the free evolution of
Ĥ (0)(t) can be compensated for by a control Hamiltonian
Ĥ (1)(t), such that the Hamiltonian Ĥ (t) = Ĥ (0)(t) + Ĥ (1)(t)
drives exactly the states

exp

[
− i

h̄

∫ t

t0

dsEn(s) −
∫ t

t0

ds〈ψn(s)|∂sψn(s)〉
]
|ψn(t)〉. (3)

These are the states which would be driven in the adiabatic
approximation, i.e., the exact instantaneous eigenstates of
Ĥ (0)(t) multiplied by the dynamical and geometrical phase
factors.

The superadiabatic correction, with time dependencies
implicitly understood in all terms, is of the form [3]

Ĥ (1)(t) = ih̄
∑
m�=n

∑
n

|ψm〉 〈ψm| ∂t Ĥ
(0) |ψn〉 〈ψn|

En − Em

. (4)

It thus depends directly on the instantaneous eigenstates. We
will often refer to the off-diagonal matrix elements of Ĥ (1)(t)
as control functions, or simply controls. Note that Ĥ (1)(t) has
only off-diagonal elements in the adiabatic basis (i.e., on the
basis of instantaneous eigenvectors).

The control Hamiltonian Ĥ (1)(t) can also be rewritten by
means of a matrix Û (t) such that Û (t)Ĥ (0)(t)Û †(t) is diagonal,
i.e., whose rows are instantaneous eigenvectors of Ĥ (0)(t),
as [5]

Ĥ (1)(t) = ih̄
∂Û †(t)

∂t
Û (t). (5)

Depending on the choice of Û (t), the driven instantaneous
eigenstates can acquire different phase factors with respect to
Eq. (3).

Let us stress that the superadiabatic control procedure drives
each eigenstate exactly, i.e., the control Hamiltonian is always
the same no matter in which initial instantaneous eigenstate
the system starts.

B. Two-level avoided crossings

The Hamiltonian for a general two-level system can be
written in the real, symmetric and traceless form

Ĥ (0)(t) = ω(t)

2
σ̂z + �(t)

2
σ̂x

= 1

2

(
ω(t) �(t)

�(t) −ω(t)

)
, (6)

in the (time-independent) eigenbasis {|0〉 , |1〉} of σ̂z, which is
called the diabatic basis. The instantaneous eigenvalues are

± 1
2

√
ω(t)2 + �(t)2. (7)

The instantaneous eigenvectors can be conveniently written by
means of a trigonometric parametrization

|ψ0(t)〉 =
[
− sin θ(t)

2

cos θ(t)
2

]
; |ψ1(t)〉 =

[
cos θ(t)

2

sin θ(t)
2

]
, (8)

involving an angle defined by

tan θ (t) = �(t)

ω(t)
[0 � θ (t) � π ]. (9)

The LZ model is characterized by a linear sweep ω(t) =
αt and a constant coupling ∂t� = 0 [14]. The coupling
induces nonadiabatic transitions in the vicinity of the avoided
crossing at t = 0, where the energy levels reach the minimum

distance �. Note that {|ψ0(t)〉 , |ψ1(t)〉} t→−∞−→ {−|0〉 , |1〉} and

{|ψ0(t)〉 , |ψ1(t)〉} t→∞−→ {|1〉 , |0〉}, i.e., adiabatic states connect
different, orthogonal, diabatic states before and after the
crossing.

In the uncontrolled case, if the system starts in the ground
state |ψ0(t)〉 at long past times, the tunneling probability
exhibits an oscillatory behavior after the crossing which
decays toward an asymptotic value. This value is accurately
approximated by the well-known LZ formula [14]:

PLZ = | 〈�(t)|ψ1(t)〉 |2 = exp

(
−π

�2

2h̄α

)
. (10)

This expression is only valid when the system starts exactly
in an eigenstate at t → −∞, while it does not hold for
superposition input states.

Interestingly, the damping of the oscillations of the nonadi-
abatic transition probability in the diabatic basis, | 〈�(t)|1〉 |2,
follows a t−1 power law [22,23]. Such a behavior can be
recognized from the asymptotic properties of parabolic cylin-
der functions [24], which constitute the exact solution of the
Schrödinger equation for the coefficients in the diabatic basis,
〈�(t)|0〉 and 〈�(t)|1〉. This long transient makes it difficult
to define a LZ transition time [19,25–27], and suggests that
consecutive crossings can never be considered as completely
independent events.

When multiple crossings between the same two levels
occur, the asymptotic probability is in general not the product
of LZ single-crossing probabilities, as given in Eq. (10).
The relative phase accumulated during the evolution among
different crossings, for instance, gives rise to interference
phenomena showing up as Stückelberg oscillations [17,21].
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Such phenomena are particularly relevant for systems subject
to periodic potentials [21,28,29].

The control Hamiltonian Ĥ (1)(t) for the general two-
level system can be exactly calculated from (4), using the
expressions (8) of the eigenvectors:

Ĥ (1)(t) = 1

2

∂θ (t)

∂t
σ̂y, (11)

where, in terms of the parameters of the Hamiltonian,

∂θ (t)

∂t
= �̇(t)ω(t) − �(t)ω̇(t)

ω(t)2 + �(t)2
, (12)

where the dot denotes time derivative. As was pointed out in
[30], ∂tθ (t) has typically a Lorentzian shape in the vicinity of
an avoided crossing. This is indeed verified in the LZ model:

∂θLZ(t)

∂t
= −

�
α

t2 + (
�
α

)2 . (13)

Time integration of Eq. (13) shows that∫ ∞

−∞
∂tθLZ(t)dt = π. (14)

Therefore ∂tθLZ(t) represents a π pulse.

III. THREE-LEVEL SYSTEM

In this paper, we study the specific three-level Hamiltonian

Ĥ (0)(τ ) =

⎛
⎜⎝

ε + ω(τ ) �√
2

0
�√

2
0 �√

2
0 �√

2
ε − ω(τ )

⎞
⎟⎠, (15)

with a linear sweep function ω(τ ) = ατ implementing the
LZ dynamics. The Hamiltonian and its parameters are con-
sidered to be dimensionless, therefore scaled with respect
to some characteristic energy of the system E(c) which
defines our unit of energy. Time is accordingly rescaled
in the dimensionless form τ = E(c)t/h̄. In terms of spin-1
operators, Ĥ (0)(τ ) = εŜ2

z + ω(τ )Ŝz + �Ŝx , and the dimen-
sionless Schrödinger equation reads i∂τ |ψ〉 = Ĥ (0)(τ ) |ψ〉.
Furthermore, let {|1〉 , |2〉 , |3〉} be the diabatic basis, i.e., the
(time-independent) eigenvectors of Ĥ (0)(τ ) for � = 0.

Similar three-level Hamiltonians have been studied in [31],
from a time-optimal control perspective, and in [32], where the
behavior of the transition probability in the absence of controls
is inspected.

Figure 1 displays the time evolution of the instantaneous
energy spectrum, where dashed and solid lines are used
for the diabatic and adiabatic levels, respectively. Thus, the
Hamiltonian describes a system where two diabatic energy
levels are indirectly coupled through an intermediate one
({Ĥ (0)}12 = {Ĥ (0)}23 = �, but {Ĥ (0)}13 = 0). Such “indirect”
interaction induces a narrow avoided crossing at τ = 0
between the two larger, “direct” ones at ω(τ ) = ±ε. The
parameter ε, together with the sweep rate α, characterizes
therefore the separation of crossings. Our aim is to quantify
the effect of the indirect coupling on the system’s dynamics.
More precisely, we study how its presence affects the control
Hamiltonian, and to which extent it can be neglected when
one is interested in guaranteeing adiabatic evolution only for

FIG. 1. Time evolution of the energy spectrum for ω(τ ) = ατ .
Dashed and solid lines represent diabatic and adiabatic eigenstates,
respectively. The temporal evolution of the ground state subject to
superadiabatic control is given by the orange line.

the ground state. As a first step, let us discuss the analytically
accessible limits for the control Hamiltonian.

The straightforward calculation of the control Hamiltonian
Ĥ (1)(τ ) requires knowledge of the instantaneous eigenstates of
the system, as evident by Eq. (4). The problem of calculating
them exactly for systems with more than two levels constitutes
the main limit of the superadiabatic approach.

For the three-level case, the eigenstates are in general
accessible through Cardano’s casus irreducibilis. However, the
resulting exact expressions for the eigenvalues are typically
difficult to handle, even via symbolic computing packages,
especially due to their complex-valued representation. For this
reason, we will not take this route, but rather solve limiting
cases analytically and attack the general case numerically.

Firstly, let us regard the case of no separation ε = 0, where
all diabatic levels cross in a single point at τ = 0 and the three
anticrossing coalesce into a single one.

The eigenvalues are (labeling increases for increasing
energy)

λε=0
1 (τ ) = 0; λε=0

2,0 (τ ) = ±
√

ω(τ )2 + �2, (16)

and the instantaneous eigenvectors are the rows of

Û ε=0(τ ) =

⎛
⎜⎝

sin2 φ

2 − 1√
2

sin φ cos2 φ

2

− 1√
2

sin φ 2 cos2 φ

2 − 1 1√
2

sin φ

cos2 φ

2
1√
2

sin φ sin2 φ

2

⎞
⎟⎠, (17)

where the angle φ(τ ) is defined by tan φ(τ ) = �/ω(τ ). By
Eqs. (17) and (5) the CD Hamiltonian in the diabatic basis
takes the simple form

Ĥ (1)(τ ; ε = 0) = ∂φ(τ )

∂τ
Ŝy. (18)

Therefore ∂τφ(τ ) is a Lorentzian pulse of the form given in
Eq. (13) for linear energy sweeps, as in the two-level LZ case.
As for ∂τ θLZ(τ ) of Eq. (11), it holds that

∫ ∞
−∞ ∂τφ(τ )dτ = π .

The second solvable limit is the instant τ = 0, for a generic
ε �= 0. The eigenvalues in this case are

λ1(0) = ε; λ2,0(0) = ε

2
± 1

2

√
ε2 + 4�2, (19)
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leading to the control Hamiltonian

Ĥ (1)(0) = i√
2

∂φ(τ )

∂τ
|τ=0

⎛
⎝ 0 −1 −√

2ε/�

1 0 −1√
2ε/� 1 0

⎞
⎠.

(20)

In comparison with Ĥ (1)(τ ; ε = 0), Eq. (18), we observe that
Ĥ (1)(0) introduces an additional off-diagonal control element,
whose maximal intensity scales linearly with ε.

Note that, from Eq. (19), we can extrapolate the minimum
distance, i.e., the distance at resonance, between the two higher
energy levels to be �̃ ≡ λ2(0) − λ1(0) = ε

2 (
√

4�2/ε2 + 1 −
1). This suggests that the corresponding anticrossing may
be locally approximated by a two-level LZ with coupling
�̃/2 (see Sec. II B). In particular, for small ratios �/ε the
coupling to first order is given by �̃/2 	 �2/2ε. Although
this two-level approximation well describes the local behavior
of the energy levels, we will see that it is not the case for the
associated control function.

IV. CONTROL PULSES

In order to study the problem for any (dimensionless) time
τ and separation ε of crossings, we compute numerically the
full control Hamiltonian Ĥ (1)(τ ) according to Eq. (4). Note that
Ĥ (1)(τ ) drives any of the three eigenstates exactly at the same
time, although we are mainly concerned with the ground state,
which undergoes two avoided crossings. In Fig. 2 the three
independent control functions constituting Ĥ (1)(τ ) are shown
for different ε. In the analytically solvable case ε = 0 (solid
lines) the peaks are Lorentzian functions centered around τ =
0. For small (dashed lines) and large (dotted lines) ε, the peaks
of {Ĥ (1)}12 and {Ĥ (1)}23 shift with respect to the origin. Their
center, i.e., the position of the anticrossings, is given by τ =
±ε/α and their maximum reduces to half the value they have
for ε = 0. Note that a sharp peak of constant intensity located
at the origin is still present.

The interesting element {Ĥ (1)}13, appearing only for ε �= 0,
also features a sharp peak at the origin which has maximal
value proportional to ε, as can be seen from (20). However, the
sign of the other peaks is negative and their intensity is small
compared to all other peaks. This is due to the fact that, when
the two larger avoided crossings occur, the levels involved
are also indirectly coupled through the third level. This
indirect interaction contributes to the formation of the avoided
crossing, but as a second-order effect in comparison with the
direct interaction. In order to justify the latter assertion, we
perturbatively study the system in the limit of small �, by
treating V̂ = �Ŝx as a perturbation. At the lowest orders in �,
stationary perturbation theory gives the following profiles for
the control functions:

{Ĥ (1)}12 = i
ω̇

(ε + ω)2

�√
2

+ O(�3), (21)

{Ĥ (1)}23 = i
ω̇

(ε − ω)2

�√
2

+ O(�3), (22)

{Ĥ (1)}13 = i
ω̇ε

(
ε2 − 5ω2

)
4ω2

(
ω2 − ε2

)2 �2 + O(�4). (23)

FIG. 2. Shape of the control functions, i.e., of the matrix elements
of the control Hamiltonian H (1)(t) for three different separations of
the avoided crossings. Solid, dashed, and dotted lines correspond to
ε = 0, 2, and 15, respectively. Parameters are α = 1, � = 0.5.

While the leading order for the control elements related
to the “direct” crossings is ∼�, the one for the control of
the “indirect” crossing is ∼�2. This witnesses the fact that
the narrower crossing at τ = 0 is the result of a nonadiabatic
coupling acting at second order in �. Perturbation theory,
as is often the case, allows one to reinterpret the “indirect”
interaction in terms of an effective direct coupling, which
shows up at the second order in �. This also gives a clearer
picture of the hierarchy of interactions, which is reflected by
the relative intensity of the peaks in the control functions, as
previously mentioned above.

Let us now focus on the long-range decay of the control
functions. Such a study, as can be seen from the definition of
Ĥ (1) in Eq. (4), requires knowledge of the dominant long-time
behavior of the instantaneous energies and eigenvectors of
Ĥ (0)(t). In order to obtain it, we develop a slightly different
perturbative approach: we recast the Hamiltonian into a form
which allows us to treat λ = τ−1 as a perturbative parameter
and subsequently apply standard perturbation theory again.
This is done by considering the Hamiltonian Ĥ (τ )/τ , sepa-
rated into the two terms αŜz + λ(εŜ2

z + �Ŝy). Perturbation
theory can then be applied by taking V = λ(εŜ2

z + �Ŝ2
x )

as a perturbation, and provides a first-order expansion of
the instantaneous energies and eigenvectors. The latter are
the same as for the original Ĥ (τ ), while the instantaneous
energies can be reobtained by multiplication by τ of the
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FIG. 3. Asymptotic (large τ ) behavior of control elements for
ε = 15. Circles, triangles, and squares are used for the elements
{Ĥ (1)}12, {Ĥ (1)}23, and {Ĥ (1)}13, respectively. The power-law fits are
shifted for better visibility. The respective fit coefficients are −2, −2,
and −4. Parameters are α = 1, � = 0.5.

perturbative energy expansion. We then use Eq. (4) to compute
the λ-leading terms of the matrix elements of Ĥ (1). Let
us remark that, as the intensity peaks are located at the
crossing centers, where the energy gaps reach their minimum
values, the use of perturbation theory is fully justified only
for studying the behavior of the tails, which is exactly our
purpose.

The off-diagonal matrix elements of the control Hamilto-
nian, up to second order, behave like

Ĥ
(1)
pert ∝ i

⎛
⎝ 0 �τ−2 −�2τ−4

−�τ−2 0 �τ−2

�2τ−4 −�τ−2 0

⎞
⎠. (24)

We now see that all elements decay algebraically in the
asymptotic limit, and this is indeed verified by our numerics,
as shown in Fig. 3. This behavior is a negative point concerning
the separability of crossings: the power-law scalings prevent
the possibility of obtaining perfectly separable controls, since
no definite decay scale can be defined. Note that, although
the “direct” coupling elements {Ĥ (1)}12 and {Ĥ (1)}23 follow
the familiar Lorentzian τ−2 dependence, the “indirect” one
{Ĥ (1)}13 decays faster, as τ−4. Actually, terms of order τ−3

also appear in the perturbative calculation for the “indirect”
crossing, but they cancel each other exactly due to the temporal
symmetry of the problem. The exact cancellation no longer
happens when such symmetry is broken, and this feature will
be discussed in Sec. VI.

V. SEPARABILITY

We have seen that, due to the power-law scaling of the
control functions, the global control problem cannot be fully
decomposed into the sum of single-crossing corrections.
Nevertheless, we investigate whether efficient approximate
control can still be achieved by separately correcting each
single anticrossing.

The general strategy is that each time the system undergoes
an avoided crossing, a superadiabatic two-level control pulse
is applied in order to drive the system transitionlessly. The
general shape of such a pulse is given in Sec. II B, but the

specific Hamiltonian implementing it is constrained by the
experimental resources. In particular, it depends on which
single matrix elements of the Hamiltonian can be externally
controlled. The only essential requirement is that the pulse
acts in an effective manner only on the two levels involved
in the crossing, without activating undesired tunneling effects
with or among other levels. Here we discuss two possible
constructions of the “separated-control” Hamiltonian.

We focus on driving of the instantaneous ground state of
our system along the two sequential LZ crossings it goes
through, ignoring the third anticrossing between the other
states. This is motivated by the fact that many quantum control
problems require adiabatic following of exactly one of the
instantaneous eigenstates. This is true especially in view of
situations where the number of anticrossings in a multilevel
spectrum is very large, although the evolution of only one
instantaneous eigenstate is of interest. The efficiency of the
method is quantified by how close the state driven by the
separated control field is to the exact instantaneous ground
state at the end of the protocol. In particular, we will study
numerically the probability of nonadiabatic transitions. This
is defined as

P = 1 − 〈�|ψ0〉 , (25)

i.e., as the deviation from one of the overlap between the driven
state |�(τ )〉 and the true instantaneous ground state |ψ0(τ )〉.

The first construction we consider is the following. We
initially design the control Hamiltonians which would drive
the system transitionlessly if only one of the two anticrossings
were present; that is, which drive exactly the instantaneous
eigenstates of Eq. (15) when {Ĥ (0)}23 = {Ĥ (0)}32 = 0 or
{Ĥ (0)}12 = {Ĥ (0)}21 = 0, respectively. We then construct the
full control field by summing the separate ones.

In order to define the separate control Hamiltonians, let us
introduce the matrices ÛL(τ ) and ÛR(τ ) which diagonalize,
respectively, the upper-left and lower-right two-by-two sub-
matrices of Ĥ 0(τ ), corresponding to the left (L) and right (R)
anticrossings. From Eq. (8), they are defined by

ÛL(τ ) =

⎛
⎜⎝

− sin θL(τ )
2 cos θL(τ )

2 0

cos θL(τ )
2 sin θL(τ )

2 0

0 0 1

⎞
⎟⎠, (26a)

ÛR(τ ) =

⎛
⎜⎝

1 0 0

0 − sin θR(τ )
2 cos θR (τ )

2

0 cos θR(τ )
2 sin θR (τ )

2

⎞
⎟⎠, (26b)

with the angles being defined by

tan θL(τ ) =
√

2�

ω(τ ) + ε
; tan θR(τ ) =

√
2�

ω(τ ) − ε
. (27)

The “separated-control” Hamiltonian Ĥ (1)
sep(τ ) is then con-

structed by summing the two control Hamiltonians correcting
the (L) and (R) anticrossings, respectively. Recalling the
definition of the control Hamiltonian for the single crossing
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from Eq. (5), one obtains

Ĥ (1)
sep(τ ) = i

∂Û
†
L

∂τ
ÛL + i

∂Û
†
R

∂τ
ÛR (28)

= i

2

⎛
⎝ 0 −∂τ θL(τ ) 0

∂τ θL(τ ) 0 −∂τ θR(τ )
0 ∂τ θR(τ ) 0

⎞
⎠. (29)

This construction is practically useful when one has inde-
pendent control over the [(12)–(21)] and [(23)–(32)] control
elements. It must be stressed that this procedure approximately
drives the population of the instantaneous ground state to be
close to one but does not provide a precise control on phase
factors, in contrast to the exact recipe of Eq. (4). This is the
case even for scenarios in which the anticrossings are largely
separated.

In a possible different construction, the separated control
can be realized through a single field modulated in time with
a profile ∂τ θsep which is the sum of the profiles of the single
corrections. That is, Ĥ (1)

sep = ∂τ θsepŜy/
√

2 with

∂τ θsep = ∂τ θL(τ ) + ∂τ θR(τ )

= −
√

2α�

(ε + ατ )2 + 2�2
−

√
2α�

(ε − ατ )2 + 2�2
. (30)

As we will also discuss in Sec. VI B, this construction, for
instance, is useful when the model describes a magnetic driving
of a pure spin-1 system. In such a case, it is not obvious
how to control independently the matrix entries [(12)–(21)] vs
[(23)–(32)], while it is natural to control all of them at once
by means of a single component of the magnetic field. What
is important in this situation is that the control pulse, while
correcting the (L) crossing for example, is not intense enough
to activate tunneling also toward the third level.

In order to inspect numerically the efficiency of the
separated control (for both constructions), we prepare the
system in the ground state and propagate it in time using
Ĥ (τ ) = Ĥ (0) + Ĥ (1)

sep.
We then extract the asymptotic probability of nonadiabatic-

ity P , as defined in Eq. (25). The fact that the correction is
not perfect implies the amplification of P(τ ) in the vicinity of
the anticrossing times (see Fig. 4). The oscillatory behavior
resembles the typical LZ transient. The asymptotic value of
P as a function of the intercrossing separation ε, with α

fixed and for the first construction, Eq. (29), is plotted in
Fig. 5. As can be seen, P oscillates for small ε. This is due
to Stückelberg’s phenomenon: firstly the driven instantaneous
ground state, when approaching the right crossing, is actually a
superposition of the true instantaneous eigenstates. Moreover,
the presence of the central anticrossing, which has been
neglected, implies that the right crossing involves the same
two energy levels as the left one. Therefore, the relative phase
accumulated by the corresponding instantaneous eigenstates
during the evolution between the (L) and (R) crossings also
contributes to the formation of Stückelberg oscillations.

For large ε, however, the oscillations in the probability
are damped as the propagated states approach the exact ones,
eventually following a power law as P ∝ ε−2. The same holds
for a separated control of the form given in Eq. (30). Due
to the power-law scaling no natural threshold for ε can be

FIG. 4. Time evolution of the probability of nonadiabaticity P ,
defined in Eq. (25), for α = 1, � = 0.5, ε = 7. The fact that the
separate control is not perfectly driving the adiabatic states shows up
in terms of residual (not canceled by the control) “jumps” of P in the
vicinity of the anticrossings.

defined at which the two crossings can be considered fully
separable. However, given a desired fidelity one can extract
the corresponding critical ε, or vice versa, from Fig. 5. As an
example, in the case of the first construction of the separated-
control Hamiltonian, for P ∼ 10−4 we get ε ≈ 5.

VI. TOWARD EXPERIMENTAL REALIZATIONS

In this section, we first discuss the robustness of our
results with respect to the introduction of little asymmetries in
the time-dependent spectrum. This is an important point for
experimental realizations, as the highly symmetric spectral
configuration previously studied (Fig. 1) could be hard to
reproduce in practice. Possible experimental setups will be
subsequently addressed where the model investigated here
could be implemented and tested.

A. Asymmetric spectra

We study two possible sources of asymmetry. The first one
is to consider that the diabatic couplings inducing the (L) and

FIG. 5. Asymptotic (large τ ) probability of nonadiabaticity P
as a function of the intercrossing separation ε for fixed parameters
α = � = 1. The power-law fit is shifted for better visibility with
the fit coefficient being −2. The dashed lines highlight the threshold
value ε ≈ 5 for P ∼ 10−4.
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FIG. 6. Time evolution of the energy spectrum for the asymmetric
problem for δ� = 0.5� and δα = −0.2α. Black dashed and solid
lines represent diabatic levels and adiabatic levels, respectively. The
gray dashed line marks the symmetric diabatic level for δα = 0. Large
parameters have been used for the purpose of visibility in the plot.

(R) anticrossings are not exactly the same (both of strength
�), but they rather differ by a small quantity δ�. The second
concerns instead the structure of the spectrum: we will deform
the “isosceles” triangular configuration by tilting one of the
diabatic levels. The temporal τ ↔ −τ symmetry is in fact
broken by changing the slope of one of the tilted diabatic
levels. This is done through the generalization −α → β.

Let us accordingly change the initial Hamiltonian Ĥ (0)(τ )
of Eq. (15) to be⎛

⎜⎝
ε + ατ �/

√
2 0

�/
√

2 0 1√
2
(� + δ�)

0 1√
2
(� + δ�) ε + βτ

⎞
⎟⎠. (31)

The new temporal evolution of the instantaneous spectrum is
depicted in Fig. 6.

Let us first concentrate on the first kind of asymmetry
by setting β = −α. Repetition of the perturbative argument
developed in Sec. IV gives the same long-time scalings for
the control functions as in the symmetric case. Namely,
a power-law behavior with τ−2 for the control of “direct”
crossings and τ−4 for “indirect” crossings, as in Eq. (24). This
is indeed verified by numerical investigation. Furthermore,
also the ε−2 scaling of the asymptotic infidelity P , defined
in Eq. (25), in the case of application of separate controls, is
verified. This is reasonable as a slight variation of a constant
parameter of the problem does not influence the time behavior
of the control functions.

Let us now consider δ� = 0 and β �= −α. This way, we
focus on the second kind of asymmetry. We then repeat once
again the perturbative calculation. Although for {Ĥ (1)}12 and
{Ĥ (1)}23, i.e., for the (L) and (R) crossings, we obtain a τ−2

scaling of the corresponding control functions, for {Ĥ (1)}13

we have

{Ĥ (1)}13 = i
(α + β)�2

2αβ(α − β)τ 3

−i
(2α2 − αβ + 2β2)ε�2

2α2β2(α − β)τ 4
+ O(τ−5). (32)

FIG. 7. Asymptotic (large τ ) behavior of the {Ĥ (1)}13 control
element for the asymmetric problem with |δα| = 10−3. The other
parameters are α = 1, � = 0.5, and ε = 5. Log-linear fits are
shifted for greater visibility with fit coefficients −4 and −3 for
the left and right line, respectively. Two regimes ∼τ−4 and ∼τ−3

are recognizable. The dotted gray line marks the transition time at
approximately τ 	 5ε/|δα|.

We see thus that the asymmetry introduces a τ−3 term in
{Ĥ (1)}13. Nonetheless, in order to compare its dominance with
respect to the τ−4 term, we study both in the limit in which β

is close to −α, let us say β = −(α + δα) with δα � 1. To the
lowest order in δα, the two competing terms have the form

C1
δα

τ 3
+ C2

τ 4
, (33)

with C1 = �2/4α3 and C2 = 5ε�2/4α3. Note that the τ−3

term is at least proportional to δα, while to the lowest order
the τ−4 term is independent from δα. Therefore, depending on
the δα and τ regimes, one of the two terms will be dominant
(Fig. 7).

The τ−4 term is dominant in the perturbed system only for
times

τ <
C2

C1|δα| = 5ε

|δα| . (34)

The ε−2 dependence of the asymptotic infidelity P in the
case of separate control is confirmed also for the second kind
of asymmetry. This is understandable because, even if the
presence of δα deforms the triangular pattern of diabatic levels,
for small δα the parameter ε/α still remains the relevant scale
of separation of the avoided crossings.

B. Experimental realizations

The engineering of few-level systems is, in principle,
possible in a number of physical situations. We briefly discuss a
variety of such realizations, highlighting their main advantages
and disadvantages in relation to the reproduction of the model
studied in this paper.

The use of Bose-Einstein condensates [33,34] offers inde-
pendent control of single parameters and has the advantage
that coherence time scales are typically much longer than
in solid-state realizations. In such a context, the two-level
SA protocol as presented in Sec. II has been implemented
by means of a condensate loaded into an accelerated optical
lattice [4]: two energy bands were controlled to study LZ
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transitions with time-dependent in situ parameter variations.
The same idea may be extended in order to control three energy
bands reproducing our system of Hamiltonian (15) coupled in
sequence at the respective energy gaps. Full control over three
bands, however, is hard due to the fact that band gaps are very
different and hence leakage toward higher bands can occur
(see [27,35,36]).

Another possible realization with ultracold noninteracting
atoms in magnetic traps was proposed already back in 1997 by
Vitanov and Suominen [37], yet in a quite different context.
The implementation of the SA control protocol with this
system, where individual levels correspond to internal atomic
hyperfine states controlled by magnetic fields, may allow one
to verify our predictions.

A strong interaction between ultracold bosons may also
be exploited to implement a level structure corresponding to
Fig. 1 [38]. In principle, interaction strength, detunings, and
hopping of few atoms in a double well can be controlled almost
arbitrarily [39]. Putting many of these double wells in a row
and measuring their independent contribution to the signal (see
[40]) gives sufficient detection efficiency.

Finally, another important experimental panorama is that of
magnetic systems: key examples are molecular nanomagnets
[41] and nitrogen vacancies (N-V) implanted in solid crystals
[42]. The former are highly engineerable and effective isola-
tion of few energy levels having pure-spin degrees of freedom
can be achieved. Dynamical control can then be naturally
implemented by means of time-dependent magnetic fields.
N-V centers have the advantage of permitting typically longer
coherence times.

In general, the Hamiltonian corresponding to our model,
Eq. (15), may describe an effective spin-1 system. This can
be represented, for instance, by a part of the energy spectrum
of a molecular nanomagnet [43], or by the S = 1 electronic
ground state of negatively charged N-V centers in diamond
[42,44]. The Hamiltonian is Ĥ (t) = h̄DŜ2

z + gμB B · Ŝ, with
h̄D > 0 representing the axial zero-field splitting parameter,
Bz(t) = Ḃzt sweeping linearly in t (to implement the LZ
dynamics), Bx constant in time, and null By component. Direct
mapping to the dimensionless Hamiltonian (15) can be given
by the identification ε = h̄D/gμBBx, α = h̄Ḃz/gμBB2

x , τ =
gμBBxt/h̄, � = 1, if the characteristic energy which defines
the energy unit is chosen to be gμBBx . In this case, the
implementation of the full control Hamiltonian of Eq. (4) is not
obvious, due to the necessity of dynamically controlling the
direct [(13)] coupling element (�m = ±2 states in terms of
Ŝz eigenstates). Nonetheless, the approximate control based on
two-level independent corrections (see Sec. V) could be imple-
mented by modulating in time an additional By(t) component,
Ĥ (1)

sep(t) = gμBByŜy , with profile By = Bx∂tθsep(t)/
√

2 and
∂tθsep(t) given in Eq. (30).

We conclude this section with a discussion concerning
typical experimental constraints. The TQD algorithm is by
construction rather robust against experimental imperfections.
For a detailed discussion of this point, in the context of
the experimental realization of a single LZ superadiabatic
control, see Ref. [4]. Let us now concentrate on the specific
three-level system under study, considering as a reference
example a realization based on magnetic systems. We refer

to the identification of the parameters of a magnetic system
described in the previous paragraph.

There are two main aspects which should be discussed,
namely, the realizability of the scheme of levels proposed (i.e.,
of the sequence of LZ avoided crossings; see Fig. 1) and the
implementation of the control fields. Concerning the scheme
of levels, a typical experimental difficulty is the initial state
preparation. This is not a problem in the case of magnetic
realizations, especially due to the fact that we are interested in
driving the ground state, as can be achieved by proper cooling
of the system following well-established standard procedures.
Furthermore, a remarkable point is the fact that coherence
time scales, which are usually one of the main experimental
limitations, do not play a central role in our framework. In
fact, if the control is efficient, the system remains always in
the ground state, and therefore is only weakly affected by
decoherence effects [45].

The implementation of the necessary intensities of the
magnetic fields should also be inspected. In the optimal
regime of parameters, once h̄D is fixed to typical values
(∼10−3 meV) by engineering of the system, the constant
Bx realizing the coupling between diabatic levels assumes
reasonable values, ∼10−3 T. Moreover, the Bz field, growing
linearly in order to implement the LZ dynamics, should vary
at a rate of ∼10–100 T s−1 reaching intensities of ∼10−1 T at
the beginning or at the end of the sweep.

For what concerns the realizability of the control field,
as mentioned in the previous paragraph and in Sec. V after
Eq. (30), a direct implementation of the full control is difficult
in the case of a pure spin-1 system, due to the necessity of
controlling in time the {Ĥ }13 matrix element. Regarding the
By field implementing the separated-control instead, maximal
intensities assume values of ∼10−3 T for the regime of
the other parameters considered. The typical time scales of
variation for the peaks are sufficiently long (10–100 μs)
allowing for a precise modulation.

VII. CONCLUSIONS

We have studied the application of the transitionless driving
protocol to a three-level quantum system whose energy
spectrum is characterized by a sequence of LZ avoided
crossings. Analytical expressions for the control Hamiltonian
have been found for the time instant τ = 0, and for the case
of simultaneous crossings, ε = 0. A numerical investigation
of the general cases allows one to discuss the shape of the
elements of the control Hamiltonian. We find that these are
typically given by sharp pulses centered at the crossing times.
Their tails decay as power laws at long times; τ−2 for “directly
induced” crossings while τ−4 for the “indirect crossing”. Such
behaviors are supported by perturbative calculations. This
indicates that it is not possible to obtain exact control by
applying two-level corrections to each crossing separately, a
feature which ultimately suggests that LZ crossings are never
completely independent events.

Nonetheless, we have addressed the issue of separability of
the control Hamiltonian in terms of single crossing corrections
from a practical point of view, by investigating how accurately
the evolution generated by the separated control fields can
reproduce a truly adiabatic evolution, as a function of the
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intercrossing separation ε. Our results predict that, for large ε,
the nonadiabatic transition probability scales as ε−2.

Finally, possible experimental realizations of the system
studied here were discussed. Our predictions turn out to
be robust with respect to small imperfections making the
spectrum asymmetric. This opens the route for experimental
verifications based, e.g., on ultracold atoms or molecular
magnets, as well as for further studies on more than three-
level systems. The TQD algorithm, while being typically not
applicable analytically for larger systems, can be implemented
numerically, in principle, in nondegenerate quantum systems
with any number of levels. The separated-control strategy can
be applied to quantum systems whose spectra are characterized

by sequences of well-separated avoided crossings, if the time
scales of separation of the anticrossings permit one to act on
each single anticrossing independently, in the sense discussed
in Sec. V.
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