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Analytic modeling of structures in attosecond transient-absorption spectra
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Attosecond transient-absorption spectroscopy (ATAS) is an established method for exploring electron dynamics
on the subfemtosecond time scale. ATAS spectra contain certain ubiquitous features, such as oscillating fringes,
light-induced structures, and hyperbolic sidebands, representing physical processes. We derive closed analytical
expressions describing these features, based on a three-level system responding adiabatically to the influence
of an infrared field in conjunction with an extreme ultraviolet pulse, and use He to illustrate the theory. The
validity of the formulas is substantiated by comparing their predictions with spectra calculated numerically by
the time-dependent Schrödinger equation. The closed analytical forms and the details of their derivation resolve
the origins of the features.
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I. INTRODUCTION

Since its inception, attosecond transient absorption spec-
troscopy (ATAS) has served as a useful tool in the exploration
of electron dynamics in atoms and molecules [1–3]. This
fully optical method makes use of a femtosecond infrared
(IR) pulse, which dresses the system, acting together with an
attosecond extreme ultraviolet (XUV) pulse whose spectrum is
modified during the interaction. Information can be extracted
from this modified spectrum and gathered in rich spectrograms
demonstrating absorption and emission of light, where time
resolution has been indirectly introduced by the variable delay
between the two pulses. ATAS has enabled the exploration of
various processes on their natural time scales, as exemplified
by numerous investigations; for instance, in the observation of
strong field dynamics and ionization in several systems [4–7],
autoionization in Ar [8], and the control of wave packets in
He [9]. The method has also been successfully applied to
molecular systems, such as in experimental studies on N2

[10,11] and in theoretical studies on charge migration [12]
and the effects of nuclear dynamics [13].

For atoms, the features found in ATA spectrograms cor-
respond to physical processes undergone by electrons, and
various descriptions of these processes have been offered.
Examples include the presence of oscillating fringes signi-
fying different forms of interference [14,15], light-induced
structures (LISs) signaling the impact of virtual intermediate
states in two-photon absorption processes [16], hyperbolic
sidebands (SBs) associated with perturbed free-induction
decay [17,18], and Autler-Townes splitting of the absorption
lines indicative of resonant population transfer between states
[19–21]. The features of which the present study is concerned
are highlighted in the ATA spectrogram seen in Fig. 1, which is
calculated using the method described in Sec. II C. Theoretical
investigations of these features generally rely on either directly
solving the time-dependent Schrödinger equation (TDSE),
possibly in a finite basis of field-free bound states [9], or
by devising models capable of reproducing some desired
characteristics [22].

We derive analytical closed forms representing the oscillat-
ing fringes, LISs and SBs adjacent to the main absorption lines
(see Fig. 1). These expressions enable a clearer understanding

of the origin of the features and their underlying physical
processes. Moreover, there is great interest in extracting
attosecond dynamics directly from experimental ATA spectra,
which requires simple yet precise models. The basis of this
derivation is a three-level system where the two excited levels
are expressed in terms of adiabatic states, an essential premise
for which is that the IR pulse changes slowly relative to the
bound electron motion, hence fulfilling the adiabatic condition.
A three-level system subject to the adiabatic condition has
previously been considered numerically [23], but an analytical
treatment has been lacking. Given appropriate parameters for
the system and incident electric fields, this three-level setup
can serve as a good approximation to certain physical systems
and is simple enough to allow for an analytical analysis. We
choose a setup where only one of the excited states, designated
as the bright state, can be accessed through a dipole allowed
transition from the ground state. For the other excited state,
designated as the dark state, there exists no dipole allowed
coupling with the ground state. These excited energy levels lie
within the broad spectrum of frequencies in the XUV pulse.
The IR pulse consists of low-frequency components and is too
weak to excite the system via multiphoton absorption. The IR
pulse will, however, induce a mixing of the excited states. This
mixture of field-free states serves as a basis through which the
adiabatic states can be expressed. We exemplify our model by
the three lowest levels of He, where the bright state is |1s2p〉
and the dark state is |1s2s〉.

The paper is organized as follows. Section II contains the
theoretical framework of all relevant methods and models.
Specifically, Sec. II A introduces the single-atom response
function, which describes the modification of the XUV
spectrum in ATAS; Sec. II B summarizes the method based
on the TDSE and compares a twenty-level system with a
three-level system in order to support the validity of the
three-level model; and Sec. II C contains the description
of the analytic modeling, where certain calculations related
to the Fourier transform of the time-dependent dipole moment
are relegated to the Appendix. In Sec. III, the comparison
between the various methods and the analytical expressions is
shown, followed by individual scrutiny of the three features
of interest: SBs, LISs, and fringes. Finally, Sec. IV concludes
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FIG. 1. Attosecond transient absorption spectrum S̃(ω,τ )
[Eq. (1)] based on the adiabatic three-level model developed in
Sec. II C, exemplified by He. Pertinent features are highlighted:
oscillating fringes centered around E(1s2p) ± 2ωIR, i.e., at 22.00
and 20.45 eV; hyperbolic sidebands centered around E(1s2p) =
21.22 eV; and light-induced structures (LISs) centered around
E(1s2s) ± ωIR, i.e., at 21.01 and 20.23 eV. The top panel illustrates
the infrared pulse centered at τ = 0 fs. The color scale to the right
shows the signal strength in arbitrary units. Analytical expressions
will be derived for the highlighted features. For pulse parameters, see
the text following Eq. (2).

and offers an outlook. Atomic units (h̄ = e = me = a0 = 1)
are used throughout, unless otherwise indicated.

II. THEORY AND DISCUSSION

This section starts by introducing the response function of
the atomic system, from which we acquire the delay-dependent
ATA spectrum. The calculation of this response function for
a system of bound states by a method involving the TDSE
is summarized, and closed analytic forms corresponding to
specific features of the ATA spectrum are derived.

A. Single-atom response function

The moderate intensities of the fields used in this study
enable the application of certain weak-field approximations.
However, if we consider the density of photons, the intensities
are sufficiently high that a classical treatment of the field is
justified. In such a semiclassical approach, only the atomic
system is given a full quantum mechanical description,
significantly reducing the complexity of the calculations. An
attosecond XUV pulse excites the system at a given time t = τ

and a femtosecond IR pulse induces dynamics in the excited
states. We fix the pulse center of the IR pulse at t = 0, so that
the delay τ represents the relative position of the XUV pulse
center. Both fields are linearly polarized in the z direction.

The delay-dependent single-atom response describes the
modulation of the XUV field interacting with an IR field-
dressed atom. Realistically, a full description must include
the medium of propagation, but for sufficiently dilute gases
the single-atom response is a valid approximation [24]. This
response function is given directly (see Ref. [25] for details):

S̃(ω,τ ) = 4πnω

c
Im[Ẽ∗

in(ω,τ )d̃(ω,τ )]. (1)

Here n is the density of atoms in the sample, c � 137 is the
speed of light, Ẽin(ω,τ ) is the incoming XUV field in the
frequency domain, and d̃(ω,τ ) is the expectation value of
the dipole moment’s z component in the frequency domain.
The tilde is used to denote Fourier-transformed quantities,
where we use the convention f̃ (ω) = 1√

2π

∫ ∞
−∞ dt f (t)e−iωt .

In Eq. (1), a negative value corresponds to absorption and a
positive value corresponds to emission of light. There exists
in the literature several expressions equivalent to the response
function in Eq. (1). For an overview and discussion of these,
see Ref. [13].

All fields are obtained from E(t) = −∂tA(t), where A(t) is
the vector potential given by

A(t) = A0 exp

[
− (t − tc)2

T 2/4

]
cos [ω(t − tc)], (2)

with A0 = E0/ω and ω being the angular frequency. E0 is
related to the intensity by I ∝ |E0|2. In Eq. (2), tc represents the
center of the pulse, and the period is T = NcTc = Nc

2π
ω

, where
Nc is the number of cycles in the pulse and Tc is the period of
one cycle. The period T is connected with the temporal full
width at half maximum (FWHM) of the field through TFWHM =√

log 2T . For the IR pulse tc = 0, and for the XUV pulse
tc = τ . The specific pulse parameters used herein are as fol-
lows: λIR = 3200 nm, λXUV = 50 nm, IIR = 6 × 1010 W/cm2,
IXUV = 5 × 107 W/cm2, TIR = 32.02 fs (Nc,IR = 3), and
TXUV = 330 as (Nc,XUV = 2). We arbitrarily set the density
of atoms n = 1 [see Eq. (1)].

B. Time-dependent Schrödinger equation

In order to obtain the response of the system, we calculate
the expectation value of the time-dependent dipole moment
〈d(t)〉 ≡ 〈�(t)|d|�(t)〉, with d = −∑

k zk being the dipole
moment operator in the polarization direction. We express the
quantum state of the system as

|�(t)〉 =
N∑

n=0

cn(t)e−iEnt |φn〉 , (3)

with |φn〉 being an energy eigenstate of the unperturbed system
corresponding to energy En and N being the number of
bound states in a finite basis of field-free states [15]. The full
Hamiltonian of the system is H = H0 + H ′(t), where the time-
dependent part accounts for the electric fields. Within the
dipole approximation and in the length gauge, it is given as

H ′(t) = −E(t)d, (4)
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with E(t) being the total field, including both the XUV and
IR field. By inserting Eq. (3) into the TDSE and projecting on
〈φm|, we obtain a set of coupled differential equations for the
coefficients cm(t). These equations can be solved numerically,
and the time-dependent dipole moment is determined by

〈�(t)|d|�(t)〉 =
N∑

m,n=0

c∗
m(t)cn(t)e−i(En−Em)t dmn, (5)

with dmn = 〈φm|d|φn〉. We use He to illustrate our theory, with
energies and transition dipole moments given in Ref. [26].

In experiments, the time-dependent dipole moment is sub-
ject to dephasing due to effects such as collisional broadening
and finite detector resolution. These effects can be replicated
by imposing a window function W (t − τ ) which dampens
〈d(t)〉 over some appropriate time T0, starting at the moment
of incidence for the XUV pulse [3,13]. We define the window
function as

W (t − τ ) =
{

1 (t < τ ),

exp
[ − (t−τ )2

2T 2
0

]
(τ � t),

(6)

where 2
√

2 ln(2)T0 = TFWHM is the FWHM of the correspond-
ing Gaussian. TFWHM is chosen to be large enough that the
features of interest in the ATA spectrum remain unaffected
as the window function is imposed, which for the parameters
in this work is TFWHM/2 = 100 fs. After multiplying Eq. (5)
by the window function from Eq. (6) and taking the Fourier
transform returns d̃(ω,τ ), the response function can be
determined from Eq. (1).

The method described in this section is meant to provide
a reference to which we can compare our analytic model,
which consists of three energy levels. For this to be a valid
comparison, we also require the TDSE calculations to be
accurate for a three-level system [Eq. (3) with N + 1 = 3].
We achieve this by comparing solutions based on N + 1 = 20
and N + 1 = 3 bound states of the present model system,
He, and verifying that they agree in the relevant range of
energies. A comparison of the two cases is shown in Fig. 2,
where we have used the pulse parameters given in the text
following Eq. (2) and the window function from Eq. (6).
The energy range for which we require agreement between
the two solutions extends from ∼20 to ∼22.4 eV. The only
disparity is seen around 22.3 eV, where there is a change
as we go from twenty levels in Fig. 2(a) to three levels in
Fig. 2(b). In this region, oscillating fringes corresponding to
the |1s3p〉 state are overlapping with the equivalent feature
corresponding to the |1s2p〉 state. As the |1s3p〉 state is
removed from the calculations, its corresponding fringes
vanish and uncover the fringes associated with the |1s2p〉
state. Consequently, the three-level TDSE calculations can be
considered accurate in the energy range of interest.

C. Adiabatic three-level model

In this section, we obtain analytical expressions corre-
sponding to certain features in the ATA spectrum of a
system with three energy levels, the first step of which
is to determine the time-dependent dipole moment of the
system, 〈�(t)|d|�(t)〉. We then apply perturbation theory and
a number of approximations, sequentially reducing it to a

(a)

(b)

FIG. 2. Attosecond transient absorption spectra S̃(ω,τ ) of He
calculated by Eq. (1), where d̃(ω,τ ) is determined via the TDSE [see
Eq. (5)]. In panel (a), the results are obtained with a basis consisting
of the N + 1 = 20 lowest levels of He. In panel (b), the results are
obtained with a basis consisting of only the N + 1 = 3 lowest levels
of He: the ground state, fixed at 0 eV, |1s2s〉 at 20.62 eV, and |1s2p〉
at 21.22 eV. The top panel illustrates the infrared pulse centered at
τ = 0 fs. The color scale to the right shows the signal strength in
arbitrary units. For pulse parameters, see the text following Eq. (2).

form which is sufficiently simple to allow for an analytic
Fourier transform. The response function is finally obtained
from Eq. (1).

For systems evolving adiabatically or near adiabatically, an
expansion in the adiabatic states |φna(t)〉, defined through

H (t) |φna(t)〉 = Ena(t) |φna(t)〉 (7)

is often preferable. Equation (7) expresses that the adiabatic
states |φna(t)〉 are the instantaneous eigenstates of the Hamil-
tonian of our system, with the eigenenergies Ena(t). We may
express the solution to the TDSE in the adiabatic basis as

|	(t)〉 = b0(t) |φ0〉 + a1(t) |φ1a(t)〉 e−i
∫ t

τ
dt ′E1a (t ′)

+ a2(t) |φ2a(t)〉 e−i
∫ t

τ
dt ′E2a (t ′), (8)

with the ground-state energy E0 set to zero and a1(t), a2(t)
being the coefficients of the adiabatic states. Since the intensity
of the XUV field used in our calculation is weak, a1(t) and
a2(t) will be small at all times. In Eq. (8), we have made the
assumption that the ground state does not change appreciably
under the influence of the fields and denoted its coefficient
by b0(t). e−i

∫ t

τ
dt ′Ena (t ′) (n = 1,2) is the phase factor for the

adiabatic states with time-dependent energies.
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To obtain the adiabatic states and associated energies, we
start by considering the full Hamiltonian of our system

Hf =
⎡
⎣ 0 d01EXUV(t) 0

d01EXUV(t) E1 d12EIR(t)
0 d12EIR(t) E2

⎤
⎦, (9)

which illustrates the coupling, due to the XUV pulse, between
the ground state and the first excited state; and similarly for
the two excited states, coupled by the IR pulse. The couplings
are chosen such that |φ1〉 is the bright state and |φ2〉 is the
dark state with respect to a dipole transition from the field-free
ground state |φ0〉.

We can reduce the system by noting that after the XUV
pulse has populated the first excited state, the ground state is
approximately constant and we effectively have a two-level
system specified by

H =
[

E1 d12EIR(t)

d12EIR(t) E2

]
. (10)

The instantaneous eigenvalues of this Hamiltonian are

E1a(t) ≈ E1 + d2
12E2

IR(t)

E1 − E2
, (11)

E2a(t) ≈ E2 − d2
12E2

IR(t)

E1 − E2
, (12)

where we have performed a Taylor expansion about EIR(t) = 0
and neglected terms of third order or higher in the IR field. The
normalized adiabatic eigenstates are

|φ1a(t)〉 = d12EIR(t)√
d2

12E2
IR(t) + [E1a(t) − E1]2

|φ1〉

+ E1a(t) − E1√
d2

12E2
IR(t) + [E1a(t) − E1]2

|φ2〉 (13)

and

|φ2a(t)〉 = E2a(t) − E2√
d2

12E2
IR(t) + [E2a(t) − E2]2

|φ1〉

+ d12EIR(t)√
d2

12E2
IR(t) + [E2a(t) − E2]2

|φ2〉 , (14)

which appropriately reduce to the field-free states in the limit
EIR(t) → 0.

To determine the coefficients a1(t) and a2(t) of Eq. (8), it
is convenient to first express the same quantum state in terms
of the field-free basis states:

|	(t)〉 = b0(t) |φ0〉 + b1(t) |φ1〉 + b2(t) |φ2〉 , (15)

where the coefficients are

b1(t) = a1(t)e−i
∫ t

τ
dt ′E1a (t ′) 〈φ1|φ1a(t)〉

+ a2(t)e−i
∫ t

τ
dt ′E2a (t ′) 〈φ1|φ2a(t)〉 (16)

and

b2(t) = a1(t)e−i
∫ t

τ
dt′E1a (t ′) 〈φ2|φ1a(t)〉

+ a2(t)e−i
∫ t

τ
dt′E2a (t ′) 〈φ2|φ2a(t)〉 . (17)

The overlaps 〈φm|φna(t)〉 (n,m = 1,2) can be obtained from
Eqs. (13) and (14):

〈φ1|φ1a(t)〉 = 〈φ2|φ2a(t)〉 ≈ 1 − d2
12E2

IR(t)

2(E1 − E2)2
, (18)

〈φ1|φ2a(t)〉 = − 〈φ2|φ1a(t)〉 ≈ −d12EIR(t)

E1 − E2
, (19)

where we have neglected terms of third order or higher in the
IR field after an expansion about EIR(t) = 0.

Inserting Eq. (15) into the TDSE and projecting on
to each of the excited field-free states |φ1〉 and |φ2〉, we
obtain equations for the coefficients ȧn(t) (dot denotes time
derivative), which we then treat perturbatively. If the system
remains unperturbed, we expect it to stay in the ground-state
indefinitely; b

(0)
0 (t) = 1, a(0)

1 (t) = a
(0)
2 (t) = 0 (superscripts de-

note the order of approximation). To obtain the first-order
approximations for the coefficients, we insert the zeroth-order
coefficients back into our differential equations. Neglecting
third-order or higher terms of IR field in the pre-exponential
factor, the equations become

ȧ
(1)
1 (t) ≈ id01EXUV(t)ei

∫ t

τ
dt ′E1a (t ′)

[
1 − d2

12E2
IR(t)

2(E1 − E2)2

]
, (20)

ȧ
(1)
2 (t) ≈ − id01d12

E1 − E2
EXUV(t)EIR(t)ei

∫ t

τ
dt ′E2a (t ′). (21)

The change in the coefficient of the ground state is assumed
to be negligible throughout the interaction, and so we have set
b0(t) = 1.

From this point on, it is practical to work directly with
the expectation value of the time-dependent dipole moment.
To leading order in the small coefficients b1(t) and b2(t), we
obtain

〈	(t)|d|	(t)〉 = 〈d(t)〉 = d01[b1(t) + b∗
1(t)], (22)

where we have used that d02 = 0. This can be simplified
further by observing that the b1(t) coefficient contains factors
e−iE1t and e−iE2t , which upon Fourier transform correspond to
shifts to negative frequencies. We need only consider positive
frequencies, and consequently only b∗

1(t) is kept, resulting in

〈d(t)〉 = d01
[
a∗

1 (t)ei
∫ t

τ
dt ′E1a (t ′) 〈φ1|φ1a(t)〉∗

+ a∗
2 (t)ei

∫ t

τ
dt ′E2a (t ′) 〈φ1|φ2a(t)〉∗ ]

, (23)

which must be multiplied by the window function W (t − τ )
from Eq. (6) to account for dephasing.

We now have a complete model of the three-level system.
The numerical solutions of Eqs. (20) and (21) can be inserted
into Eq. (23) to obtain the time-dependent dipole moment.
Numerically calculating the Fourier transform and inserting
into Eq. (1), along with the Fourier transform of the XUV
pulse, yields the response function of the system.

A series of approximations are required to progress further
toward an analytical form of the response function. First,
we assume that the XUV pulse is sufficiently brief that
its time dependence can be approximated by the Dirac δ
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function [3]

EXUV(t) → αδ(t − τ ), (24)

where α is constant in a given set of field parameters and
is determined by comparison with an equivalent numerical
solution for the response function. In the present calculations,
α = 1.61 × 10−4. The replacement in Eq. (24) trivializes the
task of solving Eqs. (20) and (21):

a
(1)
1 (t) =

∫ t

τ

dt ′ȧ(1)
1 (t ′)

= iαd01θ (t − τ )

[
1 − d2

12E2
IR(τ )

2(E1 − E2)2

]
, (25)

a
(1)
2 (t) =

∫ t

τ

dt ′ȧ(1)
2 (t ′) = − iαd01d12

E1 − E2
θ (t − τ )EIR(τ ), (26)

where θ (t − τ ) is the Heaviside step function. As will be shown
later, the two terms in Eq. (23) correspond to distinct features
in the ATA spectrum. The first gives rise to delay-dependent
SBs [14,15] and oscillating fringes [15] associated with the
E1 energy level; the second generates LISs [16] associated
with the E2 energy level (see Fig. 3). We treat the terms
separately.

1. Closed analytical form of SBs and oscillating fringes and
discussion of physical origins

From the first term in Eq. (23), we have [see Eq. (25)]

〈d(t)〉1 = −iαd2
01θ (t − τ )

[
1 − d2

12E2
IR(τ )

2(E1 − E2)2

]

× ei
∫ t

τ
dt ′E1a (t ′) 〈φ1|φ1a(t)〉∗ . (27)

From Eq. (11), we see that the exponential factor in Eq. (27)
can be separated as

exp

[
i

∫ t

τ

dt ′E1a(t ′)
]

= exp [iE1(t − τ )] exp

[
id2

12(E1 − E2)−1
∫ t

τ

dt ′E2
IR(t ′)

]
. (28)

We expand the second exponential factor in Eq. (28) to first
order, which is accurate because E2

IR(t) is small:

e
id2

12
E1−E2

∫ t

τ
dt ′E2

IR(t ′) ≈ 1 + id2
12

E1 − E2

∫ t

τ

dt ′E2
IR(t ′). (29)

We then obtain [see Eq. (18)]

〈d(t)〉1 = −iαd2
01θ (t − τ )eiE1(t−τ )

{
1 − d2

12

[
E2

IR(t) + E2
IR(τ )

]
2(E1 − E2)2

+ id2
12

E1 − E2

∫ t

τ

dt ′E2
IR(t ′) + O

(
E4

0,IR

)}
, (30)

where the terms of fourth order or higher in the IR field are
neglected.

We are interested in the features of the ATA spectrum
that arise from temporary changes in the time-dependent
dipole moment due to the influence of the IR field on
the excited states. The Heaviside function θ (t − τ ) and the
window function W (t − τ ) impose restrictions on infinite
oscillations that otherwise would correspond to discrete values
in the frequency domain. We proceed by setting θ (t − τ ) = 1,
excluding W (t − τ ), and dropping the two terms in Eq. (30)
whose only time dependence is in the factor eiE1t :

〈d(t)〉1 = αd2
01d

2
12

E1 − E2
e−iE1τ eiE1t

[∫ t

τ

dt ′E2
IR(t ′) + iE2

IR(t)

2(E1 − E2)

]
.

(31)

Neglecting W (t − τ ) and θ (t − τ ) implies that there will be
a nonzero population in the excited states at all times. Before
this approximation, the IR pulse could not influence the system
prior to the arrival of the XUV pulse, so beyond relatively small
positive delays τ the ATA spectrum would simply exhibit a
single-photon absorption pattern, whereas for relatively large
negative τ the system would have time to dephase prior to the
arrival of the IR pulse (see Fig. 2). After this approximation,
the ATA spectrum is symmetric about τ = 0 and does not
weaken at large negative τ . The influence of the IR field at
times t < τ enabled by setting θ (t − τ ) = 1 does not have an
effect at large negative delay, as the IR field will be zero for
t < τ . In the intermediate region where τ approaches zero, the
trailing part of the dipole moment (where t > τ ) dominates
the leading part (where t < τ ), and the results will be similar
to the case where θ (t − τ ) is included, as in the numerical
calculations. As τ approaches zero, the difference between
the trailing and leading parts of the dipole moment decreases
and vanishes at τ = 0. Finally, dropping of the term that only
depends on time in the factor eiE1t causes the main absorption
line at E = E1, corresponding to single-photon absorption,
to vanish. This poses no problem, as we set out to explain
analytically only the features highlighted in Fig. 1.

The Fourier-transformed time-dependent dipole moment
d̃1(ω,τ ) can now be obtained from Eq. (31) (see the Appendix
for details). The Fourier transform of the XUV field is
simply ẼXUV(ω,τ ) = α√

2π
e−iωτ . Insertion into Eq. (1) yields

the following expression for the response function:

S̃1(ω,τ ) =
√

πα2d2
01d

2
12E2

0,IRTIRn

4
√

2(E1 − E2)c
ω cos [τ (E1 − ω)]

[
1

ω − E1
− 1

2(E1 − E2)

]{
− 2 exp

[−T 2
IR(ω − E1)2

32

]

+ exp

[−T 2
IR(ω − E1 + 2ωIR)2

32

]
+ exp

[−T 2
IR(ω − E1 − 2ωIR)2

32

]}
. (32)
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We note that the divergence at ω = E1 can be eliminated by
assigning a finite radiative lifetime, 
, to the E1 level by the
substitution E1 → E1 − i
/2.

Equation (32) describes the SBs and fringes, and from it we
can identify the origin of these features. From Eqs. (27)–(31)
we see that there are two interfering sources: One originates
in the field-induced time dependence of the adiabatic phases
ei

∫ t

τ
E1a (t) and leads to the 1/(ω − E1) term; the other originates

in the term related to the mixing of states, the complex con-
jugated overlap 〈φ1|φ1a(t)〉∗ between the first field-free state
and the first adiabatic state, and gives rise to the constant term
−1/[2(E1 − E2)]. These two terms interfere constructively
for ω < E1 and destructively for ω > E1, resulting in the
asymmetry in the signal strength of the fringes (see Fig. 5).
The exponentials in Eq. (32) cause Gaussian modulation about
the energies ω = E1 (SBs) and ω = E1 ± 2ωIR (fringes).
They emerge in the Fourier transform of the squared IR
field [see Eqs. (A9) and (A10)], and we note specifically
that the exp [−T 2

IR(ω − E1 ± 2ωIR)/32] terms are due to the
carrier factor sin (ωIRt) of the IR field. The implication is
that in the presence of an IR field consisting only of an
envelope part the fringes would be absent but the SBs would
be present. The hyperbolic shape of the SBs and the oscillation
of the fringes are both manifestations of the same factor,
cos [τ (ω − E1)], causing the features to follow hyperbolic

trajectories where τ (ω − E1) = constant [3]. Thus, the present
formalism presents a unified description of the SBs and the
fringes, two ATAS features previously attributed to separate
processes, namely perturbed free-induction decay [17,18] and
optical interference [15]. The cosine term comes from the
τ -dependent part of the phase factor, e−iE1τ , combined with the
e−iωτ factor of the XUV field. Finally, we recall that Eq. (32),
and by extension the SBs and fringes, came from the first term
in Eq. (23), which is associated with the first adiabatic states,
which in turn was borne out of the field-free |1s2p〉 bright
state.

2. Closed analytical form of LISs and discussion
of physical origins

We return to Eq. (23) and consider now the second term. We
expand the exponential factor in orders of the IR field, insert the
overlap from Eq. (19), and drop terms of third order or higher
in the IR field. Following the same reasoning as in Sec. II C 1,
we exclude W (t − τ ) and set θ (t − τ ) = 1, yielding

〈d(t)〉2 = − iαd2
01d

2
12

(E1 − E2)2
EIR(τ )e−iE2τ eiE2tEIR(t), (33)

from which we can obtain the frequency-dependent dipole
moment (see the Appendix for details). The response function
is

S̃2(ω,τ ) =
√

πα2d2
01d

2
12E2

0,IRTIRn

2
√

2(E1 − E2)2c
ω exp

(−4τ 2

T 2
IR

)
sin (ωIRτ ) sin [τ (E2 − ω)]

{
exp

[
−T 2

IR(ω − E2 − ωIR)2

16

]

− exp

[
−T 2

IR(ω − E2 + ωIR)2

16

]}
. (34)

Equation (34) describes the LISs, implying that their origin
can be deduced from it. Unlike the case for the SBs and
fringes [see Eq. (32)], the LISs cannot be ascribed to the
adiabatic phases. They are instead a result of the complex
conjugated coefficient a∗

2 (t) corresponding to the adiabatic
|φ2a(t)〉 state and the complex conjugate of its overlap with
the first field-free state, 〈φ1|φ2a(t)〉 [see Eq. (23)]. Considering
first the coefficient a2(t), from Eqs. (21) we see clearly the
two-photon character of the process responsible for the LISs,
in agreement with previous interpretations [16]. Since the
XUV field is approximated by a constant times a δ function
[see Eqs. (24) and (26)], the subsequent integration picks
out the instantaneous value of the IR field at the time τ ,
implying that the signal strength of the LIS will follow the
IR field and vanish when the field goes to zero (see Fig. 6).
This behavior is described by the exp (−4τ 2/T 2

IR) sin (ωIRτ )
part of Eq. (34). The overlap 〈φ1|φ2a(t)〉∗ is linear in the
IR field, which upon Fourier transform leads to the terms
exp [−T 2

IR(ω − E2 ± ωIR)2/16] that cause Gaussian modula-
tion of the features about energies E2 ± ωIR. Furthermore, the
delay-dependent part of the phase, e−iE2τ , combines with the
e−iωτ factor of the XUV field to produce the sin [τ (E2 − ω)]
factor, causing the LISs to take on hyperbolic shapes, like
the SBs and fringes. We note finally that the LISs originate
in the second term of Eq. (23), corresponding to the second

adiabatic state, which in turn evolved from the field-free |1s2s〉
dark state.

III. RESULTS

In this section, we present the results obtained from the
models described in Sec. II. A comparison between the three-
level TDSE solution and the full adiabatic three-level model is
shown, and the features of main interest in the present work are
highlighted. The focus then shifts to the features individually,
specifically how they each change as we go from the TDSE
solution to the analytic solution via the full adiabatic model.

The parameters must fulfill two criteria. We require that the
fields have relatively weak intensities and the wavelength of
the IR field must be chosen so that it is not in resonance with
the bright-state to dark-state transition. The first condition is
necessary for the validity of first-order perturbation theory out
of the ground state [see Eqs. (20) and (21)], and the latter
condition is necessary for an adiabatic treatment of the excited
states. The relatively weak intensity of the IR pulse ensures
that the expansions in orders of EIR(t) in Sec. II C are accurate.
Finally, the IR wavelength must be long enough not to induce
significant coupling between the three lowest levels of He and
the higher levels in the bound-state manifold, to justify the use
of a model with only these three levels. All generic features
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FIG. 3. Attosecond transient absorption spectra S̃(ω,τ ) of He
calculated by Eq. (1). In panel (a) d̃(ω,τ ) is determined via the time-
dependent Schrödinger equation [see Eq. (5)] with a basis of N + 1 =
3 levels, as in Fig. 2(b). In panel (b) d̃(ω,τ ) is calculated from the
full adiabatic three-level model [see Eq. (23)] and several features of
the spectrum are highlighted. Oscillating fringes are centered around
E(1s2p) ± 2ωIR, i.e., at 22.00 and 20.45 eV; hyperbolic sidebands
are centered around E(1s2p) = 21.22 eV; and light-induced struc-
tures (LISs) are centered around E(1s2s) ± ωIR, i.e., at 21.01 and
20.23 eV. The top panel illustrates the infrared pulse centered at
τ = 0 fs. The color scale to the right shows the signal strength in
arbitrary units. For pulse parameters, see the text following Eq. (2).

of interest will still be present in ATA spectra subject to these
conditions, and the findings therefore also apply to other atoms
where similar states and couplings can be realized.

In Fig. 3, we compare the three-level TDSE results obtained
from Sec. II B [see Eq. (5) with N + 1 = 3; Fig. 3(a)] with
the full adiabatic three-level model results obtained from
Eqs. (11), (12), (18)–(21), (23) [Fig. 3(b)] and highlight the
specific features of the spectrum that are included in the
present work (as in Fig. 1). These features will be treated
in detail individually, but are briefly described here. The
features labeled “sidebands” are the SBs along the main
absorption band of the |1s2p〉 states, which are often attributed
to perturbed free-induction decay [17,18]. The figure shows
that the SBs are very well reproduced by the adiabatic model.
The features labeled “fringes” are oscillating with a frequency
twice that of the IR field frequency and are found centered at
energies E(1s2p) ± 2ωIR. They are reproduced quite well in
the adiabatic model, the main difference being a weakening of
the fringes centered at E(1s2p) + 2ωIR relative to the TDSE
calculations. Note that the fringes are not “which-way” fringes,

FIG. 4. Attosecond transient absorption spectra S̃(ω,τ ) [Eq. (1)]
focused on the hyperbolic sidebands (SBs) around the |1s2p〉 energy
level of He. In panel (a) d̃(ω,τ ) is determined via the time-dependent
Schrödinger equation [see Eq. (5)] with a basis of N + 1 = 3 levels,
as in Fig. 2(b). In panel (b) d̃(ω,τ ) is calculated from the adiabatic
three-level model, with the light-induced structures seen in panel (a)
(between −25 fs < τ < 15 fs, centered at E = 21.00 eV) removed by
keeping only the first term of Eq. (23), resulting in an unobstructed
view of the SBs. Panel (c) shows the analytic solution from Eq. (32).
The top panel illustrates the infrared pulse centered at τ = 0 fs. The
color scale to the right shows the signal strength in arbitrary units.
For pulse parameters, see the text following Eq. (2).

which require additional bound states [16], but rather the
type of fringes attributed to optical interference in Ref. [15].
Finally, the LISs appear only in the region where there is
temporal overlap between the XUV and IR field [16]. They
are centered at energies E(1s2s) ± ωIR and, like the fringes,
they exhibit modulation at twice the IR frequency. There
are differences between the TDSE and the adiabatic model
calculations when it comes to the LISs, but characteristics such
as oscillation frequency, strength, and position of the features
are reproduced.

The analytical expressions obtained in Sec. II contain
the three different classes of features shown in Fig. 3. To
support the validity of the expressions, we compare the features
as they are calculated by the successive methods, first from the
three-level TDSE, followed by the full adiabatic three-level
model, and finally the analytical expressions.

The SBs as calculated by the various methods are shown in
Fig. 4. The three-level TDSE solution can be seen in Fig. 4(a).
The adiabatic model calculations in Fig. 4(b) are in good
agreement with the TDSE results. The full adiabatic model
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FIG. 5. Attosecond transient absorption spectra S̃(ω,τ ) [Eq. (1)]
focused on the rapidly oscillating fringes around the energies
E(1s2p) ± 2ωIR in He. In panel (a) d̃(ω,τ ) is determined via the
time-dependent Schrödinger equation [see Eq. (5)] with a basis of
N + 1 = 3 levels, as in Fig. 2(b). In panel (b) d̃(ω,τ ) is calculated
from the adiabatic three-level model, with the LIS seen in panel (a)
(between −25 fs < τ < 15 fs, centered at E = 20.23 eV) removed by
keeping only the first term of Eq. (23); resulting in an unobstructed
view of the fringes. In panel (c) the analytic solution from Eq. (32)
is shown. The vertical dotted line serves as a guide for the eye. The
top panel illustrates the infrared pulse centered at τ = 0 fs. The color
scale to the right shows the signal strength in arbitrary units. For pulse
parameters, see the text following Eq. (2).

[Eq. (23)] consists of two terms, only the second of which is
responsible for the LISs. Since, for now, we are concerned with
the SBs, this second term is dropped. The same simplification
cannot be attained for the numerical TDSE solution, as there
is no equivalent single term accountable for the LISs. This
explains the presence of a LIS (centered at E = 21.00 eV
and between τ = −25 fs and τ = 15 fs) in Fig. 4(a), and
its absence in Fig. 4(b). In Fig. 4(c), the analytical solution
of Eq. (32) is shown, from which the term containing the
−2 exp [−T 2

IR(ω − E1)2/32] factor corresponds to the SBs.
The SBs are well reproduced by the analytic expressions.
The differences between the analytical solution and the full
adiabatic model can be attributed to the removal of separate
interfering features and the suppression of W (t − τ ) and
θ (t − τ ) as detailed in Sec. II C 1 leading up to Eq. (32).

The oscillating fringes, as calculated by the various meth-
ods, are seen in Fig. 5. The panels above the dashed lines
correspond to the fringes centered at the energy E(1s2p) +
2ωIR = 22.00 eV and the panels below correspond to the

fringes centered at E(1s2p) − 2ωIR = 20.45 eV. The three-
level TDSE solution can be seen in Fig. 5(a), and as in
Fig. 4 there is a LIS (centered at E = 20.23 eV, between
−25 fs < τ < 15 fs) which should not be considered part
of the comparison. We note an asymmetry in the strength
of the fringes, where the fringes at 22.00 eV are weaker; as
understood from Eq. (32), this is due to interference between
a term corresponding to the adiabatic phase and a term
describing the mixing of the field-free states. In Fig. 5(b),
the results from the three-level adiabatic model are shown,
and except from being slightly fainter, they are in good
agreement with the TDSE results. The analytic solution from
Eq. (32) is shown in Fig. 5(c), where the contribution from
the term containing the exp [−T 2

IR(ω − E1 ± 2ωIR)2/32] factor
produces the fringes. The fringes are reproduced with good
qualitative and quantitative agreement; the main characteristics
with which we are concerned are not affected by the differences
between the analytic solution and the full adiabatic model.
The causes of these differences are the same as for the SBs
considered above and are discussed in Sec. II C 1.

In Fig. 6, a comparison of the LISs calculated by the
various methods is shown. The panels above the dashed lines
correspond to the LISs centered at the energy E(1s2s) + ωIR =
21.01 eV and the panels below correspond to the LISs centered
at the energy E(1s2s) − ωIR = 20.23 eV. The three-level
TDSE solution is shown in Fig. 6(a), where the LISs are seen
along with the other features. As explained previously, the
features cannot be distinguished and separated in the TDSE
solutions, something which is possible in the adiabatic model.
In the top panel of Fig. 6(a), the LIS is mixed with the SBs
and in the bottom panel the LIS is mixed with the lower
oscillating fringes, somewhat complicating the comparison
with the other calculations. The top LIS only takes on negative
values, whereas the bottom LIS oscillates between positive
and negative values similarly to the adjacent fringes. In the
adiabatic model, the LISs correspond to the second term of
Eq. (23) and the other features correspond to the first term,
so by keeping only the second term we can focus entirely
on the LISs, the result of which is seen in Fig. 6(b). There
is significant departure from the TDSE-based calculations in
Fig. 6(a), but the key characteristics are still present. The
features are confined to the same time delays τ , the oscillation
patterns match, and the strengths of the features are similar.
The differences are likely attributable to the mentioned mixing
of features in Fig. 6(a) and the approximations made in
the adiabatic model calculations. The analytic solution from
Eq. (34) is shown in Fig. 6(c), and it exhibits qualitative
agreement with the full numerical solution from Fig. 6(b).
The discrepancy beyond relatively small positive delays does
not undermine the main result, as discussed for the SBs and
fringes above.

IV. CONCLUSION AND OUTLOOK

Starting with a three-level model subject to an adiabatic
condition where the excited states are the instantaneous
eigenvectors of a reduced Hamiltonian, through a series of
approximations we have derived closed analytic expressions
describing three features commonly encountered in ATAS:
fringes, SBs, and LISs [Eqs. (32) and (34)]. As a reference
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FIG. 6. Attosecond transient absorption spectra S̃(ω,τ ) [Eq. (1)]
focused on the light-induced structures (LISs) around the energies
E(1s2s) ± ωIR in He. In panel (a) d̃(ω,τ ) is determined via the time-
dependent Schrödinger equation [see Eq. (5)] with a basis of N +
1 = 3 levels, as in Fig. 2(b). In panel (b) d̃(ω,τ ) is calculated from
the adiabatic three-level model, with the hyperbolic sidebands and
oscillating fringes seen in panel (a) removed by keeping only the
second term of Eq. (23), resulting in an unobstructed view of the
LISs. Panel (c) shows the analytic solution from Eq. (34). The vertical
dotted line serves as a guide for the eye. The top panel illustrates the
infrared pulse centered at τ = 0 fs. The color scale to the right shows
the signal strength in arbitrary units. For pulse parameters, see the
text following Eq. (2).

for comparison, we solved the system with a general method
using the TDSE and a system corresponding to N bound
states of He and showed that in the relevant range of energies
the spectrogram of a three-level solution agreed very well
with a twenty-level solution for appropriate parameters of the
fields. The three-level TDSE-based solution was compared
with the full adiabatic model with agreeable qualitative and
quantitative results, but with certain discrepancies due to the
approximative methods implemented. Finally, the process of
going from a general TDSE reference solution to analytic
expressions was examined for each of the three features
separately. The SBs and the oscillating fringes were well
described by the analytic expression when compared to the
numerical methods. Moreover, the results [Eq. (32)] indicate
a unification of these two features, which previously have
been attributed to distinct processes, specifically perturbed
free-induction decay [17,18] and optical quantum interference
[15]. Important characteristics of the LISs were correctly
reproduced by the analytical expression. The derivation and

the final form of the closed analytical expressions revealed
the origin of the considered features. The expressions directly
showed how the fringes, SBs and LISs depend on the properties
of the pulses, such as their field strengths and the IR frequency
and duration, as well as the dependence of the features on
system-specific parameters, i.e., energies and transition dipole
moments. Given the current experimental capabilities with
respect to wavelengths and intensities, we expect that validity
conditions for the model can be fulfilled in many different
atomic systems.
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APPENDIX: FOURIER TRANSFORM
OF 〈d(t)〉1 AND 〈d(t)〉2

In this Appendix, we show how to obtain the Fourier
transform of the time-dependent dipole moment corresponding
to the SBs, fringes, and LISs in the ATA spectrum, described
by Eq. (31).

Following the convention

F[f (t)](ω) = 1√
2π

∫ ∞

−∞
dtf (t)e−iωt (A1)

and starting with the dipole moment corresponding to the SBs
and fringes, we wish to solve

d̃1(ω,τ ) = αd2
01d

2
12√

2π (E1 − E2)
e−iE1τ

∫ ∞

−∞
dt eiE1t e−iωt

×
[ ∫ t

τ

dt ′E2
IR(t ′) + iE2

IR(t)

2(E1 − E2)

]
. (A2)

The factor eiE1t will only cause a shift in frequency, which
can be taken into consideration afterward. The field EIR(t) is
obtained from Eq. (2):

EIR(t) = A0,IR8t

T 2
IR

e
− 4t2

T 2
IR cos (ωIRt) + E0,IRe

− 4t2

T 2
IR sin (ωIRt),

(A3)

where we have set tc = 0. The IR field in our calculations has
a relatively large period TIR, suggesting that we can neglect
the term with the factor T −2

IR . The remaining term consists of
an envelope part (the exponential factor) and a carrier part (the
sine factor).

Starting with the first of the two terms in Eq. (A2), the
integral can be split up as∫ t

τ

dt ′E2
IR(t ′) =

∫ t

0
dt ′E2

IR(t ′) +
∫ 0

τ

dt E2
IR(t), (A4)

where the second integral will be constant in time after
evaluation and can be dropped, following the arguments
leading up to Eq. (31). Note that a splitting of the integral,
as in Eq. (A4), in the exponent on the left-hand side (LHS) of
Eq. (29) prior to the expansion would impede further analytical
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progress. Since the integrand is even, we may rewrite the
expression further as∫ t

0
dt ′E2

IR(t ′) = 1

2

∫ t

−t

dt ′E2
IR(t ′)

= 1

2

[ ∫ −t

−∞
dt ′E2

IR(t ′) +
∫ t

−t

dt ′E2
IR(t ′)

−
∫ ∞

t

dt ′E2
IR(t ′)

]

= 1

2

∫ ∞

−∞
dt ′sgn(t − t ′)E2

IR(t ′), (A5)

where sgn(t) is the sign function. The final expression in
Eq. (A5) can be recognized as the convolution of the functions
sgn(t ′ − t) ≡ f (t ′) and E2

IR(t ′) ≡ g(t ′), defined as

(f ∗ g)(t) ≡
∫ ∞

−∞
dt ′f (t − t ′)g(t ′). (A6)

From the convolution theorem, we have

F[(f ∗ g)(t)](ω) =
√

2πF[f (t)](ω)F[g(t)](ω), (A7)

reducing the problem to finding the individual Fourier trans-
forms of f (t) and g(t). The former is given by [27]

F[sgn(t)](ω) =
√

2

π

1

iω
. (A8)

The latter is more involved:

F[E2
IR(t)](ω) = E2

0,IR√
2π

∫ ∞

−∞
dt exp

(
−8t2

T 2
IR

)
sin2 (ωIRt)e−iωt

(A9)

and can be solved by expressing the sine as exponentials and
completing the square, resulting in

F[E2
IR(t)](ω) = − E2

0,IRTIR

16

[
− 2 exp

(
−T 2

IRω2

32

)
+ exp

(
−T 2

IR(ω + 2ωIR)2

32

)
+ exp

(
−T 2

IR(ω − 2ωIR)2

32

)]
, (A10)

which also solves the Fourier transform of the second term in Eq. (A2).
From Eqs. (A2), (A5), (A7), (A8), and (A10), and by incorporating the shift in frequency due to the factor eiE1t , we obtain

d̃1(ω,τ ) = iαd2
01d

2
12E2

0,IRTIR

16(E1 − E2)
e−iE1τ

[
1

ω − E1
− 1

2(E1 − E2)

]{
− 2 exp

[−T 2
IR(ω − E1)2

32

]
+ exp

[−T 2
IR(ω − E1 + 2ωIR)2

32

]

+ exp

[−T 2
IR(ω − E1 − 2ωIR)2

32

]}
. (A11)

Next, to obtain the Fourier transform of the time-dependent dipole moment corresponding to LISs, we start with the Fourier
transform of Eq. (33):

d̃2(ω,τ ) = − iαd2
01d

2
12√

2π (E1 − E2)2
EIR(τ )e−iE2τ

∫ ∞

−∞
dt eiE2tEIR(t)e−iωt , (A12)

and we make the same approximation for the IR field as above. Solving the integral then amounts to taking the Fourier transform
of a Gaussian and performing shifts E2 ± ωIR in frequency. Thus, the Fourier transformed dipole moment responsible for the
LISs is

d̃2(ω,τ ) = − αd2
01d

2
12E2

0,IRTIR

4
√

2π (E1 − E2)2
exp (−iE2τ ) exp

[−4τ 2

T 2
IR

]
sin (ωIRτ )

{
exp

[
−T 2

IR(ω − E2 − ωIR)2

16

]

− exp

[
−T 2

IR(ω − E2 + ωIR)2

16

]}
. (A13)
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